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Abstract 
Capturing domain knowledge can be a time-consuming pro-
cess that typically requires the collaboration of a Subject 
Matter Expert and a modeling expert to encode the 
knowledge. In a number of domains and applications, this 
situation is further exacerbated by the fact that the Subject 
Matter Expert may find it difficult to articulate the domain 
knowledge as a procedure or rules, but instead may find it 
easier to classify instance data. To facilitate this type of 
knowledge elicitation from Subject Matter Experts, we have 
developed a system that automatically generates formal and 
executable rules from provided labeled instance data. We do 
this by leveraging the techniques of Inductive Logic Pro-
gramming (ILP) to generate Horn clause based rules to sep-
arate out positive and negative instance data. We illustrate 
our approach on a Design For Manufacturability (DFM) 
platform where the goal is to design products that are easy 
to manufacture by providing early manufacturability feed-
back. Specifically we show how our approach can be used 
to generate feature recognition rules from positive and nega-
tive instance data supplied by Subject Matter Experts. Our 
platform is interactive, provides visual feedback and is itera-
tive. The feature identification rules generated can be in-
spected, manually refined and vetted.  
 

 Introduction   
The ability to capture domain knowledge is a critical task 
in many domains and applications. Quite often knowledge 
capture poses a roadblock in quickly developing and de-
ploying systems that automate processing or reasoning 
tasks. For instance, a Subject Matter Expert (SME) might 
have deep domain knowledge but may not be able to de-
scribe it in terms of concepts and relationships that can be 
used for representing the knowledge. Also at times, the 
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SME may not be able to describe the knowledge at the 
right level of detail that may be needed for making auto-
mated decisions. 

In order to overcome such issues, we use an Inductive 
Logic Programming (ILP) based approach wherein the 
SME essentially identifies positive and negative examples 
for describing a concept and the ILP system uses them to 
derive logic programming rules for formally defining the 
concepts. Our approach is iterative in the sense that the 
SME can refine the rules learned by adding more positive 
and negative examples. 

Our approach relies on a semantic model (consisting of 
ontologies and rules) that initially describes the basic con-
cepts and relationships of the domain. To learn definitions 
of more complex concepts, the SME provides positive and 
negative examples that are automatically translated into a 
formal representation using the basic concepts and rela-
tionships.  

The complex concepts thus learned are added back to 
the semantic model and this process is repeated to learn 
multiple levels of knowledge.  

Our approach addresses both the issues described above. 
Since we automatically translate the example data provided 
by SME into a logical representation, the SME is not re-
quired to have knowledge of the concepts and relationships 
in the ontology. Also, since the SME only identifies posi-
tive and negative examples and repeats the learning ap-
proach until the knowledge learned is satisfactory, it pro-
vides a way for deriving complete and accurate descrip-
tions of the concepts in the domain. 

The rest of the paper is organized as follows. We start by 
briefly introducing ILP and then we describe the manufac-
turing domain where we applied this approach. We then 
discuss the Integrated DFM Learning Platform that we 
have developed and deployed, and illustrate our entire ap-
proach with examples. We then highlight some results that 
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we obtained by applying the approach on the domain.  Fi-
nally we discuss related work and conclusions. 

Inductive Logic Programming 
Inductive Logic Programming (Muggleton 1991) is a 
branch of Machine Learning that deals with learning theo-
ries in the form of logic programs. 

 Given background knowledge (B) in the form of a logic 
program,  and positive and negative examples  as conjunc-
tions E+ and E- of positive and negative literals respective-
ly, an ILP system derives a logic program H such that:  
• all the examples in E+ can be logically derived from        

B ^ H, and  
• no negative example in E- can be logically derived from 

B ^ H.  
ILP has been successfully used in applications such as bio-
informatics and Natural Language Processing (Bratko and 
Muggleton 1995), (Chen and Mooney 2011), (Faruquie, 
Srinivasan, and King 2013). A number of ILP implementa-
tions are available. Examples include Aleph1, Progol2 
(Muggleton 1995), and Atom3. In our work, we use Aleph 
with SWI-Prolog4 (Wielemaker et al. 2012).  

