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Abstract 
Vehicle crashes account for over one million fatalities and many 
more millions of injuries annually worldwide. Some roads are 
safer than others, so driving routes optimized for safety may re-
duce the number of crashes. We have developed a method to 
estimate the probability of a crash on any road as a function of the 
traffic volume, road characteristics, and environmental condi-
tions. We trained a regression model to estimate traffic volume 
and a binary classifier to estimate crash probability on road seg-
ments. Modeling a route’s crash probability as a series of Ber-
noulli trials, we employ the Dijkstra routing algorithm to compute 
the safest route between two locations. We find that, compared to 
the fastest route, the safest route is approximately 1.7 times as 
long in duration and about half as dangerous. We also show how 
to smoothly trade off safety for travel time, and demonstrate how 
drivers could be offered several route options, each with different 
crash probabilities and durations. 

 Introduction1 
Annual deaths worldwide due to vehicle crashes are esti-
mated at over 1.2 million, along with 20-50 million non-
fatal injuries (WHO, 2009). The World Health Organiza-
tion predicts that road crashes will rise to the fifth leading 
cause of death by 2030, at about 3.6% of the total (WHO, 
2009). 

The U.S. National Highway Traffic Safety Administra-
tion blames outside conditions, along with drivers and ve-
hicles, as one of the three broad causes of vehicle crashes 
(NHTSA, 2016). Choosing less crash-prone roads may 
reduce accident rates, even for careful drivers. However, 
very little work to date has aimed at finding driving routes 
that promise to reduce the probability of a vehicle crash. 
As an example, Figure 1 shows three computed routes. The 
green route is the fastest, identified by minimizing the driv-

                                                
1 Copyright © 2017, Association for the Advancement of Artificial Intel-
ligence (www.aaai.org). All rights reserved. 
 

ing time. The red route is the safest, according to our anal-
ysis, computed by minimizing the crash probability. The 
black route is a compromise between the two extremes. 

 We couple route planning and predictive models to iden-
tify the safety of routes. At the core of the approach, we 
seek to estimate vehicle counts and crash probabilities on 
individual road segments using publicly available data 
from road sensors and crash reports. We develop a regres-
sion model to interpolate from spatially sparse vehicle 
count measurements to estimate counts on all roads. These 
vehicle counts, along with other features, serve as inputs to 
a crash classifier that provides estimates of crash risk on 
any road. We use a Bernoulli probability model to compute 

 
Figure 1: Green path is the fastest route between the two loca-
tions, while red route is the safest. Red route takes 1.5 times as 
long to drive as green route, but probability of crashing on red 
route is half that of green route. Black route is a  compromise 

that is 30 seconds longer and 34% safer than fastest route. 
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the crash probability of any route, and we show how to use 
Dijkstra’s algorithm to compute the route that minimizes 
the crash probability. We test our algorithm on 100 sample 
routes, showing how the fastest and safest routes compare 
in terms of driving time and crash probability. Finally, we 
demonstrate how to trade off safety and driving time, giv-
ing several different route options with different durations 
and crash probabilities. 

Related to our work are studies of specific road configu-
rations and how they affect crash risk, such as traffic signal 
timing (Retting, Chapline, & Williams, 2002), roundabouts 
(Daniels, Brijs, Nuyts, & Wets, 2010), and other conditions 
(Othman, Thomson, & Lannér, 2009). Other related work 
includes efforts to understand alternate routing criteria 
such as risks for transporting hazardous materials 
(Zografos & Davis, 1989) and reducing fuel consumption 
(Ericsson, Larsson, & Brundell-Freij, 2006). Nadi and 
Delavar introduced a route planner that simultaneously 
attempts to optimize for ten different criteria, although 
safety is not one of them (Nadi & Delavar, 2011). Thus, 
previous studies include methods for estimating crash risk 
and on considering alternate routing criteria, but not on 
routing based on estimated crash risk. 

Crash and Traffic Data 

We used datasets on crashes and on vehicle counts to build 
a predictive model for the per car probability of a crash 
along route segments. We obtained both crash and vehicle 
count data from the Traffic Data Management System of 
the City of Minneapolis, MN, USA (Minneapolis). The 
dataset includes 15,401 vehicle crashes over 30 months, 
spanning January 1, 2013 to June 30, 2015. Each crash 
report includes a date/time and latitude/longitude. As the 
reporting entity is the city of Minneapolis, the data does 
not include crashes on federal highways passing through 
the city, and thus we ignored federal highways in the 
routes we consider. 

