
Automated Regression Testing Using Constraint Programming∗

Arnaud Gotlieb,1 Mats Carlsson,2 Marius Liaaen,3

Dusica Marijan,1 Alexandre Pétillon1

1 SIMULA, Norway (simula.no)
2 SICS, Sweden (sics.se)

3 CISCO, Norway (cisco.com)

Abstract

In software validation, regression testing aims to check the
absence of regression faults in new releases of a software
system. Typically, test cases used in regression testing are ex-
ecuted during a limited amount of time and are selected to
check a given set of user requirements. When testing large
systems, the number of regression tests grows quickly over
the years, and yet the available time slot stays limited. In or-
der to overcome this problem, an approach known as test suite
reduction (TSR), has been developed in software engineering
to select a smallest subset of test cases, so that each require-
ment remains covered at least once. However solving the TSR
problem is difficult as the underlying optimization problem is
NP-hard, but it is also crucial for vendors interested in re-
ducing the time to market of new software releases. In this
paper, we address regression testing and TSR with Constraint
Programming (CP). More specifically, we propose new CP
models to solve TSR that exploit global constraints, namely
NVALUE and GCC. We reuse a set of preprocessing rules to
reduce a priori each instance, and we introduce a structure-
aware search heuristic. We evaluated our CP models and
proposed improvements against existing approaches, includ-
ing a simple greedy approach and MINTS, the state-of-the-
art tool of the software engineering community. Our exper-
iments show that CP outperforms both the greedy approach
and MINTS when it is interfaced with MiniSAT, in terms of
percentage of reduction and execution time. When MINTS is
interfaced with CPLEX, we show that our CP model performs
better only on percentage of reduction. Finally, by working
closely with validation engineers from Cisco Systems, Nor-
way, we integrated our CP model into an industrial regression
testing process.

Introduction

Context. Software testing is the main validation technique
used to check the reliability and robustness of software sys-
tems. It includes several phases such as functional testing,
performance testing and regression testing, as the goal is to
detect distinct faults in the system. By executing the appli-
cation with a set of existing test cases used to test previous
releases, regression testing checks the absence of regression

∗This work is supported by the Research Council of Norway
(RCN) through the research-based innovation center Certus, under
the SFI programme
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

faults, that is, faults that may have been re-introduced into
the application during development of new features. Regres-
sion testing is a time-consuming activity. In order to keep
short the time to market of new releases, a judicious selec-
tion of regression test scripts to re-execute has to be per-
formed, ideally without jeopardizing the quality of the over-
all regression testing process.
An industrial case study. The video-conferencing software
system developed by Cisco Systems, Norway, is a system
that needs to be thoroughly tested before release. Its rec-
ognized quality is seen as a strong advantage in a compet-
itive market where cheaper competitor products (but with
lower quality) exist. Performing regression testing of this
system involves verifying all its features at least once be-
fore release. For instance, testing features such as audio call,
video call, multi-site call, is crucial to preserve the quality
of the system. As the system has been developed over many
years, a database repository of about 5000 test cases is main-
tained. Each test case includes a manual preparation step to
make the system testable (setting up the necessary devices,
establishing calls to distant sites, etc.), so that the average
time required to execute each test case is about half-an-hour.
Note that this time dominates the time required to execute
the other more automated parts of the scripts. Since only a
couple of days are available for testing a new release, one
has to select among the test cases those to be executed in
regression testing. Of course, an army of testers could work
in parallel to execute all the regression tests, but the testing
costs would rapidly become prohibitive. So, there is a chal-
lenge in selecting a smallest subset of test cases in order to
minimize the overall test execution time, such that every fea-
ture is executed at least once. This challenge is known in the
software engineering community as the test suite reduction
(TSR) problem.
Test Suite Reduction. Formally speaking, given a set of
test cases T , a set of requirements R and a covering re-
lation Cov saying which requirement is covered by the
test cases, TSR aim to find a smallest subset T ′ of test
cases such that each requirement is covered by at least
one test case from T ′. This problem is related to Minimum
Set Cover which is known to be NP-complete (Garey and
Johnson 1990). Unlike this problem, TSR always consid-
ers all the possible subsets of T , meaning that the number
of subsets is exponential in the cardinality of T . In the lit-

Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16)

4010

erature, TSR has been approached with at least three dis-
tinct techniques: greedy algorithms (Rothermel et al. 2002;
Tallam and Gupta 2005; Jeffrey and Gupta 2005), search-
based testing techniques (Ferrer et al. 2015; Wang, Ali, and
Gotlieb 2015), and exact methods (Hsu and Orso 2009;
Chen, Zhang, and Xu 2008; Gotlieb and Marijan 2014).
Greedy approaches. A classical approximation algorithm
used for TSR is reported in (Chvátal 1979). The heuristic
selects first the test case that covers the most features and
repeats the process until all features are covered. The main
limitation of Chvátal’s and similar greedy approaches con-
cerns its possible inclusion of redundant test cases. In the
90’s, (Harrold, Gupta, and Soffa 1993) proposed a tech-
nique which approximates the computation of minimum-
cardinality hitting sets. More recently, (Tallam and Gupta
2005) introduced the delayed-greedy technique, which ex-
ploits implications among test cases and requirements to fur-
ther refine the reduced test suite. One shortcoming of greedy
algorithms is that they only approximate the global optima
without providing optimal test suite reduction. It is problem-
atic in our industrial context as the execution time of each
test case (about half-an-hour) is much larger than other in-
dustrial cases. Reaching a truly optimum is thus highly de-
sirable, so that the total execution time of the test suite can
be strongly shortened. Search-based testing techniques.
Meta-heuristics have been used to deal with TSR. By com-
paring 10 distinct algorithms for different criteria in (Wang,
Ali, and Gotlieb 2015), the authors observed that random-
weighted multi-objective optimization is the most efficient
approach. However, this approach assigns weights at ran-
dom, meaning actually that no priority can be established
between the criteria. All these techniques can scale up to
problems having a large number of test cases and require-
ments but they cannot explore the overall search space and
thus they cannot guarantee global optimality.
Exact approaches. To the best of our knowledge, ex-
act approaches for the TSR problem are based either on
SAT (Boolean satisfiability) or ILP (Integer Linear Pro-
gramming) solving. The best-known approach for exact test
suite minimization is called MINTS (Hsu and Orso 2009).
MINTS can possibly be interfaced with either MiniSAT or
CPLEX and it can deal with multi-criteria ILP formulation,
such as weighted sum, prioritized optimization or hybridiza-
tion. Generally speaking, the theoretical limitation of exact
approaches is the possible early combinatorial explosion to
determine the global optimum, which exposes these tech-
niques to serious limitations even for small problems. In
the context of feature covering for highly-configurable soft-
ware systems, an approach based on SAT solving is pro-
posed in (Uzuncaova, Khurshid, and Batory 2010). TSR is
encoded as a Boolean formula that is evaluated by a SAT
solver. An hybrid method based on ILP and search, called
DILP, is proposed in (Chen, Zhang, and Xu 2008) where
a lower bound for the minimum is computed and a search
for finding a smaller test suite close to this bound is per-
formed. In (Mouthuy, Deville, and Dooms 2007), Monthuy
et al. proposed a constraint called SC for the set covering
problem. They created a propagator for SC by using a lower
bound based on an ILP relaxation. Finally, we introduced