Design For Manufacturability 
Design for manufacturability (DFM), a term used for in-
corporating manufacturing feedback during design phase, 
has gained popularity among design engineers and original 
equipment manufacturers (OEMs). DFM has become an 
integral part of the product development process. The main 
goal of DFM systems is to decrease iterations between de-
sign and manufacturing, thereby resulting in reduced lead 
time for new product introduction.  

A typical design rule consists of a geometric feature, pa-
rameters associated with feature, and constraints on the pa-
rameters that define the bounds of manufacturability. For 
example, a rule for sheet metal hole drilling states “hole 
diameter must be at least equal to the sheetmetal thickness” 
(Radhakrishnan et al., 1996). Any implementation of this 
rule must start with definition of the hole feature. The di-
ameter is the parameter associated with the hole feature 
and the thickness constrains the parameter. So, a primary 
requirement for a DFM system is the ability to recognize 
features. 

                                                 
1 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/ 
2 http://www.doc.ic.ac.uk/~shm/progol.html 
3 http://www.ahlgren.info/research/atom/ 
4 http://www.swi-prolog.org/ 

Automated Feature Recognition 
Automated Feature Recognition (AFR) plays a critical role 
in DFM as manufacturability rules can be defined for fea-
tures. Extensive work has been done on AFR and (Babic, 
Nesic, and Miljkovic 2008) provide a detailed survey. 
While there are a number of different approaches, we focus 
on rule-based approaches as the results can more easily be 
examined and refined by domain experts. So, for our pur-
poses, features are defined in terms of geometric and topo-
logical information and can be encoded as if-then rules. 
These rules are typically composed of attributes / proper-
ties of faces, edges, vertices. 

(Brousseau, Dimov, and Setchi 2008) propose a method 
to automatically generate feature recognition rules using an 
inductive learning algorithm on training data consisting of 
feature examples. While their approach seems very similar 
to our approach, the key difference is that the feature ex-
amples they provide are all “simple” (i.e. the entire part has 
just that one feature) and they consider only planar and cy-
lindrical faces (though they say that their approach can be 
extended). Our approach works with detailed actual parts 
including compressor casings and so allows us to generate 
AFR rules that handle complexities found in actual parts. 
We have automatically generated rules for tapers, spot fac-
es, pad fillets, flange faces etc. Our platform is also inter-
active so we can consider one feature at a time building on 
previously generated feature recognition rules and it is in-
tegrated with CAD tool for visualization. 

Once feature recognition rules are developed, they can 
then be incorporated in a knowledge base (Phelan, Wilson, 
and Summers 2014). These knowledge bases can also be 
used in various ways including generating explanations for 
AFR (Wang 2012).  

Commercial DFM Tools 
There are several DFM tools currently available either as a 
standalone package or integrated with CAD tools. Some of 
them are DFMPro from Geometric5 that is available in 
SolidWorks6, Checkmate in NX7, DFM tool from Booth-
royd and DewHurst Inc.8 and Apriori9. These tools consist 
of several rules sourced from handbooks and rules-of-
thumb enabling engineers to check different attributes of 
the design within the modeling environment.  

Most of these commercial DFM systems have a fixed 
rules database, to which any addition is typically made by 
the software vendor. Tools such as NX’s Checkmate per-
mit adding custom rules but the interface is not intuitive 

                                                 
5 http://dfmpro.geometricglobal.com/ 
6 http://www.solidworks.com/ 
7 http://www.plm.automation.siemens.com/en_us/products/nx/ 
8 http://www.dfma.com/ 
9 http://www.apriori.com/ 
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and the programming effort required to carry out additions 
is tedious.  