The vehicle count dataset includes hourly vehicle count 
data for 939 different roads in Minneapolis over years 
2012-2015. Significantly, the data does not come with de-
tailed time stamps for the counts. Instead, the counts are 
reported as the number of vehicles traversing the road for a 
given hour on a given day of the week and year. A map of 
the reported crashes and vehicles counts is shown in Figure 
2. 

Finally, we leverage a routable road network drawn from 
the Bing Maps U.S. database. Connectivity is represented 
as a directed graph, with intersections as vertices and road 
segments as edges between the vertices. We matched each 
crash and traffic count to the geographically nearest road. 
 
 

 
Figure 2: Red dots show locations of 15,401 vehicle crashes over 

30 months in Minneapolis, MN. Black dots show 939 vehicle 
count measurement locations over 4 years. 

Learning Crash Risk 
We estimate the crash probability of road segments by first 
interpolating to infer the hourly vehicle count and then 
classifying to infer the crash probability. 

Inferring Traffic Counts 
For a given date/time on a road segment, we must estimate 
the hourly vehicle count. This is first used as a feature to 
estimate crash risk, where it proved to be the most im-
portant feature among those we used. The estimate is also 
used in the arithmetic of computing crash probabilities: if a 
road segment will host one crash and  vehicles in an 
hour, then each vehicle on that road segment has a  
chance of crashing over that hour. 

When we seek a traffic count estimate on a given road 
segment for a given date/time, sometimes that road seg-
ment has an actual measurement. In this case, our traffic 
count query first looks for a count taken in the year nearest 
the given date/time. Given this, it then looks for a count in 
that year taken on the nearest day of week. (Recall that our 
traffic count data does not come with absolute dates, just a 
year and a day of week.) With this nearest year and day of 
week, we then look up the traffic count for the desired 
hour. 

For identifying safe driving routes across an entire met-
ropolitan area, we need to do inferences on all roads of the 
city. Thus, we need to estimate the hourly traffic counts on 
roads that do not have measurements. We make this esti-
mation via interpolation from traffic counts from roads that 
are nearby in space and time. We perform regression where 
the dependent variable is the desired traffic count, and the 
independent variables are features including nearby traffic 
counts. We consider 65 independent variables in the re-
gression. Five of the independent variables characterize the 
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date/time and the road segment in question: hour of day, 
day of week, road type from {major road, arterial, street}, 
number of lanes, and speed limit. We also include inde-
pendent variables from nearby roads that have measured 
vehicle counts. Specifically, we looked for the nearest five 
measured roads for each road type in {major road, arterial, 
street}, giving data on 15 total nearby roads. For each of 
these 15, the independent variables are: 

• Hourly vehicle count per the vehicle count estimation 
described above 
• Straight line distance from road segment in question 
• Difference in number of lanes from road segment in 
question 
• Difference in speed limit from road segment in ques-
tion 
In summary, we use 65 independent variables to esti-

mate the hourly traffic count on the road segment in ques-
tion for the specified date and time. 

We employed as the regression function a boosted forest 
of decision trees, as described in (Friedman, 2001). We 
swept through parameters for the learning rate and forest 
parameters to find the most accurate function in terms of  
error. In particular, the optimal forest consisted of 500 
trees with 74 leaves per tree and a minimum of 10 instanc-
es in each leaf. 

We tested our estimates by using our learned regression 
function to estimate traffic counts on held-out roads where 
we had actual traffic count measurements. Specifically, for 
each measured road segment, we extracted the actual vehi-
cle count for each hour from our data. Using ten-fold cross 
validation, we recorded regression estimates for each 
measured instance. The results are shown in Figure 3, 
which shows a good correlation between measured and 
estimated vehicle counts, with a linear least squares fit of 
R2=0.9772.  

With this regression function in place, we can compute a 
vehicle count estimate for any road segment in the region 
for any given date/time. 

Predicting Crashes 
Based on our crash data, we built a binary classifier that 
identifies the risk of a crash. We trained the classifier with 
positive examples from our crash data and negative exam-
ples generated randomly and uniformly in space and time. 
Each example is an hour-long instance on a road segment 
that either did or did not host a crash. The positive exam-
ples are simply the 15,401 crashes in our data, with the 
date/time truncated to the previous integer hour and the 
location represented as the nearest road segment. It was 
exceedingly rare to have more than one crash on the same 
road segment during the same hour, so all our crash exam-
ples implicitly represent a single reported crash incident. 
We generated an equal number of negative crash examples 
in hour-long intervals and road segments that were not 

reported as crash occurrences. As some crashes may go 
unreported, we assume that there may have been false neg-
atives in the data.  

