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Abstract

Recommender systems are central to modern online plat-
forms, but a popular concern is that they may be pulling so-
ciety in dangerous directions (e.g., towards filter bubbles).
However, a challenge with measuring the effects of recom-
mender systems is how to compare user outcomes under these
systems to outcomes under a credible counterfactual world
without such systems. We take a model-based approach to
this challenge, introducing a dichotomy of process models
that we can compare: (1) a “recommender” model describing
a generic item-matching process under a personalized rec-
ommender system and (2) an “organic” model describing a
baseline counterfactual where users search for items with-
out the mediation of any system. Our key finding is that the
recommender and organic models result in dramatically dif-
ferent outcomes at both the individual and societal level, as
supported by theorems and simulation experiments with real
data. The two process models also induce different trade-offs:
regularization improves the mean squared error of matches in
both settings, but at the cost of less diverse (less radical) items
chosen in the recommender model but more diverse (more
radical) items chosen in the organic model. These findings
provide a formal framework for how recommender systems
may be fundamentally altering how we interact with content,
in a world increasingly mediated by such systems.

Introduction
Personalized recommender systems guide the modern online
experience. These systems suggest friendships and groups
on social networking sites (Gupta et al. 2013; Kloumann
and Kleinberg 2014), recommend movies and music on con-
tent platforms (Nguyen et al. 2014; Anderson et al. 2020),
and filter news on the web to consumers (Das et al. 2007).
As recommender systems increasingly shape the content we
consume, we have become more critical of their potential for
unintended societal consequences. For example, one con-
cern that has received attention by academics (Nguyen et al.
2014; Flaxman, Goel, and Rao 2016; Rastegarpanah, Gum-
madi, and Crovella 2019) and the public (Singer 2011) alike
is that these systems may be pulling society towards “filter
bubble” dynamics, where individuals become isolated from
viewpoints besides their own (Pariser 2011).
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However, a key challenge with measuring the true effects
of recommender systems is that we only observe user out-
comes under recommender systems, but we are missing a
credible assessment of user outcomes in the absence of these
systems. To understand definitively whether recommender
systems have a significant impact on filter bubbles, or any
other societal phenomena, we need a systematic way to com-
pare these two scenarios and their outcomes against each
other. To address this need, in this work we introduce a di-
chotomy of process models that describes these two worlds:
one with and one without recommender systems. In our
recommender model, a personalized recommender system
serves items to users; in our organic model, the user searches
for items “organically” without the mediation of any sys-
tem. Our objective is to systematically compare these two
models, with the organic model acting as a baseline coun-
terfactual against which the item-matching behavior of the
recommender system can be evaluated.

Consider the example of a user who is new to a movie
distribution platform and seeking to watch one movie for the
night. Under our organic model, the user searches for movies
herself. She wants to watch the movie that best fits her in-
terests, but does not know the contents of any of the candi-
date movies. During this search process she has access only
to noisy signals of each movie (e.g., trailers), and based on
these noisy signals, she must estimate each movie’s content.
To complete the matching process, she chooses to watch the
movie that she estimates best matches her own interests.

Compare this first model against the case where the plat-
form has a personalized recommender system. Under our
recommender model, the situation is now flipped: whereas
the user knew her own interests well but previously had to
estimate the contents of the movies, now the system knows
the movies on the platform well, but must estimate the user’s
interests. In a similar manner, the system gathers a noisy
sample from the user (e.g., by asking her to name one movie
she recently enjoyed). Based on this noisy sample, the sys-
tem then estimates her interests and recommends her the
movie it believes is the best match.

What connects these two settings is the act of trying to
match users to items with only noisy information about one
side; what differs, however, is which information is known
and who is doing the matching (the user vs. the recom-
mender system). We find that this switch in perspective be-

Proceedings of the Sixteenth International AAAI Conference on Web and Social Media (ICWSM 2022)

55



tween the two models results in significant differences in
outcomes. We characterize these differences through the
lenses of both (1) individual metrics (what is the expected
loss for a given user? Does this differ across users?) and (2)
population metrics (what is the average user loss? Which
items tend to be selected overall?). We show that the two
models diverge in important ways for all three metrics; for
example, the organic model favors mainstream users, while
the recommender model serves all users equally well. Fur-
thermore, we document the notably varying effects of reg-
ularization on each model. While regularization can reduce
average user loss in both models, it also causes the models
to diverge further, encouraging the recommender model to
choose increasingly similar items while leading the organic
model to diversify its selection.

Thus, even in these distilled settings, the intersection of
our models, metrics, and algorithmic decisions creates a rich
environment in which we can investigate the effects of rec-
ommender systems. We summarize our contributions as:
1. A framework of two contrasting models that capture or-

ganic search and recommended item-matching as com-
parable processes;

2. Theorems proving key differences between the models
from both the individual and population perspectives;

3. Simulations demonstrating that our findings translate
from the theorem settings to realistic data (MovieLens).

By introducing a formal framework and deriving analytical
results, our work makes significant progress towards charac-
terizing the true impacts of recommender systems. Such for-
mal analysis is highly valuable because we can show that our
findings about the differences between organic search and
recommender systems generalize to a broad class of mod-
els representing each process. Our simulations furthermore
demonstrate that our results translate to real-world data, us-
ing over a million movie ratings from real users and movies.
Collectively, our work lays out a new, principled approach
for how the effects of recommender systems can be mean-
ingfully analyzed relative a counterfactual world without
such systems.

