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Abstract

Emotion recognition is an important field of research in Brain
Computer Interactions. As technology and the understanding
of emotions are advancing, there are growing opportunities
for automatic emotion recognition systems. Neural networks
are a family of statistical learning models inspired by biolog-
ical neural networks and are used to estimate functions that
can depend on a large number of inputs that are generally
unknown. In this paper we seek to use this effectiveness of
Neural Networks to classify user emotions using EEG sig-
nals from the DEAP (Koelstra et al (2012)) dataset which
represents the benchmark for Emotion classification research.
We explore 2 different Neural Models, a simple Deep Neu-
ral Network and a Convolutional Neural Network for clas-
sification. Our model provides the state-of-the-art classifica-
tion accuracy, obtaining 4.51 and 4.96 percentage point im-
provements over (Rozgic et al (2013)) classification of Va-
lence and Arousal into 2 classes (High and Low) and 13.39
and 6.58 percentage point improvements over (Chung and
Yoon(2012)) classification of Valence and Arousal into 3
classes (High, Normal and Low). Moreover our research is a
testament that Neural Networks could be robust classifiers for
brain signals, even outperforming traditional learning tech-
niques.

Introduction

Emotions are very important in human decision handling,
interaction and cognitive process (Sreeshakthy et al (2016)).
As technology and the understanding of emotions are ad-
vancing, there are growing opportunities for automatic emo-
tion recognition systems. There have been successful re-
search breakthroughs on emotion recognition using text,
speech, facial expressions or gestures as stimuli. However
one of the new and exciting directions this research is head-
ing is EEG-based technologies for automatic emotion recog-
nition, as it becomes less intrusive and more affordable,
leading to pervasive adoption in healthcare applications. In
this paper we focus on classifying user emotions from Elec-
troencephalogram (EEG) signals, using various neural net-
work models and advanced techniques. For our research we
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particularly explore Deep Neural Networks and Convolu-
tional Neural Networks, using advanced machine learning
techniques like Dropout, for emotion classification. Neural
network is a machine that is designed to model the way our
brain performs a particular task, where the key concepts of
brain as a complex, non-linear and parallel computer are
imitated (Haykin (2004)), and possess the ability to model
and estimate complex functions depending on multitude of
factors. Moreover recent developments in machine learning
have shown neural networks to provide prime accuracy in
various varied tasks such as Text and Sentiment Analysis
(Kim (2014)), Image recognition (Krizhevsky et al (2012)),
and Speech analysis.

Recently, the affective EEG benchmark database DEAP
(Koelstra et al (2012)) was published, which presents mul-
timodal data set for the analysis of human affective states.
The electroencephalogram (EEG) and peripheral physiolog-
ical signals of 32 participants were recorded as each watched
40 one-minute long excerpts of music videos. Participants
rated each video in terms of the levels of arousal, valence,
like/dislike, dominance, and familiarity. A 32 EEG channels
Biosemi ActiveTwo device was used to record the EEG sig-
nals when the subjects were exposed to the videos. Other
than the EEG recordings, channels also recorded some phys-
iological signals like temperatures and respiration etc. Meth-
ods and results were presented for single-trial classification
of arousal, valence, and like/dislike ratings using the modal-
ities of EEG, peripheral physiological signals, and multi-
media content analysis. Automatic classification of human
emotion using EEG signals has been researched upon in de-
tail by various scholars. However in the release of DEAP
data, research academia finds a standardized dataset to ef-
fectively measure and compare accuracies for various clas-
sification algorithms.

We use two different Neural Models for classification, the
first being a Deep Neural Network comprising of 4 Neural
layers. The model contains an initial neural layer of 5000
nodes, followed by layers of 500 and 1000 neurons respec-
tively, before the output neural layer of 2 or 3 nodes depend-
ing on the classification classes. All the layers are fully con-
nected with Softmax (Dunne and Campbell (1997)) acting
as the Activator, and use Dropout (Srivastava et al (2014))
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technique followed by rectifying the outputs to the follow-
ing layer. Our second model uses a Convolutional Neural
Network model designed to classify images effectively. The
model uses 2 Convolutional layers with Tan Hyperbolic act-
ing as our Activator, followed by Max Pooling the output.
The resulting output is flattened after applying Dropout, be-
fore being fed to a fully connected neural layer which feeds
the output to the final neural layer of classification classes
size, using Softplus as activator. The Convolutional model
is standard for advanced MNIST or CEAP Image classifica-
tion.

