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Abstract
Ranking pipes according to their burst likelihood can help
a water utility triage its proactive maintenance budget effec-
tively. In the research literature, data-driven approaches have
been used recently to predict pipe bursts. Such approaches
make use of static features of the individual pipes such as di-
ameter, length, and material to estimate burst likelihood for
the next year by learning over past historical data. The burst
likelihood of a pipe also depends on dynamic features such
as its pressure and flow. Existing works ignore dynamic fea-
tures because the features need to be measured or are difficult
to obtain accurately using a well-calibrated hydraulic model.
We complement prior data-driven approaches by proposing a
methodology to approximately estimate the dynamic features
of individual pipes from readily available network structure
and other data. We study the error introduced by our ap-
proximation on an academic benchmark water network with
ground truth. Using a real-world pipe burst dataset obtained
from a European water utility for multiple years, we show
that our approximate dynamic features improve the ability of
machine learning classifiers to predict pipe bursts. The per-
formance (as measured by the percentage of future bursts pre-
dicted) of the best forming classifier improves by nearly 50%
through these dynamic features.

1 Introduction
Pipe bursts are a major problem for water utility networks.
Water utilities address bursts either reactively post the event
and fix the problem; or pro-actively by repair and rehabili-
tation of pipes over a much longer timescale, e.g., annually.
The latter approach is preferred to avoid significant water
loss and any penalties for damage to customer properties. Fi-
nancially strong utilities can afford to pro-actively maintain
a good part of the network. As an example, Sydney water,
with an annual profit of AUD 513 million in 2014-2015 and
a pipeline network of 21000 kms, inspected around 12034
kms over 2014-2015 (Sydney Water 2015). Such budgets
are however outliers and specific to utilities in developed ge-
ographies that are water starved. The more common case is
that a utility has a budget constraint (typically annual) and
would like to thus spend the budget in minimizing the num-
ber of burst events over the next year.
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Current Practice: To prevent bursts, we need to identify the
pipes that have the highest risk (probability) of bursting the
next year. Utilities typically have a deterministic set of rules
that evaluate the risk associated with each pipe and evaluate
a risk-reward matrix, for example (Anthony Cox 2008).

Researchers have proposed approaches for burst predic-
tion that improve upon the risk-reward matrix. These ap-
proaches can be summarized as follows (more details follow
in the next section). Low-level physically-based approaches
such as (Kim et al. 2007; Rezaei, Ryan, and Stoianov 2015),
model the pipe degradation by material properties. How-
ever, these approaches are more suited for better modeling
of individual pipes in controlled environments and may not
be scalable (and perhaps impractical) in real world settings.

Machine learning based approaches such as (Francis,
Guikema, and Henneman 2014; Lin et al. 2015) model the
pipes by learning the probability of failures from past history
of bursts. The typical features include static pipe-level met-
rics such as length, diameter, age, etc., that are independent
of other pipes.

Dynamic features: While data-driven methods have im-
proved burst prediction over current industry practice, they
ignore dynamic features of individual pipes such as pressure
and flow that arise due to the interplay between the network
structure and operations. The pressures and flows that a pipe
experiences affects the amount of stress a pipe is subjected
to and hence may play a role in its failure. Because pressure
and flow of individual pipes arise from network-wide sup-
ply and demand constraints, they need to be either measured
directly or computationally derived by solving a calibrated
hydraulic model that simulates the operation of the network.