Related Work
The widespread adoption of personalized recommender sys-
tems has led to diverse investigations of the potential societal
consequences of these systems. One body of literature tack-
les bias in recommender systems (Chen et al. 2020; Bozdag
2013), examining how they may systematically underrep-
resent minority views (Stoica and Chaintreau 2019), serve
predictions of uneven quality across user groups (Yao and
Huang 2017), or fail to recommend valuable items to cer-
tain users, e.g., showing job opportunities in STEM fields to
fewer women than men (Lambrecht and Tucker 2019). Em-
pirical observations, however, have often been mixed in na-
ture, e.g., documenting how systems sometimes favor long-
tail items (Fleder and Hosanagar 2009; Brynjolfsson, Hu,
and Simester 2011) or (over-)favor popular items (Abdol-
lahpouri, Burke, and Mobasher 2017).

Another topic of societal concern is the possibility that
personalized recommendations are pushing individuals into

“filter bubbles” (Pariser 2011). Social media users are
known to selectively share content and connect to friends
who agree with their existing opinions (An et al. 2014;
Garimella et al. 2018), and there is some evidence that rec-
ommender systems exacerbate this dynamic of ideological
segregation (Bakshy, Messing, and Adamic 2015; Flaxman,
Goel, and Rao 2016). Recommender systems seem to have
a narrowing effect in other contexts as well: e.g., the sets
of movies (Nguyen et al. 2014) and songs (Anderson et al.
2020) recommended to users tend to be less diverse than the
content that users find on their own. However, some studies
have pointed out that the role of recommender systems is
modest compared to the impact of user choice (e.g., whether
to click on a recommended story) on narrowing consump-
tion diversity (Bakshy, Messing, and Adamic 2015). Other
works have made the case that recommender systems actu-
ally increase diversity in exposure (Flaxman, Goel, and Rao
2016) and widen users’ interests (Hosanagar et al. 2013).

Part of the reason why it is so challenging to measure the
true effects of recommender systems—and perhaps why em-
pirical studies have not been able to reach a consensus—is
that we typically only observe user outcomes under the rec-
ommender system, but we cannot assess user outcomes in
the absence of these systems. Claims, e.g., that users are en-
tering filter bubbles, must be understood relative to some
counterfactual baseline. Thus, it is often helpful to design
models that enable us to “observe” and compare these hy-
pothetical realities. Models have been used to analyze the
impacts of recommender systems on polarization and user
opinions (Dandekar, Goel, and Lee 2013); to investigate
their role in accelerating hegemonic dynamics (Stoica and
Chaintreau 2019) and inequalities in group visibility on so-
cial media (Fabbri et al. 2020); to simulate the effects of
recommender systems on item, user, and rating diversity in
movies (Szlávik, Kowalczyk, and Schut 2011); and finally,
to understand the consequences of feedback loops, when the
recommender system is trained on data that was influenced
by the system (Chaney, Stewart, and Engelhardt 2018).

Using models to study the impact of recommender sys-
tems can be powerful when it is difficult to observe “what-
ifs” in real life. In the present work, we take a model-based
approach to ask arguably the most fundamental “what-if”
question about recommender systems: what if there were no
recommender system at all? We analyze our models using
first-principles measures such as the expected item match for
each user, their expected loss, and the variance over the pop-
ulation of matched items. These measures form the building
blocks for many of the downstream phenomena of interest
related to recommender systems, including polarization, fil-
ter bubbles, user satisfaction, user retention, and bias and
fairness. Implicitly embedded in these more complex pro-
cesses are the metrics we study, and thus, our work forms a
foundation upon which future researchers can build.

Models and Metrics
Our models describe two contrasting processes through
which users could be matched with items of choice, e.g.,
movies, news articles, or consumer products. In this section,
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we introduce the notation and formal dynamics of our mod-
els. Then, we define the individual and population-level met-
rics we will use to compare the models’ outcomes.

Model Definition
In both models, we will have m users and n items. Each
user and each item has a latent position; for example, this
could represent movie attributes in the movie context or ide-
ology in the context of news articles. We denote user po-
sitions as xi ∈ Rd and item positions as yj ∈ Rd, where
d represents the dimensionality of the latent space. Overall,
the set X = {xi}mi=1 represents all user positions and the
set Y = {yj}nj=1 represents all item positions. Our analysis
will make very weak distance-based assumptions about the
interest/utilities of users for items: we simply assume that
user i’s enjoyment of item j is monotonically decreasing in
the distance between xi and yj . Thus, under both models, the
decision-making agent (either the user or the recommender
system) wants to match the user to the item whose position
is closest to hers.

Organic model. In this model, the user will “organically”
search through the collection of items and choose one for
herself (Figure 1a). When surveying each item j, she only
has access to a noisy sample of its true position, yj . She
draws her sample z(i)j from N(yj ,Σi), where Σi represents
the covariance in her noise. Then, the user makes an estimate
ŷ
(i)
j of item j’s true position. In the simplest case, the user

takes the maximum likelihood estimate (MLE) based on her
single sample of yj :

ŷ
(i,MLE)
j = z

(i)
j . (1)

We compare this MLE to an alternate case where the user
applies some form of shrinkage (James and Stein 1961) to
her estimates. For example, if the user assumes a Gaussian
prior on the item positions, she could take a maximum a
posteriori (MAP) estimate of each, shrinking the estimate
towards the item mean:

ŷ
(i,MAP)
j = (Σ−1item + Σ−1i )−1(Σ−1itemµitem + Σ−1i z

(i)
j ), (2)

where µitem and Σitem are the mean and covariance of the
item distribution, respectively. This style of shrinkage can
also be thought of as regularization towards the item mean.
In an empirical setting without a clear prior, Empirical Bayes
shrinkage (Efron and Morris 1976) would be preferred.

After surveying all n items, the user will have constructed
estimates for every item’s position. Since we assume utility
is monotonically decreasing in distance, the user will then
choose the item whose estimate is closest to her own posi-
tion, xi. Let k(org)

i represent the item chosen by user i in the
organic model. Then,

k
(org)
i = arg min

j∈[n]
||xi − ŷ(i)j ||. (3)

We let y(org)
ki

denote the position of the chosen item k
(org)
i ,

and will later study properties of y(org)
ki

as a random variable

that inherits its randomness from the user’s estimates, ŷ(i)j .