in (Gotlieb and Marijan 2014) an approach for test suite re-
duction based on the computation of maximum flows in a
network flow. This initial idea has triggered the work re-
ported in the present paper, where there is an in-depth anal-
ysis of different CP model based on global constraints.
Contributions of the paper. This paper introduces and
compares three distinct CP models based on global con-
straints, namely the NVALUE (Pachet and Roy 1999) and the
GCC (Régin 1996) constraints. By reusing existing prepro-
cessing rules to reduce a priori the size of the problem, and
by introducing dedicated search heuristics for TSR, we are
able to deal with TSR instances which are outside the scope
of current approaches. We compare the running time and
the reduction percentage of test suites for three CP models
on both random instances and industrial instances. We also
evaluate individually each proposed improvement (prepro-
cessing, search heuristics). Finally, we report on the adop-
tion of CP to the testing of Cisco’s video-conferencing sys-
tems. To the best of our knowledge, these CP models and
the proposed improvements are original for solving the TSR
problem, and thus, the automatic reduction of test suites for
software systems can be considered as a new application of
CP.
Organization of the paper. Section 2 formally defines TSR
and gives some background on CP. Section 3 contains the
three CP models and introduces some improvements. Sec-
tion 4 presents our experimental evaluation to compare the
CP models with other approaches. It also contains some el-
ements on Cisco’s adoption of CP. Finally, section 5 con-
cludes the paper.

Background

Definition 1 (Test Suite Reduction (TSR)). A TSR instance
is a quadruple (T,R,Cov, f) where T is a set of test cases
{t1, ..., tm}, R is a set of requirements {r1, ..., rn}, Cov is
a relation over R and T , and f is a function f : 2T �→ Z.
An optimal solution to TSR is a subset T ′ ⊆ T such that for
each r ∈ R, there exists t ∈ T ′ such that (r, t) ∈ Cov and
has minimal cost f(T ′).

Any TSR problem can be encoded by a bipartite graph
with edges representing the relation Cov as shown in Fig.1.
A domain variable V is a logical variable with an associated
finite domain D(V) ⊂ Z. Our CP models use the following
global constraints:

Definition 2 (NVALUE (Pachet and Roy 1999)). Let N be
a domain variable and V be a vector of domain variables,
NVALUE(N,V) holds iff the number of distinct values in V
is equal to N .

Definition 3 (GlobalCardinality (Régin 1996)). Let T =
(T1, . . . , Tn) be a vector of domain variables, let d =
(d1, . . . , dm) be a vector of distinct integers, and let
C = (C1, . . . , Cm) be a vector of domain variables,
GCC(T, d, C) holds iff for each i ∈ 1..m the number of
occurrences of di in T is Ci. The Ci variables are the occur-
rence variables of the constraint.

4011

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

(a)

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

(b)

Figure 1: TSR as a bipartite graph and an optimal solution.
Let T = {ta, tb, tc, td, te}, R = {r1, r2, r3, r4, r5}, Cov
given in (a), and f be f = card(T ′), then {ta, tb, td} is an
optimal solution as shown in (b)

CP models of the TSR problem

Our CP models are based on the following encoding: each
requirement ri is represented by a finite domain variable Ri

with domain {t1, ..., tn}, where each ti represents a test case
covering Ri.

A Naive Model (NVALUE)

Minimize N s.t.NVALUE(N, (R1, . . . , Rn))

This model aims to minimize the number of different val-
ues that can be taken by R1, . . . , Rn, that is, the number of
distinct test cases covering all the requirements. This is a
naive model because it does not include ways to perform the
search of optimal solutions through the selection of the most
promising test cases. For example, branching on the selec-
tion of test cases that cover the most requirements is highly
desirable. So, we introduced another model based on GCC.

A Model with GCC(GCC 2)

Let the domain variables Oi be the number of times test case
ti is selected to cover requirements R1, ..., Rn, then:

Maximize N s.t.
GCC((R1, . . . , Rn), (t1, . . . , tm), (O1, . . . , Om))∧
GCC((O1, . . . , Om), (0), (N))

is another model for TSR. The second GCC allows us to
constrain the selection of test cases, maximizing the number
of unselected test cases, This model offer us the opportunity
to branch on the number of occurrences of each test case.
Since the filtering algorithm of GCC is somewhat costly
(Régin 1996), we proposed a third model, which implements
a number of optimizations and combines the advantages of
the first two models.