Challenges: Pressure and flow data is available only at
the inlets of District Metering Areas (DMAs) (i.e., sub-
networks) of the utility network. This is because pressure
and flow sensors are typically deployed only at the DMA in-
lets (Narayanan et al. 2014). In many utilities including the
one we study, the hydraulic model is typically not available
for the entire network or is out of date due to the expensive
calibration requirements. This could also be a reason why
existing works do not take dynamic features into account.
In our work, we address the following problem: “Given his-
torical burst data, basic pipe-level features, and the water
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network structure, can we better estimate the probability of
a pipe bursting in the next year using dynamic features even
in the absence of a calibrated hydraulic model?” We com-
plement prior machine learning based pipe classification ap-
proaches (burst or no-burst) by including dynamic pipe-level
features such as pressure and flow that differentiate risk be-
tween pipes with identical static features being used differ-
ently in the network. As in existing approaches, the continu-
ous output of the (burst or no-burst) classifier computed over
a pipe’s static and dynamic features is treated as the proba-
bility of that pipe’s burst over the next year. Pipes are ranked
according to the burst probability for any repair.
Contributions: To overcome the lack of a calibrated hy-
draulic model, we approximate the pressure and flow in each
pipe of the water network using readily available data. Our
intuition is that approximate values of the dynamic metrics
that preserve the relative ordering across pipes should suf-
fice for burst prediction. Using a benchmark water network
where the ground truth of pipe flows and pressures are avail-
able, we demonstrate that our method of approximating the
values of pressure and flow largely preserves the ordering of
pipes by flows and pressures.

We evaluate the efficacy of these approximate dynamic
features for predicting pipe bursts using a real-world data-set
obtained from a leading European water utility. The data-set
contains historical burst logs, static pipe features, and the
network structure. After obtaining approximate pressures
and flows, we train over a subset of the data and test over the
remaining. We have tried approaches including both gener-
ative methods (Naive Bayes) and discriminative classifiers
(Logistic Regression). The pipes are then ranked and as-
sumed to be examined by the utility through a simulation
in order of their ranking. Because pipes need to be tracked
manually for any degradation, the cost of examining a pipe is
proportional to the length of the pipe. Therefore, our perfor-
mance metric for burst prediction is a modified performance
curve that looks at fraction of bursts avoided per fraction of
network length examined. Our key findings include the fol-
lowing:

• Approximate dynamic features consistently improves the
accuracy of burst prediction for Naive Bayes across in-
spection lengths of interest to our water utility, viz. ≤
10% of the total pipe length in the network;

• Naive Bayes with dynamic features shows the best perfor-
mance. Specifically, nearly 30% of potential pipe breaks
can be avoided by inspecting 10% of the pipe lengths.
The use of dynamic features improves the performance of
Naive Bayes classifier by 50% at this inspection length.

• Additional pipes that are correctly identified by our
method are characterized by being in the upper tail of the
distributions of the approximate dynamic features, con-
firming the usefulness of the dynamic features.

Significance. Water utilities operate on a shoe-string budget
as the economic value of water is not as high as energy. Any
improvement in their ability to correctly identify the pipes in
need of proactive maintenance will greatly increase their op-
erational efficiency. We find that the approximate dynamic

features allow a utility to accurately identify additional po-
tential pipe bursts for smaller network inspection lengths.
We note here that in case a utility can accurately estimate the
dynamic features through well calibrated hydraulic models,
the usage of such accurate dynamic feature values will only
further improve the prediction accuracy. Based on the pro-
posed methodology, we are developing a software applica-
tion for possible deployment with a real world water utility
for proactive pipe maintenance. We also plan to enhance the
software application by experimenting with more sophisti-
cated approaches such as deep learning and boosting to fur-
ther improve the burst prediction performance.

2 Related work
Physically-based models: Physically-based models esti-
mate the wear and tear of a pipe based on the mechanical
strength of pipe materials; and the usage of the pipe. Fi-
nite element 3-D modeling is used in (Robert et al. 2016)
for predicting pipe stress and thus pipe bursts after account-
ing for internal and external loading of pipes. Reference
(Davis et al. 2007) presents a physical probabilistic model
using fracture mechanics theory. Growth of cracks using vi-
sual micro-scale examination is used in (Gould et al. 2013)
to do failure analysis of PVC sewer lines. The correla-
tion between dynamic pressure in the network and the crack
development mechanisms is studied in (Rezaei, Ryan, and
Stoianov 2015). The residual tensile strength of iron pipes
is studied in (Kim et al. 2007) to predict bursts; A compre-
hensive survey of physically-based models for pipe deteri-
oration is presented in (Rajani and Kleiner 2001). While
physical approaches can be accurate for specific pipes under
study, it is unclear if they are scalable across pipes of multi-
ple types, lengths, ages, and diameters in a typical network.
This is because, real world networks may have thousands of
pipes with different materials, age, size, length, stress, and
soil conditions. It may not be possible to develop failure
individual models for each of these pipes. Moreover, mea-
suring the parameters required for such physical models for
individual pipes under operation may not be possible.