Both our models when trained on our pre-processed data
reveal to be extremely effective at classifying user emotion.
Our Deep Neural Model achieves convincing accuracies of
75.58% and 73.28% for Valence and Arousal respectively
for classification on 2 classes (high and low); 58% and 54%
for Valence and Arousal respectively for classification on 3
classes (high, normal and low). However it is our Convo-
lutional Neural Model which surpasses our Deep Model’s
accuracy by providing 81.41% and 73.36% for 2 class clas-
sification and 66.79% and 57.58% for 3 classes on Valence
and Arousal respectively. Both these models provide state-
of-the-art classification accuracy reported on DEAP dataset,
substantially improving classifications by previous research
which struggled to reach 75% and 55% on classification on
2 and 3 classes respectively. Furthermore, the process of rep-
resenting EEG data in a similar manner to that of an image,
and consequently using the representation as images to feed
our Convolutional Neural Model, exploiting the accuracy of
CNNs on image classification to our advantage is a com-
pelling technique for future research on this topic.

Related Works
Emotion is a psycho-physiological process triggered by con-
scious and/or unconscious perception of an object or situa-
tion and is often associated with mood, temperament, per-
sonality and disposition, and motivation. Emotions play an
important role in human communication and can be ex-
pressed either verbally through emotional vocabulary or by
expressing nonverbal cues such as intonation of voice, fa-
cial expressions, and gestures (Liu and Sourina (2014)).
The recent public release of DEAP dataset, provides a
much needed impetus to the growing community of HCI
researchers in emotion recognition. Before DEAP, most of
the studies on emotion assessment had focused on the anal-
ysis of facial expressions and speech to determine a per-
sons emotional state. However, physiological signals are
also known to include emotional information that can be
used for emotion assessment, but they have received less at-
tention. The database explores the possibility of classifying
emotion dimensions induced by showing music videos to
different users, using the signals originating from the central
nervous system (CNS) and the peripheral nervous system
(PNS). DEAP uses Russells valence-arousal scale, widely
used in research on affect, to quantitatively describe emo-
tions. In this scale, each emotional state can be placed on
a 2D plane with arousal and valence as the horizontal and
vertical axes. Arousal can range from inactive (e.g., uninter-
ested, bored) to active (e.g., alert, excited), whereas valence

ranges from unpleasant (e.g., sad, stressed) to pleasant (e.g.,
happy, elated). It contains EEG and peripheral physiologi-
cal signals recorded using a Biosemi ActiveTwo system at
a sampling rate of 512 Hz using 32 active AgCl electrodes
(placed according to the international 10-20 system). DEAP
has the highest number of participants in publicly available
databases for analysis of spontaneous emotions from physi-
ological signals. In addition, it is the only database that uses
music videos as emotional stimuli (Liu and Sourina (2014)).

Since the release of DEAP dataset, multiple researchers
have been using it for emotion recognition. (Liu and Sourina
(2014)) research, explores real-time Electroencephalogram
(EEG)-based emotion recognition algorithm using Higuchi
Fractal Dimension (FD) Spectrum. They recognize EEG as
a nonlinear and multi-fractal signal, hence its FD spectrum
can give a better understanding of the nonlinear property of
EEG using Support Vector Machines as a classifier. They
test their approach on both DEAP and their own dataset. On
DEAP database, they report a classification accuracy of 8
emotions 53.7% in subject dependent classification. (Srivas-
tava et al (2014)) research, depicts models for Classification
of DEAP’s EEG data to different energy bands using wavelet
transform and neural networks. They divide EEG signal into
different bands using discrete wavelet transformation with
db8 wavelet function for processing. Statistical and energy
based features are extracted from the bands, based on the
features emotions are classified with feed forward neural
network with weight optimized algorithm like PSO.