The crash classifier is based on a set of 29 features from 
each example, including: 

 

Vehicle Count: vehicle count estimate 
Date/Time: day of week, hour of day 
Road Segment Layout: road type from {major road, arte-
rial, street}, number of lanes, speed limit, divider (binary), 
length of road segment, mean slope of road segment, min-
imum, maximum & mean radii of curvature 
Sun Angle: sun above or below horizon (binary), eleva-
tion, azimuth, subtended angles between azimuth and road 
heading (sum to 180o) 
Weather: temperature, wind speed, snow depth, visibility 
(miles), cloud ceiling (feet), precipitation in last hour, last 
6 hours, and last 24 hours 
Nearby Structures: number and density of residences 
along road segment, number and density of businesses 
along road segment 

Most of these features are self-explanatory. The road 
segment layout features, residences, and businesses were 
drawn from the Bing Maps road database. The sun angle 
features were motivated by reports of the role of glare in 
car accidents (Choi & Singh, 2005; Mitri & Washington, 
2012). The feature definitions came from equations pre-
sented in (Honsberg & Bowden, 2016). The features in-
volving the sun’s azimuth angle capture the propensity for 
sun glare in drivers’ eyes. We took our weather features for 
the Minneapolis, MN area from the National Oceanic and 
Atmospheric Administration which gives recorded weather 
conditions in approximately one-hour increments (NOAA, 
2016). 

 
Figure 3: Estimated vehicle counts vs. actual vehicle counts. 
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Given the features, we predicted the instance as either a 
crash or not. As with the regression function, we used a 
boosted forest of decision trees, but for classification in-
stead of regression. We swept through different parameters 
with 10-fold cross validation, settling on a forest of 500 
trees, 296 leaves per tree, and a minimum of 1 instance in 
each leaf. 

Ten-fold cross validation gave an overall classification 
accuracy of 78.4%. Positive precision and recall were 79% 
and 77.5%, respectively, and negative precision and recall 
were 77.9% and 79.4%. The receiver-operator characteris-
tic (ROC) curve is shown in Figure 4, and the area under 
this curve is 0.863. The classifier can provide insights 
about the conditions under which a crash is likely to occur. 

The importance of a feature can be measured by how of-
ten it is used in the forest of decision trees. The relative 
importance of the 29 crash classification features is shown 
in Figure 5. Notably, the vehicle count estimate is the most 
important feature. This is despite the fact that this is an 
estimate from an imperfect interpolation. The next two 
most used features are the length and mean slope of the 
road segment. These are followed by two “Nearby 
Structures” features that indicate the number of businesses 
and density of residences along the road. The sixth most 
important feature is the sun’s elevation angle. The 
minimum radius of curvature (maximum turn sharpness) of 
the road is in the top half of features. Both (Othman et al., 
2009) and (Fink & Krammes, 1995) showed the 
importance of curvature in assessing crash risk. 

Computing Individual Crash Probability 
We used the crash occurrence classifier to estimate the 
relative risk of a crash occurring on each road segment for 
a given hour. We now describe how we compute the crash 
probability for an individual traversing a road segment and 

then how we compute the probability of a crash over a trip 
traversing multiple road segments. 

 

Crash Probability on Road Segment 
We seek to compute the probability  of a single vehicle 
crashing on a road segment  over a given hour. From the 
crash occurrence classifier above, we infer a class proba-
bility  that predicts crash risk given environmental fea-
tures over the hour in question. This class probability per-
tains to the occurrence of a crash among all the vehicles on 
the road segment over the hour. In that hour, there are  
vehicles traversing the road segment, where  comes from 
the road count estimate as described previously. With  
and  for the relevant hour, the class probability for any 
individual vehicle crash in that hour is . 

Neither the class probability , nor the individual class 
probability , are calibrated to consider the overall ex-
pected number of crashes in the entire region, i.e. the city 
of Minneapolis in our case. Both have an unrealistically 
inflated view of crash occurrences, because the classifier 
was trained on an equal number of positive and negative 
crash examples. In actuality, there are far fewer positive 
instances of crashes than negative instances. Thus we must 
calibrate these class probabilities by scaling such that the 
expected number of crashes over all the region’s road seg-
ments is the same as the historical number of crashes over 
the given hour. The scale factor is , and the calibrated 
probability of a single vehicle crashing is . If  is 
the random variable representing the total number of hour-
ly crashes in the region over an hour-long period, and 

, then 

 (1) 

Here  is the total number of road segments in the region. 
From Equation (1), we have . This scaling 

 
Figure 5: Relative importance of features in anticipating a crash. 