An Optimized Model (Mixt)
The following model keeps the advantage of permitting us
to branch on the Oi.

Minimize N s.t.
NVALUE(N, (R1, . . . , Rn))∧
GCC((R1, . . . , Rn), (t1, . . . , tm), (O1, . . . , Om))

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

(a)

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

(b)

Figure 2: Preprocessing. The edge (r4, te) is removed from
Cov by r1, since {r | (r, te) ∈ Cov} = {r4} is in-
cluded in {r | (r, td) ∈ Cov} = {r4, r5}. The edges
(r5, tc) and (r5, td) are removed from Cov by r2, since
{t | (r4, t) ∈ Cov} = {td} is included in {t | (r5, t) ∈
Cov} = {tc, td}. td must be included in the solution set by
r3, since {t | (r4, t) ∈ Cov} = {td}.

In addition, we propose a number of optimizations including
preprocessing and specialized search heuristics.

Preprocessing allows us to reduce the size of the problem
beforehand, by using the following rules:
r 1. If t1, t2 exist s.t. {r | (r, t1) ∈ Cov} ⊆ {r | (r, t2) ∈

Cov}, then remove all tuples (r, t1) from Cov.
r 2. If r1, r2 exist s.t. {t | (r1, t) ∈ Cov} ⊆ {t | (r2, t) ∈

Cov}, then remove all tuples (r2, t) from Cov.
r 3. If r1, t1 exist s.t. {t | (r1, t) ∈ Cov} = {t1}, then t1

must be included in the solution set.
Fig 2 illustrates these preprocessing rules.

0
50

10
0

15
0

Ti
m

e
(s

)

TD1 TD2 TD3 TD4 TD5

 With Preprocessing
 Without Preprocessing

TD1 TD2 TD3 TD4 TD5
Requirements 60 60 30 80 80
Test cases 300 400 500 200 500
Density 20 20 8 20 40
% removed test cases 18,97 19,37 41,35 11,3 16,34

Figure 3: Comparison of CPU time w.r.t. preprocessing

We performed experiments to evaluate the benefits of these
preprocessing rules for both randomly generated TSR prob-
lems and industrial instances, as shown in Fig. 3 and Fig. 11.

Search Heuristics

Search heuristics consist of a variable selection strategy and
a value assignment strategy, which both relate to the vari-

4012

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 4: Two symmetrical solutions for CP, a single solu-
tion of TSR. In both graphs, the same optimal test suite is
obtained, T ′ = {ta, tb}. However, it is associated with dis-
tinct solutions for CP because the Ri are assigned to distinct
values: on the left, R1 is assigned to ta while on the right R1

is assigned to tb. With our dedicated heuristic, an arbitrary
selection is made, e.g., the occurrence variable Oa repre-
senting ta is assigned to 2 as shown on the left. In case of
necessary backtrack, it would be assigned to 0, but never to
1, as shown on the right

ables used in the model. For the NVALUEmodel, we use the
first-fail principle, which selects the domain variable repre-
senting the requirement that is covered by the least number
of test cases. As all the requirements have to be covered, it
means that those test cases are most likely to be selected.
The default value selection strategy is based on a statically
ordered list of test cases.

As said above, the naive model does not permit us to
branch on other variables than the requirement variables.
By introducing occurrence variables in the GCC 2 and Mixt
models, it is possible to branch on these variables. For those
models, we select the occurrence variable V that maximizes
max(D(V)). The underlying idea is to explore first the
search tree where test cases cover the most requirements.
Unlike static strategies used in classical approximation algo-
rithms, our strategy is dynamic and the ordering is revised at
each step of the selection process. The following non-trivial
observation formalizes this idea:

Property 1. Let each test case ti be represented by an oc-
currence variable Oi taking its values in 0..max i where
max i is dynamically updated with the current partial as-
signment. Then, for each solution X of the TSR problem with
cost f(X) where Oi = ni such that 0 < ni < maxi (strict
inequalities), there is at least one other solution Y with cost
f(Y) ≤ f(X) where either Oi = 0 or Oi = maxi .