Recommender model. In this model, a recommender sys-
tem takes on the burden of search instead of the user (Figure
1b). When user i comes onto the platform, the system gath-
ers a noisy sample of i’s true position, xi. This sample z(r)i is
drawn from N(xi,Σr), where Σr represents the covariance
in the recommender’s noise. Then, just as the user estimated
item positions based on her noisy samples, the system makes
an estimate x̂(r)i of user i’s true position based on its sam-
ple of the user. Again, we first consider the case where the
recommender system takes the MLE:

x̂
(r,MLE)
i = z

(r)
i . (4)

We will again compare the MLE to the case where the rec-
ommender system applies shrinkage to its estimates of user
positions. With a Gaussian prior, the MAP estimate of user
i’s position is

x̂
(r,MAP)
i = (Σ−1user + Σ−1r )−1(Σ−1userµuser + Σ−1r z

(r)
i ), (5)

where µuser and Σuser are the mean and covariance of the user
distribution, respectively. In the absence of a prior, Empirical
Bayes shrinkage would again be preferred.

As a reversal of the organic model, we assume that the
recommender system has perfect knowledge of Y , the set
of true item positions, but can only estimate the user’s true
position. Let k(rec)

i represent the chosen item for user i under
the recommender model. Similar to the organic model, the
system will choose the item whose position is closest to x̂(r)i :

k
(rec)
i = arg min

j∈[n]
||x̂(r)i − yj ||. (6)

Here we again let y(rec)
ki

denote the position of the matched

item k
(rec)
i , where y(rec)

ki
is a random variable that inherits its

randomness from the system’s estimates, x̂(r)i .
We deliberately set up the recommendation process to be

as similar as possible to the organic process—the structure
of the noise and logic in the choice function are identical—
so that we can compare the models on the basis of who/what
controls the matching and what information they have ac-
cess to. We do not, for example, model the process of users
reacting to recommendations. Instead, we assume that k(rec)

i
will be the user’s match, comparing it directly to the match
k
(org)
i under the organic model. Furthermore, we note that

both models are made up of distinct modules (sampling, es-
timation, choice), each of which could be swapped out for
more complex processes. For example, in the organic model,
one might be interested in other decision-making rules for
the user, such as those that make explore/exploit trade-offs
or capture risk aversion (in the case of non-uniform sample
noise), or in the recommender model, the process of esti-
mating user positions could be derived from a specific al-
gorithm. Thus, our models describe flexible item-matching
processes that can be extended to encompass many real-
world systems.

Metrics
We are interested in comparing the outcomes of these mod-
els through two lenses, at the individual and at the popula-
tion levels. At the individual level, we will treat the squared
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(a) Organic model
User estimates items

User position

MAP Estimates

Item positions

0

MLE Estimates

(b) Recommender model
Recommender system estimates user

Item positions

MAP Estimate

User position
0

MLE Estimate

MLE       MAP MAP        MLE

Figure 1: Model schematics. (a) In the organic model, the user samples and estimates item positions, and chooses the estimate
closest to her own position. When shrinkage is applied, the user’s estimates of the items shift inward, and the user’s choice
switches from the inner to outer item. (b) In the recommender model, the system samples and estimates the user’s position,
and chooses the item closest to its estimate. When shrinkage is applied, the system’s estimate of the user shifts inward, and the
system’s choice switches from the outer to inner item.

distance between the user and their matched item as a user-
level loss. Let Yk = {yk1 , yk2 , · · · , ykm} represent the mul-
tiset of matched item positions over all users; note that
|Yk| = |X | = m, and that each item position yj might ap-
pear 0 times, once, or multiple times in Yk. Then, the loss
for user i is defined as

li(X ,Yk) = ||xi − yki ||2. (7)

As we analyze li(X ,Yk) in the following section, we will
also derive E[yki ] and Var[yki ] along the way; that is, the
expected position and variance of the matched item for user
i. We choose these metrics to study because they form the
building blocks of many downstream phenomena of inter-
est. For example, if the expected match for a user is not the
user’s own position, the matching process might eventually
shift user preferences or opinions, and if different users sys-
tematically experience different losses (as we will see hap-
pens under certain settings of our models), this implies in-
equities in the model as it provides matches of differential
quality to users on the basis of their preferences.

The population-level analysis, meanwhile, is concerned
with average user loss and the overall collection of matched
items. Observe that the average loss over users simply be-
comes the mean squared error (MSE) of the matches:

MSE(X ,Yk) =
1

m

m∑
i=1

li(X ,Yk) =
1

m

m∑
i=1

||xi − yki ||2.

(8)

These matches are based on estimates, where shrinkage is
known to reduce the MSE of an estimator. As such, there
are opportunities in both models to reduce average user loss
by having the user / system apply shrinkage during estima-
tion. However, while shrinkage might reduce MSE, that is
not its only effect. In Figure 1, we illustrate a basic intu-
ition for a key result: due to the reversal in who is doing
the estimating and what is being estimated, shrinkage acts
as a “diversifying” force in the organic model, but it serves

as a “homogenizing” force in the recommender model. We
see that shrinkage in the organic model shifts the user’s es-
timates of the items inward (i.e., towards 0), so items that
are further out now have a better chance of being chosen.
Meanwhile, shrinkage in the recommender model shifts the
system’s estimate of the user inward, so now items closer to
the center are likelier to be chosen.