Our research builds upon the works of (Chung and
Yoon(2012)) which focuses mainly on classification of
DEAP data into classes of Valence and Arousal using sta-
tistical and shallow learning methods like Bayesian Classi-
fication. Their simple classification methods provide a start-
ing baseline for our study to compare results. They classify
the user data into 2(high and low) and 3(high, normal, low)
classes for both Valence and Arousal. They achieve 66.6%
and 66.4% accuracy for 2 classes, and 53.4% and 51.0% for
three classes, on Valence and Arousal. Similarly the work of
(Candra et al (2015)) investigates the how the window size
effects the classification of DEAPs, EEG data using wavelet
entropy and SVMs. They conclude that an overly wide win-
dow can lead to information overload which causes the fea-
ture to be mixed up with other information. Similarly the in-
formation about emotion might not be adequately extracted
if the time window is too short. They then use the popular
discrete wavelet transform (DWT) coefficient for extracting
time-frequency domain features in EEG signals. Their inves-
tigation revealed that arousal can be classified up to 65.33%
accuracy using the window length of 310 seconds; while va-
lence can be classified up to 65.13% accuracy using the win-
dow length of 312 seconds.

(Sohaib et al (2013)) provide a concise evaluation for vari-
ous classifiers for Emotion Recognition. However instead of
the DEAP data, they test using their own EEG dataset of 20
subjects when subjected to images from International Affec-
tive Picture System (IAPS). They evaluate the classification
for K-Nearest Neighbor (KNN), Bayesian Network (BN),
Artificial Neural Network (ANN) and Support Vector Ma-
chine (SVM). Their results showed that it is difficult to train

4747



a classifier to be accurate over large datasets (15 subjects)
but KNN and SVM with the proposed features were reason-
ably accurate over smaller datasets (5 subjects) identifying
the emotional states with an accuracy up to 77.78%. Our re-
search is also immensely inspired by the works of (Rozgic
et al (2013)). Their research provides the previous best clas-
sification accuracy on the DEAP data for both Valence and
Arousal, which we successfully improve upon. Their inno-
vative technique is based on three steps: Firstly, in contrast to
the typical feature extraction on the response-level, they rep-
resent the EEG signal as a sequence of overlapping segments
and extract feature vectors on the segment level; Secondly
they transform segment level features to the response level
features using projections based on a novel non-parametric
nearest neighbour model; and Thirdly they perform classi-
fication on the obtained response-level features. They used
KPCA dimensionality reduction as a preprocessing step for
each classifier, and deployed their data on classification al-
gorithms such as Naive Bayes Nearest Neighbour, Nearest
Neighbour Voting and RBF SVMs. They used leave-one-
response-out cross validation scheme to obtain single sub-
ject accuracy and report accuracies averaged over all sub-
jects.

Dataset
The DEAP dataset consists of two parts, firstly the ratings
from an online self-assessment where 120 one-minute ex-
tracts of music videos were each rated by 14-16 volunteers
based on arousal, valence and dominance. Secondly, the par-
ticipant ratings, physiological recordings and face video of
an experiment where 32 volunteers watched a subset of 40 of
the above music videos. EEG and physiological signals were
recorded and each participant also rated the videos as above.
For 22 participants frontal face video was also recorded. The
official dataset contains all individual ratings from the online
self-assessment, YouTube links of the music videos used, all
ratings participants gave to the videos, the answers partic-
ipants gave to the questionnaire before the experiment, the
frontal face video recordings from the experiment for par-
ticipants 1-22 and the original unprocessed physiological
data recordings from the experiment in BioSemi .bdf for-
mat. However for our experiment we use the preprocessed
(data downsampled to 128Hz, EOG removal, filtering, seg-
menting etc.) physiological data recordings from the DEAP
experiment in Matlab and Python (numpy) format. This for-
mat is especially useful for testing classification or regres-
sion techniques without hassle of explicitly processing all
the data first. For each of the 32 participants we have 2 ar-
rays illustrated in Table 1.

The dataset contains 40 experiments for each of the 32
participants. The labels array contain the valence, arousal,
dominance and liking ratings for each participant for each
of the 40 experiments. The data array contains 8064 physio-
logical/EEG signal data from 40 different channels for each
of the 40 experiments for each of the 32 participants. As
one can see, for each experiment we have a massive 322560
readings to train our classification algorithm. To allow our
neural models so it could effectively and speedily train on
such massive data, we proceed to reduce dimensionality of

Table 1: DEAP dataset representation for each subject
Array Name Array Shape Array Contents
data 40 x 40 x

8064
video/trial x channel
x data

labels 40 x 4 video/trial x label
(valence, arousal,
dominance, liking)

our data. We divide the 8064 readings per channel, into 10
batches of approximately 807 readings each. For each batch
we extract the mean, median, maximum, minimum, standard
deviation, variance, range, skewness and kurtosis values for
the 807 readings. Hence for each of the 10 batches of a sin-
gle channel we extract 9 values mentioned above, we get 90
values as our processed dataset. We further add the net mean,
median, maximum, minimum, standard deviation, variance,
range, skewness and kurtosis values for the entire 8064 read-
ings along with the experiment and participant number to
our dataset, bringing it up to 101 values per channel.