Machine learning & Statistical models: One of the ear-
liest works is (Kettler and Goulter 1985) which models the
probability of bursts using regression on the pipe features.
Reference (Kleiner and Rajani 1999) shows how to use a
limited data approach to modeling bursts in homogeneous
pipe groups and fits exponential failure rate models to pipes.
In (Lin et al. 2015), the authors use a Dirichlet process mix-
ture of hierarchical beta processes to estimate the burst like-
lihood. Additional features like soil type and proportional
hazard models are used in (Yamijala, Guikema, and Brum-
below 2009). Multiple methods for classification and rank
boosting are tried in (Wang et al. 2013); the authors report
that boosting significantly improves the performance. Un-
like other approaches which look for temporal patterns, (de
Oliveira et al. 2010) looks for spatial patterns across the
distribution network. Belief networks are used in (Fran-
cis, Guikema, and Henneman 2014) for prediction of pipe
breaks. Artificial neural networks have been used in (Har-
vey, McBean, and Gharabaghi 2013) to predict mains fail-
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Figure 1: Bursts per km of pipe length in each year. The
data is shown for large diameter pipes.

ures. Reference (Yan et al. 2013) shows that machine learn-
ing based classifiers better predict pipe bursts than conven-
tional risk-matrix based approaches used by the utilities.

A common limitation of these data-driven approaches is
that they focus on static metrics that are pipe specific without
considering dynamic metrics.

3 Description of real-world data-set
The real world pipe burst data-set obtained was from an Eu-
ropean water utility1. The network has around 6785 pipes
spanning 415 kilometers of length. The network is divided
into 16 DMA’s (District Metering Areas) which are sub-
networks over which flows can be controlled and monitored
at few points of entry. For each DMA, the average flow en-
tering the DMA (over a typical day) was known. The static
data included the following: length (0.5-1580 meters), diam-
eter (13-600mm), depth of burial (0.6-1.5 m), material (Cast
Iron, PVC, etc), and the approximate date of laying the pipes
(1930-2011).

A GIS system provided the connectivity information be-
tween the various pipes and identified the inlets to each of
the DMA’s. The rehabilitation planning is done by the utility
and approved by the regulator annually, so we predict bursts
one year ahead. Burst data logged digitally was available
from 2005.

Bursts in large diameter pipe (i.e., diameter > 125mm)
create more damage than a burst from a small diameter pipe.
In terms of impact, there is a 80-20 rule in favor of the large
diameter pipes – i.e., though the larger diameter pipes may
account for smaller percentage of the overall bursts, they
contribute to a major fraction of the resulting impact. Large
diameter pipes are also more expensive to fix (The Water
Research Foundation 2016). Given these, in the rest of this
paper, we focus on predicting bursts in large diameter pipes.
This focus on larger diameter pipes is similar to the approach
followed in (Lin et al. 2015). There were around 175 bursts
in large diameter pipes spread over 2005-2011. The number
of bursts per kilometer of pipe length across large diameter

1For confidentiality reasons, the details are anonymized.