To quantify this intuition, we also study Var[Yk] as an-
other population-level metric, the variance of the matched
item positions Yk. This variance has numerous interpreta-
tions in the real world: for example, seeing what kinds of
items are being selected may guide content creators as they
decide what to generate next. Furthermore, there is evidence
that users adjust their preferences to better align with content
that they are matched with, whether because they were per-
suaded by the content (Diehl, Weeks, and Zúñiga 2015), or
by the very fact that it was recommended to them (Summers,
Smith, and Reczek 2016). Such dynamics suggest that users
may become more heterogeneous if they are matched with
a more diverse set of items, and more homogeneous if they
are all matched to similar content. With repeated rounds of
matching and opinion formation, a great level of heterogene-
ity in users could lead to polarization or radicalization; con-
versely, increasing homogeneity could result in filter bubbles
and a lack of diverse perspectives for those on the platform.

Model Analysis
To develop a theoretical understanding of how these two
models behave, we begin with simplified instances, where
we assume that the user and item positions come from Gaus-
sian distributions in a one-dimensional space. For now, we
will assume that user and item positions are drawn indepen-
dently from N(0, σ2

user) and N(0, σ2
item), respectively (since

d = 1, we replace covariance matrices Σ with scalar vari-
ances, σ2). We also focus here on the asymptotic setting
where the number of items n approaches ∞ (later we ex-
amine simulations with different finite values of n). Inter-
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estingly, we will see that even this simplified setting is suf-
ficient to induce the phenomena we seek to understand, and
that the results remain qualitatively similar when we ex-
plore non-Gaussian multidimensional user and item posi-
tions learned from data.

In this section, we organize our results into a series of
theorems. In Theorems 1.1–2.2, we analyze how the models
differ in terms of individual metrics, by deriving 3 quanti-
ties for each model: (1) E[yki ], the expected item match; (2)
Var[yki ], the variance in the match; (3) E[li], the expected
loss, for a single user i at any position xi. In Theorems 3–
4, we study how the models differ at the population level,
showing that even though shrinkage can reduce MSE for
both processes, a key difference is that shrinkage increases
the variance of matched items under the organic model but
decreases this variance under the recommender model.

Theorem 1.1. In the organic MLE model as n→∞,

1. E[y
(org,MLE)
ki

]→ σ2
item

σ2
item+σ

2
i
xi

2. Var[y(org,MLE)
ki

]→
(

1
σ2

item
+ 1

σ2
i

)−1
3. E[l

(org,MLE)
i ]→

(
σ2

item
σ2

item+σ
2
i
− 1
)2
x2i +

(
1
σ2

item
+ 1

σ2
i

)−1
.

Proof. In the organic MLE model, the user makes an esti-
mate of each item position, ŷ(i,MLE)

j = z
(i)
j , where z(i)j is

a sample drawn from N(yj , σ
2
i ). In the limit as n → ∞,

there will be a sample drawn arbitrarily close to any point in
R, including xi. Given that the user’s chosen item k

(org,MLE)
i

produced a sample arbitrarily close1 to xi, and that the cho-
sen item’s position y(org,MLE)

ki
was drawn from N(0, σ2

item),
marginalizing over the conjugate Gaussian prior furnishes
the limiting expectation and variance expressions above.

Recall that in estimation, mean squared error can be de-
composed into the sum of the squared bias and the variance
of the estimator. If we view the position of the matched item,
y
(org,MLE)
ki

, as an estimate for user i’s true position, xi, then

their expected squared distance is (E[y
(org,MLE)
ki

] − xi)
2 +

Var[y(org,MLE)
ki

], thus yielding E[l
(org,MLE)
i ].

Theorem 1.2. In the organic MAP model as n→∞,

1. E[y
(org,MAP)
ki

]→ xi

2. Var[y(org,MAP)
ki

]→
(

1
σ2

item
+ 1

σ2
i

)−1
3. E[l

(org,MAP)
i ]→

(
1
σ2

item
+ 1

σ2
i

)−1
.

Proof. When the user uses MAP, her estimate of item j’s
position becomes ŷ(i,MAP)

j =
σ2

item
σ2

item+σ
2
i
z
(i)
j . In the limit, there

1Formally, for any ε > 0,

limn→∞ Pr(min
z∈{z(i)1 ,...,z

(i)
n } |xi − z| < ε) = 1,

where the probability is over the process generating each item po-
sition yj from N(0, σ2

item) and each sample z(i)j from N(yj , σ
2
i ).

will be a sample z(i)j such that σ2
item

σ2
item+σ

2
i
z
(i)
j is arbitrarily close

to xi. Given that the matched item k
(org,MAP)
i produced a

sample that limits to σ2
item+σ

2
i

σ2
item

xi, we can again derive the pos-

terior distribution of this item’s position y(org,MAP)
ki

, knowing
that it was also drawn fromN(0, σ2

item). The correction terms
cancel out, yielding the limiting expectation xi. The variance
does not change compared to the MLE version of the model.
Since E[y

(org,MAP)
ki

] is now an unbiased estimate for xi, the
user’s limiting expected loss is only the variance.

Theorem 2.1. In the recommender MLE model as n →
∞,

1. E[y
(rec,MLE)
ki

]→ xi

2. Var[y(rec,MLE)
ki

]→ σ2
r

3. E[l
(rec,MLE)
i ]→ σ2

r .

Proof. In the recommender MLE model, the system makes
an estimate of the user’s true position, x̂(r,MLE)

i = z
(r)
i ,

where z(r)i is a sample drawn from N(xi, σ
2
r). Then, the

system finds the item whose position is closest to x̂(r,MLE)
i .

Echoing the previous proofs, in the limit there will be an
item arbitrarily close to x̂(r,MLE)

i . Thus, the distribution of
chosen item position, y(rec,MLE)

ki
, limits to the distribution of

x̂
(r,MLE)
i , which has an expected value xi and variance σ2

r .
Since y(rec,MLE)

ki
is an unbiased estimate for xi, the user’s

limiting expected loss is again just the variance.