As mentioned in the work of (Candra et al (2015)), the
optimal sliding window size of 310 and 3-12 seconds was
ideal for classification of Valence and Arousal respectively.
The 8064 readings represent the EEG values recorded over
the duration of 1 minute of the participant viewing the video;
classifying them into 10 batches gives us a comprehensive
outlook of their emotion for a 6 second range. Moreover we
chose statistical methods to reduce the dimensionality of our
EEG dataset mapping its feature probability density func-
tion to a Gaussian distribution and then effectively catch-
ing it using statistical features like mean, variance, range etc
(Gupta and Gupta (2009)). (Jahankhani et al (2007)) effec-
tively demonstrate this method using maximum, minimum,
mean and standard deviation of wavelet coefficients for sig-
nal classification. To reduce the volume of their EEG data,
they partitioned their samples into 16 windows of 256 time
points each. We effectively follow a similar statistical di-
mensionality reduction for our dataset.

From 322560 readings per experiment, we finally ar-
rive at 4040 values (101 reduced readings * 40 channels).
These 4040 values per experiment form our initial processed
dataset, which we use to train our neural model. As men-
tioned before we use the leave-one-response-out cross vali-
dation. This implies that for participant 1, we train our model
using readings for participant 2 to 32 and record our classifi-
cation accuracy for participant 1. For participant 2, we train
a new model with the same architecture but this time we
train using readings for participant 1 and 3 to 32 and record
our classification accuracy for participant 2 and so on. This
allows us to train our model for 1240 experiments (31 partic-
ipants * 40 experiments) and predict for the 40 experiments
for each of the subjects one after another. The labels data
are iterated and for each of Valence and Arousal we extract
one hot encoding based outputs for classification in both 2
classes (ratings divided as more than 5 and less than 5), and
3 classes (ratings divided as more than 6, between 4 and 6,
less than 4).
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Figure 1: Architecture of our Simple Neural Network with 3
Hidden Layers

Model

We use two different neural models for our research, a sim-
ple Deep Neural Network and an advanced Convolutional
Neural Network. Both models are complemented using con-
temporary machine learning techniques like Dropout tech-
nique and Rectilinear Units to introduce non-linearity in
our model. The architectures of our models are elaborated.
Both models are implemented using Theano (Bergstra et al
(2010)) (Bastien et al (2012)) and Keras (Chollet (2015)) li-
braries in Python.

Deep Neural Network (DNN)

Our DNN model uses 4 fully connected, dense neural layers
where the output of one layer serves as the input for the next
layer. The first input layer takes 4040 readings for the exper-
iment and the neural layers output dimensions are 5000 with
a feature count of 400. The layer uses ReLu as an activa-
tion function and has a dropout probability of 0.25. The next
layer takes 5000 values as input and has an output dimension
of 500. The next consecutive layer increases the dimension
to 1000. Both these layers use ReLu as the Activation func-
tion and a Dropout probability of 0.5. The final neural layer
takes these 1000 inputs and reduces them to the final out-
put of 2 or 3 classes as one hot encodings. The final layer
uses Softmax (Dunne and Campbell (1997)) as the Activa-
tion function with a Dropout input probability of 0.5. Figure
1 represents the basic architecture of our DNN.

To speed up the learning rates we use RMSProp (Tiele-
man and Hinton (2012)) for gradient descent, which divides
the learning rate for a weight by a running average of the
magnitudes of recent gradients for that weight. We have used
a learning rate of 0.00001 and a gradient direction of 0.9
for our RMSProp learning. Neural networks generally use
Activation functions which are used to transform the activa-
tion level of a unit (neuron) into an output signal. A nonlin-
ear activation function allows Neural networks to compute
nontrivial problems using only a small number of nodes. As
mentioned before we deploy Rectified Linear Units (ReLU)
and Softmax as our non-linear activation function.