Integrated DFM Learning Platform 
We have developed a DFM platform (Rangarajan et al. 
2013) that provides manufacturability analysis and design 
feedback based on semantic technologies. We have ex-
tended this semantic DFM platform so that we can auto-
matically generate feature recognition rules in the manu-
facturability domain. In our target domain, it is critical that 
our platform be integrated with the standard domain specif-
ic CAD tool.  Consequently, in our integrated platform, the 
semantic model is integrated with NX environment. This 
integration is provided by Java code that mediates between 
Jena objects and NX objects. The three components in our 
platform architecture are therefore NX CAD tool, Java 
processing and a semantic model, and the control and data 
flow is as shown in Fig. 1. The NX CAD tool provides ge-
ometry and topological information, and it also provides 
visualization of the part design. The semantic model is an 
OWL model and it provides a graph representation of the 
geometry and the ability to encode feature recognition and 
manufacturability rules. Java controls logic of events and it 
is also the bridge between the CAD and the OWL. Since 
OWL and CAD APIs are not (currently) compatible, Java 
is necessary to realize the communication. 
 

NX 
One of our goals is to make our platform as CAD tool ag-
nostic as possible. For this reason we work with the B-rep10 
representation of the part. B-rep is a popular representation 
that uses faces, edges, vertices and their properties to de-
scribe a part. The Java processing uses NX APIs to access 
the B-rep representation of the part and make them availa-
ble to the semantic model.  

Semantic Model 
We represent the semantic model using the Semantic Ap-
plication Design Language (SADL)11 (Crapo and Moitra 
2013) which is an English-like language for representing 
ontologies. The SADL tool, which is available as a plugin 
to Eclipse, automatically translates statements in SADL to 

                                                 
10 https://en.wikipedia.org/wiki/Boundary_representation 
11 http://sadl.sourceforge.net/ 

OWL. SADL uses Apache Jena12 as the default inference 
engine. SADL also enables us to represent rules which are 
then translated to Jena rules. We translate the rules learnt 
using Aleph into SADL in order to enable querying over 
the OWL + rules integrated framework using SPARQL13.  
A portion of the semantic model in SADL is shown in Fig. 
2. 

ILP Set Up 
For ILP we need to provide background knowledge; and in 
our platform we base it directly on the semantic model. So, 
the class AbstractFace in the semantic model is represent-
ed using the predicate face; and the property adjacentFace 
that has AbstractFace as both domain and range in the se-
mantic model is represented as adjacentface(+face,-face). 
The background knowledge also allows us to select what 
predicates can be used in the construction of generated 
rules, thereby providing flexibility and directing rule gen-
eration process. The background knowledge is shown in 
Fig 3.  
 
 
 
 
                                                 
12 https://jena.apache.org/ 
13 http://www.w3.org/TR/rdf-sparql-query/ 

Figure 1. DFM Architecture with Control and Data Flow. 

Figure 2. Semantic Model. 

AdjacencyType is a class,  
   must be one of {TANGENT, CONVEX, 
                              CONCAVE, UNKNOWN}. 
Vertex is a type of AbstractSADLnx, 
     described by connectedEdges with values of type AbstractEdge. 
 
AbstractEdge is a type of AbstractSADLnx, 
    described by endpoint with values of type Vertex,  
    described by connectedTo with values of type AbstractEdge, 
    described by edgeAdjacencyType  
                        with a single value of type AdjacencyType,  
    described by connectedFaces with values of type AbstractFace,  
    described by edgeAdjacencyAngle  
                         with a single value of type double.  
 
connectedFaces of AbstractEdge has exactly 2 values. 
 
{Circular, Elliptical, Intersection, Linear, Spline, SP_Curve}  
are types of AbstractEdge. 
 
AbstractFace is a type of AbstractSADLnx, 
    described by edge with values of type AbstractEdge, 
    described by adjacentFace with values of type AbstractFace,  
    described by faceAdjacencyType  
                         with a single value of type AdjacencyType. 
faceAdjacencyType of AbstractFace has default UNKNOWN. 
 