Symbol Meaning
E Pipes (edges, links)
V Junctions (vertices, nodes)
di Demand at node i
pi Static pressure at node i
hi Elevation at node i
ρ Density of water (1 gm/cc)
g Acceleration due to gravity 9.8 m/s2

Hi Total pressure at node i equals pi + hiρg
Ci,j Pressure gain due to pump along pipe (i, j)

fi,j Flow from node i to node j

e Edge (pipe) e = (i, j)
Le Length of pipe e
Re Radius of pipe e
μe Roughness coefficient of pipe e

Table 1: Notation used in the paper.

pipes is shown in Figure 1. We observe that the probabil-
ity of a pipe bursting (normalized with respect to length) is
less when compared to probability of a pipe not bursting.
Clearly, the priors of the two classes are imbalanced in favor
of the non-burst class.

Finally, we obtained the elevation data for the entire net-
work from Google maps at the spatial resolution of 150 me-
ters. to model the effect of elevation on flow/pressure in the
pipes.

4 Fundamentals of water networks
Water flows in the network under pressure (due to elevation
or pumping). Each demand point on the network acts as a
sink to the flows (and returns the flow to sewage network)
and the demands at various points together influence the
flows direction and magnitudes in the network. Each pipe
offers a frictional resistance to the flow and thus reduces the
pressure along the flow. The resistance would depend on the
roughness coefficient (explained below), length, and diame-
ter of the pipe. The demands at all nodes, the reservoirs’ ca-
pacities and pressures, the rating of all pumps in a water net-
work, and the pipe characteristics including the roughness
coefficients are typically the known or assumed inputs of a
water network’s hydraulic model. The pressures at nodes
and the flows in pipes are outputs to be determined from
these inputs. Using the notation in Table 1, the equations re-
lating the outputs with the inputs are (Prabhata Swamee and
Ashok Sharma 2008):
• Flow equation: The flow entering a node i from all its

neighbors Ni is equal to the total flow leaving it plus the
demand di of the node i. In other words,

∀i ∈ V, di +
∑

j∈Ni

f(i, j) = 0 (1)

This assumes that there are no leaks at junctions.
• Pressure equation: For a link e = (i, j) ∈ E, the change

in the total pressure H along the link is given by:
Hi + PumpingGain− Friction = Hj (2)
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With the Total Pressure Hi re-written as the sum of the the
static pressure pi and the pressure due to elevation hiρg,
the previous equation is expanded as:

pi + hiρg + Ci,j − Lef
2
e × ρg

μeR5
e

= pj + hjρg (3)

where μe represents the pipes roughness coefficient.

These equations can be solved using a fixed point iteration
– for example Todini’s approach (Todini and Pilati 1987), to
obtain the pressures at all nodes; and flows through all pipes.

Model calibration challenges: Equations 1 and 3, require
the roughness coefficients μe’s and the demands di’s. These
di’s and μe’s are empirically estimated during the process of
hydraulic model calibration. In most water networks, cus-
tomers are not precisely metered at end-points and even if
they are, the data will typically be a monthly average. De-
mands are accurately measured only at aggregated levels.
Therefore, node-level demands (di’s) may not be accurately
known at the required spatio-temporal granularity. Further,
as pipes age and corrode, their roughness needs to be pe-
riodically estimated. Considerable effort is required to es-
timate the μe’s. For example, calibrating a network with
few hundreds of nodes may take 40-60 days of effort by an
expert team of 2-4 members (Bros and Kalungi 2010). A
utility lacking in-house expertise would require expensive
niche consultants. For a network serving a population of 1
million, hydraulic model maintenance over a five year period
typically costs about $4 million (Narayanan et al. 2014). Be-
cause of such reasons, all water utilities may not always have
a well calibrated hydraulic model to accurately estimate the
dynamic features.

5 Approximation of dynamic feature values
The data set available with the case study real-world water
utility (as described earlier) is quite basic – network struc-
ture, pipe details, burst records, and readings of flow meters
at DMA inlets. No calibrated hydraulic model was avail-
able. We now present an approach to approximately estimate
the values of dynamic features (pressure2 and flow) for each
pipe even in the absence of an accurate hydraulic model.