The TSR-dedicated heuristic is incomplete, meaning that
some parts of the search tree might stay unexplored. How-
ever, based on Prop. 1, the TSR-dedicated heuristic guaran-
tees that at least one optimal solution is found, as shown in
Fig.4.

Experimental Evaluation

All our experiments were run on a standard i7-2929XM
CPU machine at 2.5GHz with 16GB RAM. We performed
experiments on both random and industrial instances of TSR
provided by Cisco. We built a random generator of TSR in-
stances, which takes three parameters as inputs: the number

of requirements, the number of test cases and, d, the den-
sity of the relation Cov. By density, we mean the greatest
arity value for all requirement in Cov. Our generator draws
at random a number a between 1 and d and creates a random
edges in the bipartite graph of Cov.

Results and Analysis

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

TD1 TD2 TD3 TD4 TD5

TD1 TD2 TD3 TD4 TD5
Requirements 20 90 60 60 30
Test cases 70 100 100 200 500
Density 8 20 20 20 8

Figure 5: Comparison of CPU time for the CP models (time-
out = 300s)

Comparison of the various CP models Fig. 5 compares
the CPU time of our CP models. In each data set, 20 ran-
dom samples were generated. For all but TD1, the GCC2

model times out (after 300 sec). For the NValue model, we
observe that the variation is very high in most cases (TD2,
TD4, TD5). Sometimes, this models also times out. On the
contrary, the Mixt model does not present much variation,
which means that the TSR-dedicated heuristic is robust and
useful in most cases. In Fig. 6, we compute the percentage

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

N
Va

lu
e

G
C

C
²

M
ix

t

2

4

6

8

10

12

Pe
rc

en
ta

ge

TD1 TD2 TD3 TD4 TD5

TD1 TD2 TD3 TD4 TD5
Requirements 250 500 1000 1000 1000
Test cases 500 5000 5000 5000 7000
Density 20 20 20 8 8

Figure 6: Comparison of reduction rate for the CP models
(in percentage of remaining test cases, time-out = 30s)

of test cases remaining in the solution set after 30 seconds.
A good reduction rate is crucial for any industrial adoption,
as test suite reduction has to be performed within a contin-

4013

uous integration process, where this reduction is computed
each time a new software release is committed.

We observe in this experiment that NValue is outper-
formed by both GCC2 and Mixt, which both reach the same
reduction rate. We interpret this to be due to the selection of
the branching heuristic, which is different for the NValue
model, where only the requirement variables are available
for branching.

Mixt CPlex Greedy Mixt CPlex Greedy Mixt CPlex Greedy Mixt CPlex Greedy Mixt CPlex Greedy

2

3

4

5

6

7

Pe
rc

en
ta

ge

TD1 TD2 TD3 TD4 TD5

TD1 TD2 TD3 TD4 TD5
Requirements 1000 1000 2000 2000 4000

Test cases 5000 5000 5000 5000 5000
Density 7 20 20 50 50

Figure 7: Comparison of reduction rate of Mixt, CPLEX and
Greedy (in percentage of test cases, time-out = 60s)

Comparison with other approaches Fig. 7 shows the re-
sults of experiments performed on 4 approaches, namely, our
CP Mixt model, MINTS (Hsu and Orso 2009) interfaced
with CPLEX, MINTS interfaced with MiniSAT+, and our
own implementation of Chvátal’s greedy algorithm. In all
the cases, a time-out of 60 seconds is set up and the small-
est solution set is returned. In Fig.8, we evaluated the im-