Theorem 2.2. In the recommender MAP model as n →
∞,

1. E[y
(rec,MAP)
ki

]→ σ2
user

σ2
user+σ

2
r
xi

2. Var[y(rec,MAP)
ki

]→
(

σ2
user

σ2
user+σ

2
r

)2
σ2
r

3. E[l
(rec,MAP)
i ]→

(
σ2

user
σ2

user+σ
2
r
− 1
)2
x2i +

(
σ2

user
σ2

user+σ
2
r

)2
σ2
r .

Proof. In the MAP setting, the recommender model’s esti-
mate of the user’s position becomes x̂(r,MAP)

i =
σ2

user
σ2

user+σ
2
r
z
(r)
i .

In the limit the chosen item’s position, y(rec,MAP)
ki

, will be ar-

bitrarily close to x̂(r,MAP)
i . Thus the distribution of y(rec,MAP)

ki

limits to the distribution of x̂(r,MAP)
i , which is simply a sam-

ple drawn from N(xi, σ
2
r) then scaled by σ2

user
σ2

user+σ
2
r

, furnish-
ing the limiting expectation and variance above. The limit-
ing expected squared loss is obtained from the squared bias
(E[y

(rec,MAP)
ki

]− xi)2 plus the limiting variance.

Theorems 1.1–2.2 imply that if we treat the matched item
position yki as an estimate of the user position xi, then the
organic MLE model serves biased matches to users, while
the recommender MLE model does not. In particular, the
organic MLE model is biased in that, relative to xi, the ex-
pected match for user i is contracted towards the center of
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Figure 2: Expected user loss as a function of user position
(Theorems 1.1–2.2); σ2

item = 1 and σ2
i = σ2

r = 0.5.

the item distribution (Theorem 1.1). Furthermore, since the
bias term grows with x2i , users closer to the center will be
less impacted by the bias than users who are farther out. This
is a fundamental difference between the MLE versions of the
processes: the organic model favors users who are closer to
the center of the item distribution, while the recommender
model is agnostic to user position. We visualize these rela-
tionships in Figure 2.

Interestingly, the trend reverses when we switch from
MLE to MAP: the organic model becomes unbiased, and
the recommender model becomes favorable to central users.
Some of this effect is particular to our form of shrinkage
here (namely, that the user perfectly erases the bias in the
organic model by taking the MAP based on the true prior
distribution of items), but in general, shrinkage will always
increase bias for the recommender model, and, if the item
distribution is heaviest around its mean, shrinkage will also
reduce bias for the organic model.

From these four theorems, we can also establish that (in
the limit of many items) switching from MLE to MAP will
always reduce average user loss (i.e., MSE) in the organic
model and sometimes reduce MSE in the recommender
model. First, Theorems 1.1–1.2 show that in the organic
model, expected loss strictly decreases for every user (with
non-zero xi) from MLE to MAP; thus, the average loss must
fall as well. From Theorem 2.2, we can imagine the condi-
tions under which MAP will achieve a lower MSE in the
recommender model: if the user variance σ2

user is small, then
the bias terms will be smaller because all of the x2i ’s will be
closer to 0, and the relative reduction that MAP achieves on
the variance, scaling by a factor of (

σ2
user

σ2
user+σ

2
r
)2, will be larger.

More generally, we can conclude that there are certainly rea-
sons to switch from MLE to MAP for both models, which
makes the consequences of the switch all the more interest-
ing: the individual-level consequences which we have an-
alyzed, in terms of biased matches and favored users, and
population-level consequences, which we analyze next in
Theorems 3–4.

Theorem 3. In the organic model as n→∞,

1. Var[Y(org,MLE)
k ]→

m−1
m

[
(

σ2
item

σ2
item+σ

2
i
)2σ2

user + ( 1
σ2

item
+ 1

σ2
i
)−1
]

2. Var[Y(org,MAP)
k ]→ m−1

m

[
σ2

user + ( 1
σ2

item
+ 1

σ2
i
)−1
]
.

Proof. In the proofs of Theorems 1.1–2.2, we studied a sin-
gle individual, deriving results for a user at a specific po-
sition xi. We now seek to analyze the variance of Yk =
{yki}mi=1, integrating over user positions in X = {xi}mi=1.

The process of generating yki , the position of user i’s
matched item, can be seen as first drawing a random user
position xi from N(0, σ2

user), and then considering the ran-
domness from matching. Unconditional on xi, then, yki is
the sum of two random variables. Using the results from
Theorem 1.1 for the organic MLE model, the first vari-
able limits to σ2

item
σ2

item+σ
2
i
xi (from E[y

(org,MLE)
ki

]), with variance

(
σ2

item
σ2

item+σ
2
i
)2σ2

user. The second variable, capturing randomness

in matching, has limiting variance Var[y(org,MLE)
ki

] = ( 1
σ2

item
+

1
σ2
i
)−1. The limiting expected variance of Y(org,MLE)

k is the

sum of these two variances multiplied by m−1
m , since there

are m elements in Y(org,MLE)
k .

In the organic MAP case, the process of generating terms
in Y(org,MAP)

k can also be seen as first drawing a random
user position xi from N(0, σ2

user), and then considering the
randomness from matching. We do not scale xi in this
case, since E[y

(org,MAP)
ki

] limits to xi (Theorem 1.2). Each
term can again be viewed as the sum of two random vari-
ables, with limiting variances σ2

user and ( 1
σ2

item
+ 1

σ2
i
)−1 (from

Var[y(org,MAP)
ki

]), respectively. So the limiting expected vari-

ance of Y(org,MAP)
k is their sum scaled by m−1

m .