The network structure from the GIS system is a logical
graph, where the pipes are edges; and intersections of pipes
are nodes. We create a pseudo-hydraulic model with the fol-
lowing simplifying assumptions: 1) Demands are uniformly
distributed along the pipes of the lowest diameters. Thus
the average inflow into a DMA is divided across all demand
points. and 2) The roughness coefficients of the pipes have
not changed significantly from the initial values at the time
of deployment (which can known from the material type).

With these simplifying assumptions, we solve for an ap-
proximate hydraulic model using fixed point iteration and
obtain the pressures at nodes and flows through various
pipes. Note that if demands are varying with time3 we could

2By pressure, we mean the pressure at the midpoint of the pipe.
3In our dataset, we have only the average inflow into the DMAs.

evaluate the time-averaged values of the pressures and flows
through the pipe network.
Validation: To evaluate our approximation, we now check if
these approximate pressures and flows are significantly dif-
ferent from reality. For this evaluation, we use a benchmark
water network with a well calibrated hydraulic model from
the University of Exeter(Center for Water Systems, Univer-
sity of Exeter ). The Wolf-Cordera (Colorado Springs) net-
work has 1981 pipes delivering 3.7 million gallons per day.
Using the calibrated model, we obtain the accurate pressures
and flows across the pipes – these actual values act as the
ground truth. For this network, we also obtain the approxi-
mate flows and pressures under our two simplifying assump-
tions – these values act as our approximations for the ground
truth.

Figures 2(a) through 2(e) compare the actual and approx-
imate values of the dynamic features as a X-Y scatter plot.
The dynamic features we consider are: (a) flow through a
pipe, (b) total pressure for a pipe (midpoint), (c) static pres-
sure for a pipe (midpoint), (d) total pressure drop across a
pipe, and (e) static pressure drop across a pipe. The accurate
values are in the X axis and the approximate values are in
the Y axis. A reference 45◦ line is also shown in the plots to
highlight the extent to which the approximate values deviate
from the actual values. Larger the deviation, farther will be
the points in the plot from the 45◦ line. As we can see from
the plots, across all dynamic features, almost all the points
lie along the 45◦ line. This indicates that the approximate
values match reasonably well with the actual values.

We also further check if the relative ordering between the
pipes is maintained when using the approximate features.
For each dynamic feature F , we first pick the set of top k
pipes (ranked by F ) in both the approximate model Ek and
the ground truth Ak. Then we compute the extent of inter-
section |Ek∩Ak|

k as a measure of the usefulness of our ap-
proximation in identifying the top k pipes according to fea-
ture F . Figure 3 shows this measure for various dynamic
features. Each curve shows the result for a specific feature.

Apart from initial values of k, the overlap between the sets
identified by the approximate and actual models is close to
around 95%. Even for high values of k, the minimum over-
lap between the sets is around 90%. The ordering is such
that some pipes are initially omitted and then later added to
the number of pipes being considered. So there is a dip and
then the percentage comes back up. In sum, we note that
despite the errors in estimating demands and the roughness
coefficients the relative ordering across pipes is preserved
according to the ranking for various dynamic features.

We hypothesize that standard machine learning classifiers
can use these approximate dynamic feature values in place
of actual feature values to predict future pipe bursts. We
evaluate this hypothesis in the next section.

6 Burst prediction using dynamic features
We now evaluate the use of approximate dynamic features
to predict bursts. The real world dataset spans from 2005 to
2010. The water utility has to decide the maintenance for the
next year (e.g., 2010) at the end of current year (e.g., 2009).
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Figure 2: Scatter plot between the approximate and actual values of the dynamic features. The scatter lies close to the 45◦ line
indicating that the approximate values reasonably match with the actual feature values.
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imations in the dynamic feature values.

Hence the prediction will use the available data/features of
all the pipes laid until the end of the current year (2009) and
predict their ranks based on the break probabilities for the
next year (2010). Correspondingly, the training set for the
model would consist of feature values of all pipes that were
laid until the end of last year (2008) and their break/class
information from the current year (2009).