����

����

����

����

����

����

�	��

�
��

����

�� ��� ���� ���� ���� ���� ����

�
��
��
��
�	
�

�	�
�	
��
��
��
�

��������

�����

����������������

�����

Figure 8: Evaluation of CPLEX preprocessing w.r.t. Mixt

portance of CPLEX’s own preprocessing in reaching an op-
timal solution by observing the size of the solution sets at
different time-instants. From these charts, we observe that
MINTS/MiniSAT+ and Chvátal’s greedy algorithm reach
more or less the same reduction rate, while the CP Mixt
and MINTS/CPLEX approaches reach significantly better
reduction rates. With these test data sets, Mixt outperforms

MINTS/CPLEX, but this is something that cannot be gen-
eralized without paying attention to the level of density of
the generated problems. Note also that both the preprocess-
ing rules and the TSR-dedicated search heuristic we came
up with play an important role in these results in favor of
CP. The preprocessing of Mixt cannot be compared with
CPLEX’s own preprocessing as they both work on different
data structures.

Comparison of several search heuristics Fig. 9 shows
the CPU time for three variable-selection heuristics (i.e.,
max, min, ff) used together with the CP Mixt model, while
the value-selection heuristic remains unchanged. The heuris-
tic max selects the variable with the greatest upper bound,
min selects the variable with smallest lower bound while ff
selects the variable with the smallest domain. In this experi-
ment, max achieves the better result by selecting the occur-
rence variable that has the greatest arity, i.e., the one associ-
ated with a test case that covers the most requirements. We
selected it to be employed with our CP Mixt model.

m
ax m
in ff

m
ax m
in ff

m
ax m
in ff

m
ax m
in ff

0

50

100

150

200

250

300

Ti
m

e
(s

)

m
ax m
in ff

m
ax m
in ff

m
ax m
in ff

m
ax m
in ff

0

50

100

150

200

250

300

Ti
m

e
(s

)

TD1 TD2 TD3 TD4

Figure 9: CPU time of several variable-selection heuristics.

Fig. 10 compares different value-selection heuristics with
max, including our own heuristics called value(enum),
step and bisect. The heuristic step branches on all the
values of the domain of occurrence variables in increasing
order, bisect performs domain-splitting using the middle
point of the domain of each variable while our heuristic only
branches on Max and 0 for domain {0, 1, . . . ,Max}.

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

en
um st
ep

bi
se

ct

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

TD1 TD2 TD3 TD4

Figure 10: CPU time of several value-selection heuristics.

As expected, Fig. 10 shows much better results for our

4014

Table 1: Comparison of CPU time between CP models

ID1 ID2 ID3 ID4 ID5 ID6
Requirements 59 53 50 37 37 156
Test cases 107 90 93 100 100 377

Mixt 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s
NValue 0.0s 0.1s 0.0s 0.0s 0.0s 0.1s
GCC2 > 300s 102.0s 91.8s 59.2s 6.1s > 300s

heuristic. However, it is worth keeping in mind that our strat-
egy is incomplete. Even though it may not explore parts of
the search space that contain optimal solutions, it preserves
at least one optimal solution. When sufficient time is allo-
cated to the search, it always has the opportunity to reach an
optimal value faster than complete heuristics.

Cisco Case Study. The industrial adoption of our CP
model for the TSR problem was not easy. One of the is-
sues was to explain to Cisco’s validation engineers abstract
concepts such as constraint propagation, variable-selection
heuristics, global constraints and other AI-related notions
such as constraint satisfaction. This is due to the strong ex-
pectations of validation engineers to control all parts of the
software validation process. In order to facilitate the adop-
tion of constraint satisfaction as part of the validation pro-
cess, we casted our CP model into a tool, which includes
many other features, such as variability management (for
the Cisco’s video-conferencing systems), test-suite prioriti-
zation, and priority-based selection of test cases. We also
performed an extensive experimental study on Cisco’s data.