The neural networks works by minimizing the cross en-
tropy or noise between the actual and predicted outcomes.
Deep learning usually involves neural layers learning on
huge datasets, in the order of millions. However as dataset

is constrained, we use Dropout technique to obtain good re-
sults. While using the Dropout technique it is important to
use a high epoch. An epoch is a measure of the number of
times all of the training vectors are used once to update the
weights. For batch training all of the training samples pass
through the learning algorithm simultaneously in one epoch
before weights are updated. We train our model in batches
of 310, with an epoch of 250 to provide for good detailed
learning process. For our input layer we use a Dropout prob-
ability of 0.25, while for the successive hidden layers we use
a Dropout factor of 0.5. These probabilities have been em-
pirically shown to yield best results which we also confirm
in our own tests and our standard in research academia. Our
decision to use ReLu as the activation function is justified
because it has been argued to be more biologically plausi-
ble and practical (Glorot et al (2011)) (LeCun et al (1998)).
The values for the learning rate and gradient descent for RM-
SProp are standard over academia implementation (Dauphin
et al (2015)). The number of nodes in various Neural Layers
is crucial to the performance of such a network. We test our
valence model for multiple such permutations to attain the
aforementioned values and detail them in the results section.

Convolutional Neural Network (CNN)

CNNs are very effective models for Image classification
tasks. For our model, we try and convert our DEAP data
into 2D image format so our CNN model can learn to clas-
sify them effectively. So for each experiment we have 40
channels with processed 101 readings each. So we represent
the data for each experiment as a 2D array image of 40 *
101 size. Our first Convolution layer takes this 2D array as
input and the Convolution operation uses 100 initial con-
volution filters and a convolutional kernel of 3 rows and 3
columns. The first Convolution layer uses ’TanHyperbolic’
as the Activation function for Valence Classification model,
and ’Relu’ or Rectilinear units as Activation for Arousal
model. In our experiment we realized the choice the Acti-
vation functions for this first layer are of cardinal impor-
tance, as some functions (like sigmoid, softmax) might not
be able to activate neurons of later layers consistently, mak-
ing the model defective. The next layer is another Convo-
lutional Neural Layer which again with 100 filters and 3*3
size kernel. This layer uses ’TanHyperbolic’ as the Activa-
tion function for both Valence and Arousal classification.

The next layer is a MaxPooling layer, and our pooling
is traditional 2 dimensional max pooling over 2x2 blocks.
We use Dropout on the outputs of MaxPooling layer, with a
Dropout probability of 0.25, to form a Flat 1 dimensional
layer. The layer feeds to a Fully connected Dense neural
layer with an output dimensionality of 128. We use ’TanHy-
perbolic’ as our activation function again use Dropout with
0.5 probability on the Outputs of Dense layer. Finally our
final Fully Connected Dense neural layer has an output di-
mensionality of 2 or 3, depending on the number of output
classes. The final Dense layer uses ’Softplus’ as its activa-
tion function. The model uses the Categorical Cross Entropy
as the loss function and Stochastic gradient descent (SGD)
as the optimizer with a learning rate of 0.00001 for Valence
and 0.001 for Arousal and gradient momentum of 0.9. For

4749



our experiments we use 250 epochs and train our model us-
ing batches of 50 experiments each. The model is detailed in
Algorithm 1 and Figure 2.

Algorithm 1 Pseudocode for Convolutional Neural Model :
Require: Training EEG Dataset nntrX , Training Va-

lence/Arousal Values nntrY , Testing subject’s EEG
Dataset nnteX , Testing Valence/Arousal Values nnteY

Ensure: Accuracy Array for Subjects accAll
1: procedure NEURALMODEL ( nntrX, nntrY )
2: batchSize = 50;nbClasses = 2;nbEpoch =

5; imgRows, imgCols = 40, 101
3: nbF ilters = 100;nbPool = 2;nbConv =

3;NEpoch = 50
4: model = Sequential()
5: model.add(Convolution2D(nbF ilters, nbConv,

nbConv, border mode =′ valid′, input shape =
(1, imgRows, imgCols)))

6: model.add(Activation(′tanh′))
7: model.add(Convolution2D

(nbF ilters, nbConv, nbConv))
8: model.add(Activation(′tanh′))
9: model.add(MaxPooling2D(pool size =