Data set correction: The utility under study already has a
proactive maintenance program wherein high risk pipes are
identified as per a ‘risk-reward’ matrix. Among the identi-
fied pipes, the top ranking pipes totaling ≈ 1% of the total
network length are proactively inspected and fixed. Conse-
quently, the burst data set provided by the utility is biased
by the proactive pipe maintenance activities. In order to re-
move the effects of this bias, all the pipes that are proactively
maintained by the utility in a year n are removed for both
testing and training for years greater or equal to n.

Classifiers used: To evaluate the approximate dynamic fea-
tures in predicting future pipe bursts, we tested them with
four different classifiers – Naive Bayes, Restricted Boltz-
mann machines, Logistic Regression and Support Vector
Machines. Due to lack of space, we discuss results from the
classifier that performed the best in each category – one gen-
erative, namely Naive Bayes and one discriminative, namely
Logistic Regression.

Feature Selection: For each pipe, we have a total of 7 static
features – namely length, diameter, age, connectivity, ma-
terial, depth, and number of bursts occurred so far. Us-
ing all features to predict future pipe bursts from historical
data need not necessarily improve a classifier’s performance.

Static Features Value type
Length Continuous
Diameter Continuous
Age Continuous
Connectivity Continuous
Material Categorical
Depth Continuous
# of bursts occurred so far Continuous

Dynamic Features Value type
Total Pressure Continuous
Static pressure Continuous
Total pressure drop Continuous
Static pressure drop Continuous
Flow Continuous

Table 2: Features available for burst prediction.

Methods have been proposed in the literature to choose fea-
tures for classification in a systematic way. In our case, how-
ever, the data-set is low-dimensional, e.g., 7 static features.
Therefore, we bypass the problem of feature selection by
considering all 27 − 1 combinations of features and identi-
fying the best-performing combination of base features for
each classifier type over the training set. Similarly, we have
a total of 5 dynamic features for each pipe – namely total
pressure, static pressure, total pressure drop, static pressure
drop and flow. With the additional dynamic features, we
identify the best feature set combination (out of the 212 − 1
choices) that has at least one dynamic feature. The category
of various static and dynamic features used is summarized
in Table 2.

Quantifying classifier performance: The classifier pre-
dicts the class of each pipe (i.e., burst or not) with an output
probability. The output of the classifier is used as the rank
of the pipe that is classified. In all these approaches, we first
train a classifier on past-data and then evaluate the classifier
on a future year. Suppose k pipes of lengths L1 . . . Lk are
examined first according to the ranking given by a classi-
fier. These set of k pipes would entail certain percentage of
actual bursts in the coming year (which is available from
the ground truth data). Combining these two will result
in a point on the performance curve. Specifically, the X-

coordinate of the point is given by
∑i=k

i=1
Li∑i=N

i=1
Li

, that is the frac-
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Figure 4: Performance curves for dynamic features under
two different classifiers. The performance curves are ob-
tained by averaging the classifiers’ performance across the
years 2005-2010.

tion of the total network length examined. The Y-coordinate
shows the percentage of bursts in these k examined pipes as
validated from the ground truth. Note that pipes that were
fixed proactively by the utility are removed from considera-
tion in both training and testing. This process is repeated for
various ranks, k = 1 . . . N , and the performance curve is ob-
tained. To summarize, the X-axis in each of the figures is the
% of the length of the network examined. The Y-axis shows
the percentage of predicted bursts that are actually bursts.