{Blending, Conical, Cylindrical, Parametric, Planar, Spherical, 
  Surface_Of_Revolution}  
are types of AbstractFace. 
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Figure 3. Fragment of ILP Background Knowledge. 

The background knowledge also includes instance data 
which is generated as follows: the platform writes out the 
instance data for the part in N-triples14 format and then us-
es SWI-Prolog to ingest and translate it into literals based 
on the predicates declared in Fig 3. For running ILP, we re-
tain just local information for the positive and negative ex-
amples so that the rules learned are general enough to be 
applicable across different parts. For example, if a (positive 
or negative) example identified was face f0, then the in-
stance data supplied to ILP consists of f0 and all its proper-
ties including edges of f0 and adjacent faces of f0. It also 
includes properties of the edges of f0 and the properties of 
adjacent faces of f0. If f0 has an adjacent face f1, and f1 has 
an adjacent face f2 (and f2 is not an adjacent face of f0) 
then f2 is not included in the instance data related to f0. 
The generation of this local information is also done as part 
of the processing in SWI-Prolog.  

                                                 
14 http://www.w3.org/TR/n-triples/ 

If f0 is a positive or negative example, it is represented 
as new_feature(f0). By convention, all positive examples 
are placed in a file with extension “.f” (f for fact) and all 
negative examples are placed in a file with extension “.n” 
(n for negative). 

The results obtained by running the generated rules are 
integrated into the platform so that they can be visualized 
using NX and the Integrated DFM Learning Platform as 
shown in Fig. 4. We can iterate over different positive and 
negative examples to generate learned rules. Once we are 
satisfied with the rule that is learned for a concept then we 
encode that rule in the semantic model. It is then available 
as a domain concept for any subsequent iterations of ILP to 
learn additional concepts.  

Figure 4. Integrated DFM Learning Platform. 

Semantic DFM Platform 

The learned feature recognition rules are folded back into 
the semantic DFM platform where manufacturability rules 
are defined for the various features. The learned rules are 
persisted and maintained as part of the DFM platform.  

Illustrative Examples 
We have used the Integrated DFM Learning Platform to 
work with large industrial designs like compressor casings 
and have generated feature recognition rules for pad fillet, 
tapers, spot faces, flange faces etc. Here we will illustrate 
this platform via 2 examples.  

Example 1 
In this example we will illustrate the working of the devel-
oped Integrated DFM Learning Platform on a very simple 
part as shown in Fig. 5.  As can be seen in Fig. 5, 4 holes 
are visible, one is a through hole, another is a blind hole 
with a flat bottom and remaining 2 holes are blind holes 
each with a conical bottom. The goal is to generate a rule 
that identifies blind holes with a conical bottom. The user 
selects 2 positive instances of the feature to be recognized, 
which are highlighted as shown in Fig. 5a. In general, it is 
not necessary to select all positive instances present and 
that will be illustrated in an example later on.  
 
 

% Hypothesis declaration; feature to be learned 
:- modeh(1, new_feature(+face)). 
 
% Background knowledge declaration 
:- modeb(4,type(+face,#fetype)). 
:- modeb(4,adjacentface(+face,-face)). 
:- modeb(4,type(+edge,#fetype)). 
:- modeb(4,edge(+face,-edge)). 
:- modeb(*,connectedto(+edge,-edge)). 
:- modeb(*,connectedfaces(+edge,-face)). 
:- modeb(4,edgeadjacencytype(+edge,#edgeadjacencytype)).  
:- modeb(4,faceadjacencytype(+face,#faceadjacencytype)). 
:- modeb(4,closed(+face)). 
:- modeb(4,concave(+face)). 
:- modeb(4,notconcave(+face)). 
 