 

 
Figure 4: Receiver operating characteristic  

curve for classifying crash occurrences. 
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by  ensures that the total number of predicted crashes 
matches the historical number of crashes, , in the given 
hour. In our formulation,  is the mean number of crashes 
observed on the day of week and hour of day correspond-
ing to the hour in question. 

In numerical terms, the crash classifier produces class 
probabilities  in the range . Hourly road counts  
are typically , giving  a typical range of 

. Calibrating with  gives individual 
crash probabilities of roughly . 

Crash Probability on Route 
A route consists of a sequence of connected road segments. 
Since the order of traversal does not matter for our compu-
tations, we will designate a route as a set of road segments 

, where each element of  is an index of a road segment. 
We model the crash probability  of a route as a set of 
independent Bernoulli trials, with one trial for each road 
segment. The probability of traversing a single road seg-
ment  without crashing is . The probability of trav-
ersing the entire route  without crashing is then 

. Thus, the probability of crashing anywhere 
along the route is then 

 (2) 

Route Length vs. Safety Tradeoff 
Intuitively, a safe route could be one that tediously weaves 
a long path around unsafe road segments. However, even 
with smaller crash probabilities, a longer route with more 
road segments leads to potentially more crash exposure. 
The Bernoulli probabilities make it easy to analyze this 
tradeoff. As a simple example, suppose that a shorter route 
consists of  road segments, each with an equal crash 
probability of . From Equation (2), the probability of 
experiencing a crash on this route is 

. An alternate longer route has a lower crash 
probability  on each of its segments, with 

. The longer route also has more road segments 
, with . The probability of experienc-

ing a crash on the longer route is 

 

. 
 

Setting =  gives the equivalence point where the two 
routes are equally safe: 
 

 (3) 
 
For a given value of , it is easy to compute values of 

 and  that satisfy this equation. Plotted as ordered pairs 

, points on the lower left side of this curve indicate 
the longer route is safer. Values on the other side indicate 
the shorter route is safer. This is illustrated for several val-
ues of  in Figure 6. The lower left region of the  
space represents longer routes that are not very much long-
er than the corresponding shorter route and whose road 
segment crash probabilities are significantly less than those 
of the corresponding shorter route. In reality, the values of 

 are small,  or , meaning the realis-
tic tradeoff curve is toward the left of the illustrated curves. 
 As an example, we examine the case with 

, which pertains to the left-most curve in Figure 6. 
Examining the horizontal axis at 0.5, this represents a 
longer route with , which might be 
considered safer. Looking vertically from 0.5, the curve is 
at about . This means that the longer route will be 
safer if it is less than about twice the length of the shorter 
route. If it is over twice as long, then the longer route will 
be ultimately less safe, even though its constituent road 
segments are safer. 

Safer Driving Routes 
Driving routes in navigation systems are almost always 
computed by minimizing a sum of costs. For computing 
safe routes, we used the probability of a crash as the cost to 
minimize. From the Bernoulli trials formulation, the prob-
ability of a crash along a route is given by Equation (2). 
Even though this is not a sum, even in log space, a simple 
Dijkstra algorithm can still be used to compute the safest 
route. 

More specifically, Dijkstra’s algorithm maintains a list 
that gives the minimum cost for traveling to each node 
visited on a potential route. Normally these costs are simp-
ly the sum of individual edge costs leading to that node. In 

 
Figure 6: A longer route with safer road segments can be more or 

less dangerous than a shorter route with more dangerous road 
segments. (Note that vertical axis starts at 1.0.) 
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our case, these costs are instead the partial route crash 
probabilities computed from Equation (2). For computa-
tional efficiency and numerical stability, we maintained a 
parallel list giving  for the partial route to 
each visited node. 

We picked 100 arbitrary start and end pair locations in 
our study area for testing, for which we could compute the 
fastest and safest routes. The fastest (shortest time) route 
used only the lengths and speed limits of the road segments 
to estimate traversal time. Note that the fastest route com-
putation did not account for turns, traffic lights, traffic 
congestion, or other delays as might be considered in navi-
gation systems. Thus the computations of speed are inde-
pendent of the time of day. Figure 1 shows one example 
pair of routes between the same endpoints. 

To demonstrate the results, we looked at the hours of 4 
a.m., 8 a.m., and 6 p.m. on January 20, 2015, which was a 
Tuesday. For each time of day, Table 1 shows the mean 
driving times and mean crash probabilities for the 100 test 
routes. It also shows the relative multiples between the 
driving times and crash probabilities between the fastest 
and safest routes. On average, the safest route takes 1.69 
times as long to drive and has 0.53 times the crash proba-
bility, illustrating the tradeoff between driving time and 
safety. The mean crash probability of the fastest routes is 
8.9x10-6, and the mean crash probability of the safest 
routes is 4.6x10-6. 