Theorem 4. In the recommender model as n→∞,

1. Var[Y(rec,MLE)
k ]→ m−1

m (σ2
user + σ2

r)

2. Var[Y(rec,MAP)
k ]→ m−1

m

[
σ2

user
σ2

user+σ
2
r
σ2

user

]
.

Proof. We take the same approach as in Theorem 3. In the
recommender MLE model, the process of generating terms
in Y(rec,MLE)

k can be seen as drawing a random user position
xi from N(0, σ2

user), then adding a noise term for matching
that has limiting variance Var[y(rec,MLE)

ki
] = σ2

r (Theorem

2.1). Again, we do not scale xi, since E[y
(rec,MLE)
ki

] limits
to xi (Theorem 2.1). The sum of these limiting variances is
σ2

user + σ2
r , and again we scale by m−1

m .
In the recommender MAP model, each term in Y(rec,MAP)

k
can be seen as the sum of two random variables, capturing
randomness in xi and in matching. The first variable limits
to σ2

user
σ2

user+σ
2
r
xi (from E[y

(rec,MAP)
ki

], Theorem 2.2), with vari-

ance (
σ2

user
σ2

user+σ
2
r
)2σ2

user. The second variable has limiting vari-

ance Var[y(rec,MAP)
ki

] =
(

σ2
user

σ2
user+σ

2
r

)2
σ2
r . Adding these vari-
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Figure 3: Variance of matched items Var[Yk] (Theorems 3–
4); σ2

i = σ2
r = 0.5 and m = 300. On the left, we fix σ2

item =
1 and vary σ2

user; on the right, we fix σ2
user = 1 and vary σ2

item.

ances together, simplifying, and multiplying by m−1
m yields

the limiting expression for Var[Y(rec,MAP)
k ].

From Theorems 3 and 4, we can see that (in the limit of
many items) the variance of matched items will always in-
crease in the organic model when switching from MLE to
MAP, but it will always decrease in the recommender model
when making the same switch. We demonstrate these two
effects in Figure 3: across different values for the user vari-
ance σ2

user and item variance σ2
item, the matched item variance

for the recommender MLE model remains well above that of
the recommender MAP, and the matched item variance for
the organic MLE model is always below that of the organic
MAP. This quantifies our earlier intuition from Figure 1 that
shrinkage acts as a diversifying force in the organic model
(increasing variance), but a homogenizing force in the rec-
ommender model (decreasing variance), and we have proven
that this is always true in this setting.

Simulations
Our theorems demonstrated that even the simplest versions
of the organic and recommender processes result in vastly
different matching behavior. However, one may wonder
how sensitive these results are to our assumptions (study-
ing the asymptotic case, with single-dimensional, normally
distributed user and item positions). In this section, we re-
move each of these assumptions, and show via simulation
experiments that the key qualitative results we established
hold for much more realistic settings as well.

First, we test how the individual-level and population-
level metrics converge to their limits as we increase the num-
ber of available items. Then, we augment our process mod-
els to integrate multidimensional user and item embeddings
learned from real ratings data.2

Exploring Finite Numbers of Items
First, in the single-dimensional Gaussian setting we analyze
the behavior of our proposed metrics as the number of items

2All code to run our models and simulations is available at
https://github.com/serinachang5/org rec simulations.

n grows, complementing our analytical results where we fo-
cused on the asymptotic setting as n → ∞. We consider
both the MLE and MAP versions of the organic and rec-
ommender models and n ∈ {4, 6, · · · , 200}. For the indi-
vidual metrics, we simulate 5000 stochastic trials for each
model and value of n, re-sampling per trial the positions of
items and noisy samples, but fixing the location of the single
hypothetical user to xi = 0.75. For the population metric
Var[Yk], we simulate 500 stochastic trials, since there is far
less variance in this metric, and re-sample positions of users,
items, and noisy samples per trial.

As shown in Figure 4, these simulations are consistent
with and extend our earlier analyses. In the organic model,
when the user employs the MLE, a biased match is formed
and the average position of the matched item, yki , converges
inward of xi = 0.75; as expected, converging at 0.5, since
σ2

item = 1 and σ2
i = 0.5, and E[y

(org,MLE)
ki

] =
σ2

item
σ2

item+σ
2
i
xi (The-

orem 1.1). Meanwhile, the recommender MLE model forms
an unbiased match and the average yki converges to xi =
0.75. When MAP is used, the roles are reversed, as the or-
ganic model becomes unbiased and the recommender model
becomes biased. Furthermore, every model converges to a
different average Var[Yk]: the recommender MLE model has
the highest variance, followed by organic MAP, then organic
MLE, then finally recommender MAP (following the order
we would expect from Figure 3, at σ2

user = σ2
item = 1), and

this ordering is observed when there are as few as 10 items.

Empirical Analysis with MovieLens Data
In this section, we further extend our simulations by in-
corporating multidimensional user and item positions fitted
on real ratings data. We use the MovieLens 1M dataset3,
which contains 1,000,209 ratings from approximately 6,000
MovieLens users on 3,900 movies (Harper and Konstan
2015). First, we filter the ratings matrix to only keep users
that have rated at least 50 movies, then filter to keep movies
with at least 50 ratings. After filtering, we are left with a rat-
ing matrix R ∈ Rm′×n, where we have m′ = 4, 297 users
and n = 2, 514 movies remaining.

Learning user and item distributions from data. We ap-
ply a collaborative filtering algorithm to R in order to infer
latent embeddings U = [ui]

m′

i=1, ui ∈ Rd, for each user i,
and V = [vj ]

n
j=1, vj ∈ Rd, for each movie j. Collaborative

filtering uses the history of interactions between all users
and items to infer latent representations, where users and
items are encoded into low-dimensional spaces such that if
a user has given an item a high rating, their representations
should be “similar”, and if a user has given an item a low
rating, their representations should be further apart. Similar-
ity can be measured in different ways (e.g., inner products,
Euclidean distance); since our models take a distance-based
perspective to utility, we implement a collaborative filtering
procedure (Khoshneshin and Street 2010) that embeds users
and items into a unified Euclidean space where items that
are closer to users are more attractive to them.