(nbPool, nbPool)))
10: model.add(Dropout(0.50))
11: model.add(Flatten)
12: model.add(Dense(128))
13: model.add(Activation(′tanh′))
14: model.add(Dropout(0.25))
15: model.add(Dense(nbClasses))
16: model.add(Activation(′softplus′))
17: sgd = SGD(lr = 0.00001, decay = 1e −

6,momentum = 0.9, nesterov = True)
18: model.compile(loss =′

categorical crossentropy′, optimizer = sgd)
19: accAll = ∅
20: for all epoch in (1 : NEpoch) do
21: model.fit(nntrX, nntrY, batch size =

batchSize,
nb epoch =

nbEpoch, validation data = (nnteX, nnteY ))
22: valLoss, valAccuracy =

model.evaluate(nnteX, nnteY, batch size = 1)
23: accAll.append(valAccuracy)
24: end for
25: return accAll
26: end procedure

The Convolution layer is the core building block of a Con-
volutional Network. It computes the output of neurons that
are connected to local regions in the input, each computing
a dot product between their weights and the region they are
connected to the input volume. Our CNN works as follows,
during the forward pass, we slide (more precisely, convolve)
each filter across the width and height of the input volume,
producing a 2-dimensional activation map of that filter. As
we slide the filter, across the input, we are computing the dot
product between the entries of the filter and the input. Once

Figure 2: An Example of CNN architecture inspiring our
model

a filter has been glazed over the complete input, we find the
single most important feature using max-over-time pooling
operation (POOL Layer). This allows us to correctly identify
one feature for each filter. The model repeats this for each fil-
ter in the image, to obtain best features for an experiment, in
each convolution. Stacking these features for all filters along
the depth dimension forms the full output volume. Thus, ev-
ery entry in the output volume can also be interpreted as an
output of a neuron that looks at only a small region in the
input and shares parameters with neurons in the same acti-
vation map.

The Max Pooling layer’s function is to progressively re-
duce the spatial size of the representation to reduce the
amount of parameters and computation in the network, and
hence to also control overfitting. The Pooling Layer oper-
ates independently on every depth slice of the input and re-
sizes it spatially, using the MAX operation. Neurons in a
Fully Connected layer have full connections to all activa-
tions in the previous layer, as seen in regular neural network
models. Their activations can hence be computed with a ma-
trix multiplication followed by a bias offset. The model uses
the SGD method which first divides the dataset into small
batches of examples, compute the gradient using a single
batch and make an update, then move to other batches of
examples.

Results

In this final section we compare our classification results for
both DNN and CNN. We also compare our results with that
of (Chung and Yoon(2012)) for classification in 3 classes
and (Rozgic et al (2013)) for classification in 2 classes,
which represent the previous state of the art classification
accuracy for both Valence and Arousal. We first evaluate
our simple DNN model and some of the various configura-
tions of neural layer sizes and parameters we experimented
with, as detailed in Table 2. The table illustrates various
DNN models used for Valence classification using our initial
processed dataset. As is evident from the Table the size of
minibatches have minimal effect on the classification accu-
racy. The learning rate is more important to the classification
accuracy but only marginally, while the dropout probability
that provides the best classification uses 0.25 drop probabil-
ity for input layer and 0.5 for subsequent layers. For classifi-
cation in 2 classes, as High(more than 5) and Low(less than
5) for both Valence and Arousal, our DNN performs com-
mendably with maximum classification accuracies of 75.78
and 73.281 respectively. Our best DNN model had layers of
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Table 2: Comparison between different DNN models for Va-
lence classification for 2 classes

Hidden Layers Learning
rate

Dropout Mini
batch

Accuracy

1500, 100, 200 0.00001 0.1, 0.5 310 69.609
1500, 100, 200 0.001 0.1, 0.5 310 68.546
100, 1500, 200 0.001 0.1, 0.5 310 65.703
100, 200, 1500 0.001 0.1, 0.5 310 63.656
2500, 250, 500 0.00001 0.1, 0.5 310 70.468
2500, 250, 500 0.001 0.1, 0.5 310 69.140
5000, 500, 1000 0.001 0.1, 0.5 310 72.109
5000, 500, 1000 0.00001 0.15, 0.5 310 73.828
5000, 500, 1000 0.00001 0.25, 0.5 310 75.781
5000, 500, 1000 0.001 0.25, 0.5 310 74.765
5000, 500, 1000 0.00001 0.25, 0.5 155 75.640
5000, 500, 1000 0.00001 0.25, 0.5 500 74.125
5000, 500, 1000 0.00001 0.35, 0.5 310 73.046