It is possible to find routes that are between the safest 
and fastest, incurring a certain driving time penalty for a 
certain safety benefit. We computed these routes by using a 
cost function that includes both driving time and crash 
probability. Specifically, the cost function is 

 (4) 

Here  is the crash probability along a route whose edge 
indices are in set , as given by Equation (2). The  are 
the costs of the route’s edges in terms of driving time, and 
they sum in the usual way. The variable  is a 
blending parameter that controls the tradeoff between crash 
probability and driving time. Finally,  is an optional pa-
rameter that helps equalize the numerical magnitude of  
and . The crash probability  is usually  
or , and the driving time in seconds is usually 

 or . Without , the driving time dominates 
for almost the whole range of . If we set , 
then the full range of sampled  has a better chance of pro-
ducing different routes. However, the method still holds for 

. Note also that the driving time part of the cost func-
tion could be any available cost function, including those 
that take into account delays due to traffic, turns, and other 
factors. 

 

We used the cost function in Equation (4) to compute 
routes for the endpoints shown in Figure 1 over . 
The resulting tradeoff between driving time and crash 
probability is shown in Figure 7. Here it is apparent that 
lower crash probabilities are accompanied by longer driv-
ing times, as seen on the left side of the plot. The curve 
flattens as the driving time drops toward its minimum and 
crash probability rises. From Figure 7, there are many 
compromise routes whose driving time is approximately 12 
minutes, but whose crash probability varies considerably. 
The fastest route, represented as the point farthest to the 
right in the plot, has a crash probability of  and 
a driving time of 11.7 minutes. Moving left from this point, 
the diamond-shaped point represents a compromise route 
with a driving time of 12.2 minutes (30 seconds longer 
than the fastest route) and a crash probability of , 
which is a 34% reduction. Many drivers would likely con-
sider this to be a worthwhile tradeoff. This compromise 
route is shown in black in Figure 1. The compromise route 
in black partially overlaps both the fastest and safest 
routes. 

Discussion and Conclusion 
We described the use of data captured from vehicle crashes 
and counts to build predictive models that enable us to 
compute the probability of a crash along a driving route. 
The analytical pipeline involves estimating hourly traffic 
counts on unmeasured roads using a learned regression 
function and estimating crash risk as a function of envi-
ronmental conditions using a learned classifier. We showed 

 
Figure 7: Smooth tradeoff between driving time and crash proba-
bility for the two routes shown in Figure 1. Each marker on the 

curve represents one route option. The route option marked with 
a diamond is displayed in black in Figure 1. 

 

 
Table 1: Means of route duration and crash probability for 100 

routes evaluated at three different times of day. Safer routes have 
longer durations and smaller crash probabilities. 
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how to use results from the classifier to estimate Bernoulli 
crash probabilities along road segments and how to com-
bine these probabilities to compute the crash probability of 
a route. These crash probabilities can be used in a Dijkstra-
based route planner to compute the safest route between 
two points as well as to find compromise routes that trade 
off driving time for safety. We envision a routing applica-
tion that presents a user with this tradeoff, giving drivers 
the flexibility to make decisions about travel time and safe-
ty. Although the probabilities of crash on any one trip are 
small, risks for drivers could accrue over years of driving, 
such as the overall risk associated with years of recurrent 
commuting trips. 

On future directions, there is an opportunity to consider 
the severity of crashes and to study the implications of 
minimizing different kinds of safety-related outcomes, 
such as minimizing the probability of any crash versus 
minimizing the probability of fatalities or incapacitating 
injuries. Gaining access to severity of each crash and the 
number of vehicles involved would help us to refine crash 
probability inferences. On another direction, there is an 
opportunity to identify the likelihood of crashes associated 
with different components of routes such as for such con-
nectives among segments as right and left hand turns and 
merges. Such probabilities of crashes could be integrated 
into the assembly of segments into routes. 

Beyond use in decision-support for individuals, there is 
opportunity for analyses of safety being incorporated into 
large-scale directions services offering routing recommen-
dations to populations of drivers. Potential influences of 
such recommendations on the likelihood of crashes based 
on unmodeled influences of higher usage of specific sets of 
segments would have to be monitored.  Finally, we believe 
the information gain associated with sets of features in 
predictive models for crashes could be used to frame in-
sight building and causal studies of factors influencing the 
safety of routes.  Such efforts could lead to road revisions 
and design guidance that enhance the safety of driving. 
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