7 Results
As with recent approaches (Yan et al. 2013), we too ob-
served that predicting pipe bursts with machine learning
based classifiers using static features outperform conven-
tional risk-reward approaches. For the sake of brevity, in
this work, we focus on comparing the performance of clas-
sifiers under two scenarios: (a) using static features, and (b)
using both static and dynamic features.
Naive Bayes (NB): Figure 4 shows the average performance
of NB with and without dynamic features across the years
2005-2010. The best performing dynamic feature combina-
tion included diameter, depth, material, connectivity, static
pressure and static pressure drop. We find that the use of dy-
namic features (though approximate) consistently and con-
siderably improves the performance of the classifier across
the inspection lengths of interest to the utility (< 10%). At
an inspection length of 10%, the dynamic features allow the
classifier to identify nearly 50% additional bursts on average
in comparison to static features. NB uses static pressure and
static pressure drop across a pipe as dynamic features to im-
prove the classification performance. As a case in point, in
the year 2009, when 8% of the network length is examined,
NB detects 32% of pipe bursts using dynamic features, while
only 8% of the burst pipes are detected using static features.
Nearly two thirds of the bursts detected by the dynamic fea-
ture combination have dynamic feature values that lie in the
upper tail of the feature distribution which improves the clas-
sifier’s performance. Though there are some common break
pipes that are detected by both dynamic and static feature

combination, the ranks of those pipes are moved signifi-
cantly to the top order when dynamic features are consid-
ered. This helps the utility to examine even a lesser percent-
age of the network.
Logistic Regression (LR): Figure 4 shows the average per-
formance of the LR with and without dynamic features
across the years 2005-2010. The best performing combi-
nation of features included the static feature depth; and the
dynamic features flow and total pressure. We find that the
use of dynamic features improves the performance when
smaller fractions of the network are taken up for inspec-
tion by the utility ( < 5%). At an inspection length of 2%,
the dynamic features allow LR to identify nearly 50% addi-
tional bursts on average in comparison to static features. As
the inspection length increases, the use of dynamic features
does not add much value. In other words, LR is not able
to learn the information content in the dynamic features and
combine it appropriately with those in the other static fea-
tures. The dynamic features used by logistic regression to
give an improved performance at smaller inspection lengths
are the total mid-point pressure and the flow value. Specif-
ically, during the year 2009, on examining 4% of the net-
work length, logistic regression with dynamic features de-
tected nearly 25% of the total bursts while using static fea-
tures alone, the classifier should detect just 5% of the total
bursts. This performance boost comes because nearly 66%
of the breaks detected by using dynamic features occurred
on pipes which belong to the top 10 percentile of the dy-
namic features.
Summary: We observe the following:

• Dynamic features do improve the performance of classi-
fiers across the inspection lengths of interest to the utility
– for smaller inspection lengths (< 3%), logistic regres-
sion with dynamic features gives the best performance,
while for higher lengths, Naive Bayes with dynamic fea-
tures gives the best performance. This suggests that even
approximate network operational information can help
utilities improve their burst prediction.

• Depending on the inspection length desired by the utility,
the appropriate classifier with the best performance can
be chosen. If simplicity is desired, on account of consis-
tent performance, Naive Bayes can be picked as the single
classifier to do predict pipe bursts.

• While the performances of the two classifiers are compa-
rable under static features, they significantly differ when
approximate dynamic features are introduced. This indi-
cates that different classifiers make use of the additional
information available from the dynamic features differ-
ently across the spectrum of inspection lengths.

8 Conclusions
Water utilities need to prioritize rehabilitation of pipes for
a given maintenance budget. Since they are budget con-
strained, any improvement in their ability to correctly iden-
tify the pipes in need of proactive maintenance will greatly
increase their operational efficiency. To this end, we pre-
sented an approach that approximates the dynamic features
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of pipes, specifically flow and pressure, using readily avail-
able data. We showed that the performance of machine
learning classifiers to predict future pipe bursts significantly
improves when trained with our approximate dynamic fea-
tures. We are in the process of deploying this technique in
real world water utilities as a separate software application
for proactive pipe maintenance. Future directions of work
include experimenting with the use of approximate dynamic
features in techniques like boosting and deep learning to fur-
ther improve the prediction performance. We are also devel-
oping a software application based on the proposed method-
ology for possible deployment with a real world water utility
for proactive pipe maintenance.
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