3https://grouplens.org/datasets/movielens/1m.
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Figure 4: Simulation results over different values of n. As before, we set σ2
user = σ2

item = 1, σ2
i = σ2

r = 0.5, and m = 300.
For the individual metrics, we run 5000 trials for each model and n, and evaluate the mean (left) and variance (middle) of the
matched item position yki for a user positioned at xi = 0.75. For the population metric Var[Yk], we run 500 trials for each
setting and evaluate the mean variance over the matched item positions Yk (right).

In this framework, given a user embedding ui and movie
embedding vj , their predicted rating r̂ij is

r̂ij = µ+ bi − ||ui − vj ||2, (9)
where µ is the global average rating in R, bi is the user bias
term capturing users that tend to rate higher or lower, and
||ui − vj ||2 is the squared distance between the two em-
beddings. This framework naturally integrates our definition
of user loss—the squared distance between a user and her
matched item—since a user’s predicted rating is exactly the
negative squared distance, translated by µ + bi (which re-
mains constant per user). Furthermore, this formulation fits
with the choice function in our models: just as we assume
that the recommender system will choose the item that min-
imizes distance to its estimate of the user, that very same
item here would be the one that maximizes predicted rating.

To learn these embeddings, we define the following ob-
jective function, where we aim to minimize the regularized
loss over all observed ratings in R:

min
U,V,B

∑
i,j

wij [(rij − r̂ij)2] + λ(||ui − vj ||2 + b2i ). (10)

Here B represents the set of all user biases bi, and wij ∈
{0, 1} indicates whether the rating rij is observed in R. We
then use gradient descent to update the latent parameters U ,
V , and B with respect to the regularized loss (see details
in Appendix). After learning U , i.e., the embeddings of the
users in the MovieLens dataset, we sample from this empir-
ical distribution to generate m “test” users. This creates a
new matrix of user positions, X ∈ Rm×d, which we use in
our simulations to represent unseen users. Our simulations
do not rely on unseen movies, however, so we can directly
set Y , the item positions in our simulations, to V , the movie
positions directly inferred from the MovieLens dataset.

Simulations with MovieLens embeddings. Using this
approach, we learn user and movie embeddings of dimen-
sion d = 5 from the MovieLens dataset. In Figure 5, we dis-
play the learned user and movie distributions. We see that the

Figure 5: Distribution of learned user (top) and movie (bot-
tom) embeddings from the MovieLens 1M dataset.

user distribution is less dispersed than the movie distribution
in each dimension, and the movie distribution is sometimes
asymmetric (clearly non-Gaussian). For both embeddings,
the covariance between dimensions is low.

We then simulate the organic and recommender models
with m = 300 users and n = 2, 514 movies (the number of
movies in the filtered MovieLens dataset). For the organic
model, we fix each user’s noise covariance Σi to 0.5 · Σitem,
where Σitem was the empirical covariance fitted on Y , the
movie embeddings. Similarly, for the recommender model,
we fixed the system’s noise covariance Σr to 0.5 · Σuser,
where Σuser was the empirical covariance fitted on X , the
user embeddings. We scaled the user / movie covariance in
this way, as opposed to using spherical noise, so that the size
of the noise per dimension would scale with the variance of
the estimated population in that dimension, which we be-
lieved was more realistic. When shrinkage is applied within
each model, we no longer have the user or system construct
MAP estimates with Gaussian priors: the prior distribution
is neither Gaussian nor known. Instead, we implemented
shrinkage parameterized by a scalar α ∈ [0, 1], which in-
terpolates between the MLE estimate and the mean over all
MLE estimates. That is, user i’s shrunken estimate ŷ(i,S)j for
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Figure 6: Individual-level results from MovieLens experi-
ments. We plot each user’s average squared distance to their
10 nearest movies (as a measure of centrality) vs. the user’s
loss, averaged over 500 trials. In order to see data points
more clearly, we truncated outliers beyond the 95th per-
centile of the x-axis (showing 285 out of 300 users).

M
SE

M
SE

Shrinkage (𝛼) Shrinkage (𝛼)

Lo
g 

Va
r[𝑌

!]
Lo

g 
Va

r [𝑌
!]

Figure 7: Population-level results from MovieLens experi-
ments. We assess the effect of varying the shrinkage param-
eter α on the MSE and variance of matched item positions
Var[Yk], running 500 trials for each model and value of α.

movie j becomes

ŷ
(i,S)
j = (1− α)ŷ

(i,MLE)
j + α(

1

n

n∑
k=1

ŷ
(i,MLE)
k ), (11)

and the recommender system’s shrunken estimate of user i is
the equivalent interpolation between x̂(r,MLE)

i and the mean
MLE estimate over all users. This family of estimators gen-
eralizes James–Stein shrinkage and Empirical Bayes estima-
tors, which correspond to specific recipes for choosing α (or
αi, different for each user).

Despite the lopsided movie distribution and expanded
number of dimensions, we find that the key qualitative re-
sults from our theoretical analyses hold. In Figure 6, we
see that the organic MLE model continues to strongly
favor more central users, compared to the recommender
MLE model, which is much more even-handed across user
positions. In our earlier setting with items drawn from
N(0, σ2

item), the centrality of a user could be summarized by

the absolute value of xi, but here we need a more empiri-
cal measure; for example, we use the user’s average squared
distance to their 10 nearest movies (where higher average
distance corresponds to lower centrality).