The results of Tab.1 show that the Mixt CPmodel can
solve industrial instances in no time, while the GCC2 model
is clearly discarded. These results convinced Cisco to inte-
grate the Mixt model into their continuous integration pro-
cess. Fig. 11 shows the percentage of test cases and require-
ments that are removed by the preprocessing rules. These
results indicate that such preprocessing is crucial in any in-
dustrial usage.

��

���

���

���

���

���

���

	
�� 	
�� 	
�� 	
�� 	
�� 	
��

��
��
��

��
	�
�

��������

������������

Figure 11: Percentage of test cases and requirements re-
moved by preprocessing on Cisco case study.

Conclusion

This paper presented the results of the application of CP to
the test suite reduction problem, which is crucial for regres-
sion testing. Three CP models using the global constraints
NVALUE and GCCwere compared through extensive exper-
iments on both random and industrial instances. According

to our knowledge, this is the first time that CP is applied to
the reduction of test suites in software testing. The perfor-
mance of our best CP model was compared to the state-of-
the-art tool MINTS, interfaced with MiniSAT+ and CPLEX.
Our results show that CP is not only efficient, but that it out-
performs MiniSAT+ and it is competitive with CPLEX in
terms of percentage of reduction.

References

Chen, Z.; Zhang, X.; and Xu, B. 2008. A degraded ILP
approach for test suite reduction. In 20th Int. Conf. on Soft.
Eng. and Know. Eng.
Chvátal, V. 1979. A greedy heuristic for the set-covering
problem. Math. of Operations Research 4(3).
Ferrer, J.; Kruse, P. M.; Chicano, F.; and Alba, E. 2015.
Search based algorithms for test sequence generation in
functional testing. Information and Software Technology
58(0):419 – 432.
Garey, M. R., and Johnson, D. S. 1990. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
NY: W. H. Freeman & Co.
Gotlieb, A., and Marijan, D. 2014. Flower: Optimal test
suite reduction as a network maximum flow. In Proc. of Int.
Symp. on Soft. Testing and Analysis (ISSTA’14).
Harrold, M. J.; Gupta, R.; and Soffa, M. L. 1993. A method-
ology for controlling the size of a test suite. ACM TOSEM
2(3):270–285.
Hsu, H.-Y., and Orso, A. 2009. MINTS: A general frame-
work and tool for supporting test-suite minimization. In 31st
Int. Conf. on Soft. Eng. (ICSE’09), 419–429.
Jeffrey, D., and Gupta, N. 2005. Test suite reduction with se-
lective redundancy. In 21st Int. Conf. on Soft. Maintenance,
549–558.
Mouthuy, S.; Deville, Y.; and Dooms, G. 2007. Global con-
straint for the set covering problem. In Journées Franco-
phones de Programmation par Contraintes, 183–192.
Pachet, F., and Roy, P. 1999. Automatic generation of music
programs. In Principles and Practice of Constraint Prog.,
volume 1713 of LNCS.
Régin, J.-C. 1996. Generalized arc consistency for global
cardinality constraint. In 13th Int. Conf. on Artificial Intelli-
gence (AAAI’96), 209–215.
Rothermel, G.; Harrold, M. J.; Ronne, J.; and Hong, C.
2002. Empirical studies of test-suite reduction. Soft. Testing,
Verif. and Reliability 12:219–249.
Tallam, S., and Gupta, N. 2005. A concept analysis in-
spired greedy algorithm for test suite minimization. In 6th
Workshop on Program Analysis for Software Tools and Eng.
(PASTE’05), 35–42.
Uzuncaova, E.; Khurshid, S.; and Batory, D. 2010. In-
cremental test generation for software product lines. IEEE
Trans. on Soft. Eng. 36(3):309–322.
Wang, S.; Ali, S.; and Gotlieb, A. 2015. Cost-effective test
suite minimization in product lines using search techniques.
Journal of Systems and Software 103:370–391.

4015