% what can be used in generated rule 
:- determination(new_feature/1,type/2). 
:- determination(new_feature/1,adjacentface/2). 
:- determination(new_feature/1,edge/2). 
:- determination(new_feature/1,connectedto/2). 
:- determination(new_feature/1,connectedfaces/2). 
:- determination(new_feature/1,edgeadjacencytype/2). 
:- determination(new_feature/1,faceadjacencytype/2). 
:- determination(new_feature/1,concave/1). 
:- determination(new_feature/1,notconcave/1). 
 
% type definitions, fe == face or edge 
fetype(blending). fetype(conical). fetype(cylindrical). 
fetype(parametric). fetype(planar). 
fetype(spherical). fetype(surface_of_revolution). 
 
fetype(circular). fetype(elliptical). fetype(intersection). 
fetype(linear). fetype(spline). fetype(sp_curve). 
 
% provide local instance data for  
% positive and negative examples from the part 
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The user then selects 4 negative examples, which are high-
lighted as shown in Fig. 5b. The Integrated DFM Learning 
Platform then generates appropriate instance data as ex-
plained in previous section and calls Aleph. In this exam-
ple, Aleph learns one rule as follows: 

 
new_feature(A) :- adjacentface(A,B), type(B,conical). 

 
The Integrated DFM Learning Platform shows the result 

of applying this generated rule on the entire part in Fig. 6. 
In this case, the generated rule identifies 4 faces that satisfy 
the rule and 2 of these are the positive examples that were 
supplied and the other 2 are Planar faces. These 2 Planar 
faces are listed in Fig. 6 and the user can select any subset 
of them and visualize them on the part.  Fig. 6 shows these 
2 Planar faces highlighted.  

Since these Planar faces shown in Fig. 6 are not holes, 
the user can add both of these as additional negative in-
stances and re-run the ILP rule generation process. With 

the new set of examples (2 positive instances and 6 nega-
tive instances), Aleph learns a new rule as follows: 

  
new_feature(A) :- type(A,closedcylindrical), 
                             adjacentface(A,B), type(B,conical). 

 
This new rule identifies only the original positive ex-

amples as holes. We should point out that for this illustra-
tive example we used a very simple part, if we use a more 
complicated part, the generated rule may change. The rule 
generated here simply separates the positive examples 
from negative examples; and in fact this rule will match 
blind holes with conical bottom as well as some types of 
protrusions. If we want to generate a rule that only identi-
fies blind holes, then we would need to use an appropriate 
part and select appropriate positive and negative examples.  

Another feature of this approach is that we can select 
what properties can be used in the generated rule. So if we 
drop the property “closedcylindrical” from being available 
for rule generation, then the rule generated is as follows: 
 

new_feature(A) :- adjacentface(A,B),  
                               type(B,conical), closed(A). 

Example 2 
In this example, we consider an actual part that is both 
large and complicated. The part is the top-half casing of an 
aircraft engine and the part model consists of 4743 faces 
and 10,126 edges. We had previously manually authored 
rules to detect pad fillets and had 4 rules to handle various 
sub-cases.  Here we will focus on generating just one of 
these 4 rules, which is a rule to recognize if a Sur-
face_Of_Revolution face is part of a pad fillet or not. Also, 
since the top-half casing part has a huge number of pad fil-
lets, we decided that we could work with just a slice of the 
entire part for this rule generation exercise. This slice, 

Figure 5. Selecting Examples for Blind Holes with Conical Bottom - Selections Displayed in Orange and with Arrows.  
(a) Positive Examples. (b) Negative Examples. 

Figure 6. Genarated Rule Evaluation – False Positives Displayed 
in Orange and with Arrows. 
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called target part here, is still large and has 823 faces and 
2067 edges.  The rule that we had previously manually au-
thored is shown in Fig. 7. By running this rule on the target 
part we get 41 pad fillets which will serve as our ground 
truth. 

For the first iteration of rule generation in the Integrated 
DFM Learning Platform, we selected 12 positive and 10 
negative examples – note that we did not select all positive 
instances. The rule that was generated is as follows: 
 

new_feature(A) :- facetype(A,surface_of_revolution),  
                              adjacentface(A,B), 
                              notconcave(B). 