Table 3: Comparison between classification accuracies of
our Models and previous research for 2 classes

Classification Model
2 Classes

Valence Clas-
sification Ac-
curacy

Arousal Clas-
sification Ac-
curacy

DEAP bias 57.6% 62.0%
Chung and Yoon 66.6% 66.4%
Rozgic et al. 76.9% 68.4%
Our DNN Model 75.78% 73.125%
Our CNN Model 81.406% 73.36%

sizes 5000,500,1000,2 with lr of 0.00001 and dropout prob-
abilities of 0.25, 0.5 using minibatches of 250.

To reach this final configuration we did multiple exper-
iments varying layer sizes and other parameters, and were
constrained by hardware limitations to test larger Neural
Models. Some implications from our DNN results include
the size of initial hidden layer leads to a general increase in
classification accuracy to a certain limit (5̃000). Moreover
it is important the second hidden layers dimension remain a
fraction of the first hidden layers dimension. A low learning
rate generally provides better accuracy while the batch size
does not have a strong impact on classification accuracy. For
our DNN model, the accuracies of all subjects but one, were
consistently over 70% which is a commendable achievement
of our model. The highest classification accuracy for a sin-
gle subject was as high 82.5%. The Valence classification for
much more uniform compared to the Arousal classification
model. The Arousal model had multiple subjects classified
between 60%-70% accuracy and just one subject with 80%
classification accuracy.

The CNN model on the other hand, had classification ac-
curacies of 81.41% and 73.35% for 2 classes on Valence
and Arousal Model respectively, which represent the state
of the art classification accuracy. A complete comparison
between our DNN and CNN models accuracy with the pre-
vious works are compared in Table 3. Our CNN model
draws inspiration from Keras(Chollet (2015)) standard CNN
model for MNIST classification. For our CNN models the
main tasks were to identify which combinations of Acti-

Table 4: Comparison between classification accuracies of
our Models and previous research for 3 classes

Classification Model
3 Classes

Valence Clas-
sification Ac-
curacy

Arousal Clas-
sification Ac-
curacy

Chung and Yoon 53.4% 51.0%
Our DNN Model 58.44% 55.70%
Our CNN Model 66.79% 57.58%

vation functions and Optimizers to use for best results. As
mentioned before a wrong choice of Activation functions
(especially for the first convolution layer) can lead to defec-
tive models. Further participant wise analysis of our model’s
accuracy reveals our Valence CNN model had the lowest
classification accuracy of 62.5% for a subject, but 3 subjects
with over 90% correct accuracy and multiple subject with
classification over 80% accuracy. In comparison to our DNN
model, the CNN model seems to provide generally better
accuracy but much higher range between subject classifica-
tion accuracies. This difference is even more pronounced for
Arousal classification where both the DNN and CNN mod-
els provide comparable accuracies but the CNN model being
more unpredictable ranging accuracies as low as 45% and as
high as 92.5%. Compared to the DNN model which provides
a consistent classification between 65%-80% per subject, the
CNN models range does seem intriguing, though better.

For classification in 3 classes High (more than 6), Nor-
mal (between 4 and 6), and Low (below 4), both our models
achieve State of the Art classification accuracies, convinc-
ingly outperforming the previous research. The CNN mod-
els again outperforms the DNN model, but the DNN models
accuracies are more uniform for Arousal. Our DNN model
provides 58.44% and 55.70% for Valence and Arousal re-
spectively for 3 classes. The CNN model provides 66.79%
and 57.58% for Valence and Arousal.

Conclusion

In this paper we build upon prior research in the field of
Emotion recognition and explore new techniques of using
the effectiveness of Neural Networks to classify user emo-
tions using EEG signals from the DEAP (Koelstra et al
(2012)) dataset. Our study provides the state-of-the-art clas-
sification accuracy, obtaining substantial improvements over
prior researches and more importantly prove that Neural
Networks could be robust classifiers for brain signals, out-
performing traditional learning techniques. Our prime clas-
sification model uses a 2 dimensional Convolutional Neural
Networks to effectively classify preprocessed EGG data pre-
sented in the form of 2D array, while incorporating contem-
porary techniques like Dropout and Rectilinear Units.
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