 
When this rule is evaluated on the target part, it finds 48 

instances of pad fillets. Of these 48 instances, 41 are same 
as our ground truth and the remaining 7 are not pad fillets 
so we need to iterate in order to refine the rule. 

In the second iteration, we added the 7 incorrect instanc-
es as additional negative instances; so this run used 12 pos-
itive and 17 negative instances. The new rule that was gen-
erated is as follows: 
 

new_feature(A) :- facetype(A,surface_of_revolution),  
                              adjacentface(A,B),  
                              notconcave(B), 
                              adjacentface(A,C),  
                              facetype(C,planar). 

 

The evaluation of this rule matched exactly the ground 
truth and so we can stop iterating the rule generation pro-
cess. Note that this automatically generated rule is much 
simpler than the one that was manually authored.  

In general, if ground truth is not available then the rule 
can be evaluated on additional parts to see what feature in-
stances are identified or a SME can evaluate the rule.  

Results 
The Integrated DFM Learning Platform described in this 
paper has been implemented and has been used in automat-
ically generating feature recognition rules. We have been 
successful in generating rules for simple features like de-
pression and protrusion (Brousseau, Dimov, and Setchi 
2008), we have also shown that we can generate rules for 
recognizing more complex features that may include nu-
merical attributes (e.g. spot face rule). Some of the features 
for which we have successfully generated rules are as fol-
lows 
• taper 
• pad fillet 
• spot face 
• flange face 
• candidate angled face (face that should be converted to 

angled faces so as to reduce manufacturability cost) 
For these features, the rules generated had accuracy 1. 

Further for taper and spot face features it took a single iter-
ation to generate the final rule. For pad fillet and flange 
face it took 2 iterations to achieve the final rule. For the 
candidate angled faces we had 3 small sample parts and 
since we process one part at a time, it took 3 iterations. 
Note also that the number of iterations needed is dependent 
on how many and which positive and negative examples 
are selected.  

Related Work and Conclusions  
Since a vast amount of domain knowledge has already 
been captured in text, considerable effort has been made in 
extracting this written knowledge into formal models, see 
(Wong, Liu, and Bennamoun 2012) for a survey of various 
approaches. Most of this effort has been in extracting con-
cepts and relationships between the concepts and repre-
senting it in a semantic model. There has also been work in 
extracting rules from manufacturing handbooks (Kang et 
al. 2015). 

In this paper we have considered how we can automate 
the capture of domain knowledge by applying Inductive 
Logic Programming to positive and negative instance data. 
We have shown this by developing an Integrated DFM 
Learning Platform for generating feature recognition rules 
from complex parts. This platform is currently in use for 

Rule FindPadFillet3 
if 
   f0 is a Surface_Of_Revolution 
   f0 has edge e1 
   e1 has edgeAdjacencyType TANGENT 
   e1 is a Circular 
   f0 has edge e2 
   e1 != e2 
   e2 has edgeAdjacencyType TANGENT 
   e2 is a Circular 
   e2 has connectedFaces f2 
   f2 is a Cylindrical     
   concave of f2 is false           
   e1 has connectedFaces f1 
   f0 !=f1 
   f1 != f2  
   // f1 and f2 do not share any vertices 
   lv1 is list(f1,edge,xe1, xe1,endpoint,v,  
               f2,edge,xe2, xe2,endpoint,v)  
   listLength(lv1) = 0                
   fillet1=getInstance(PadFillet, featureFace,f0,  
                                  bottomFace,f2, bottomEdge,e2) 
then 
   otherFace of fillet1 is f1 
   calculateAngle of fillet1 is false 
   featureName of fillet1 is “Pad Fillet”.  

Figure 7. Manually Authored Rule for Pad Fillet. 
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providing early manufacturability feedback in an industrial 
setting. 
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