Secondly, we simulate different amounts of shrinkage
(α ∈ {0.05, 0.1, · · · , 0.95}) and evaluate the impacts on
our population-level metrics, the average user loss (MSE)
and the variance of matched item positions Var[Yk]. In mul-
tiple dimensions, we compute the generalized variance as
the product of the eigenvalues of the covariance matrix of
Yk; we log-transform this quantity to make it more inter-
pretable. As we increase the amount of shrinkage, at first
this improves MSE for both models, but eventually MSE
begins to increase; the optimal level of shrinkage seems to
fall around α ≈ 0.4 for both models. However, even though
the MSE curves look similar, the Var[Yk] curves completely
diverge: the more we increase α, the more Var[Yk] grows
in the organic model, and the more it shrinks in the rec-
ommender model (Figure 7). This matches our earlier find-
ings that shrinkage has a “diversifying” effect on the organic
model but a “homogenizing” effect on the recommenders.

Conclusions and Future Work
We have introduced two contrasting models of item-
matching processes: one describing a generic personalized
recommender system, and the other describing a setting
where users search for items organically without the me-
diation of any system. In both cases, we have a decision-
making agent trying to match users to items with limited
information, but the difference lies in who/what is doing the
matching, and what information they have access to vs. what
is being estimated. Comparing the two, we have seen that
this simple switch in perspective results in dramatic differ-
ences at both the individual and population levels. For exam-
ple, in the MLE versions of the process models, the recom-
mender model serves unbiased item matches for the users,
while the organic model does not, and the organic model fa-
vors central users, while the recommender model does not.
Applying shrinkage has notably diverging effects: while it
can reduce MSE in both models, shrinkage leads the recom-
mender model to choose increasingly similar sets of items,
while leading the organic model to diversify its selections.

Most interestingly, these results are general. Our mod-
els of organic search and personalized recommendation en-
compass many specific instantiations of each process (e.g.,
flexible to different user behavior or recommendation al-
gorithms). Furthermore, we are able to prove our findings
under asymptotic settings for a large class of these mod-
els; within this class, the differences between the models are
guaranteed under any choice of parameters. Finally, through
simulations, we show that our findings are robust to changes
in user and item distribution, single and multiple dimen-
sions, and asymptotic and finite settings.

We have worked to study a core counterfactual ques-
tion about recommender systems: if there were no recom-
mender system, how would matching be different? Our anal-
yses provide evidence that the use of recommender systems
fundamentally alters how humans interact with content, as
we reveal pervasive differences between recommended and
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Figure A1: Regularized loss over iterations, when learning
user and movie embeddings from MovieLens ratings data.

organic processes of item-matching. Our model-based ap-
proach also has its limitations: for example, seeking max-
imum comparability between the organic search and rec-
ommender model, we made simplifying assumptions about
how users might behave in both search and recommended
settings. Future work could incorporate more realistic user
models, such as modeling the process of choosing among a
list of recommendations.

Simulations, even with real-world data, also have their
limitations, so we hope that future work can tie the theory of
our models to real-world user studies and experiments; for
example, through randomized controlled trials where par-
ticipants are assigned to unmediated organic search versus
recommended item-matching processes. We also hope that
future studies can build upon the formal framework estab-
lished in this paper, using our models as building blocks to
analyze diverse potential long-term effects of recommender
systems, such as polarization, filter bubbles, user retention
rates, or fairness across users or products. By modeling re-
peated choices and incorporating learning dynamics where
users learn from the items they consume (Diehl, Weeks,
and Zúñiga 2015), it should be possible to analyze how the
phenomena we document here, pertaining to single choices,
compound over time and affect the evolution of users’ opin-
ions and behaviors.

Appendix

Details from MovieLens Simulations

Recall that we defined the following objective function,
which minimizes the regularized loss over all observed rat-
ings in the rating matrix R (Equation 10):

min
U,V,B

∑
i,j

wij [(rij − r̂ij)2] + λ(||ui − vj ||2 + b2i ).

Figure A2: Visualization of the learned movie embeddings.
We performed t-SNE to convert the 5-dimensional embed-
dings into 2 dimensions. Here, we visualize the average em-
bedding for every movie genre with at least 50 movies in
the filtered MovieLens dataset (all movies with at least 50
ratings in MovieLens 1M). The size of the datapoint corre-
sponds to the number of movies in the genre; for example,
the largest genre Drama has 938 movies.

We can minimize this loss using gradient descent, with up-
dates in each step defined as

bi ← bi + γ(eij − λbi), (12)
ui ← ui − γ(ui − vj)(eij + λ), (13)
vj ← vj + γ(ui − vj)(eij + λ), (14)

where bi is the bias of user i, ui is user i’s embedding, vj is
movie j’s embedding, γ is the step size, and eij = rij − r̂ij
indicates the error on the current rating.

In our experiments, we ran 200 iterations of gradient de-
scent, where each iteration looped through every observed
rating inR and updated the latent parameters accordingly. In
Figure A1, we demonstrate that the loss approximately con-
verged within this number of iterations. We used λ = 0.01,
which allowed regularization to account for around 30% of
the overall loss, while the remaining percentage came from
the sum of squared errors between the predicted and ob-
served ratings. We decreased the step size γ over iterations,
where, for a given iteration t, we set γ(t) to

γ(t) = max

(
0.01, γ0 ·

1

1 + βt

)
, (15)

where γ0 = 0.2 indicates the initial step size and β = 0.05
controlled the rate at which the step size decayed.

We also demonstrate that even in 5 dimensions, our
learned embeddings capture reasonable representations of
movie genres. Each movie in the MovieLens 1M dataset is
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tagged with one or more genres, such as Drama or Com-
edy. In Figure A2, we plot the average movie embedding
(after performing t-SNE) of every genre that mapped to at
least 50 movies in our filtered dataset. The resulting lay-out
of genres follows what we would expect: for example, the
genres Children’s, Animation, and Musical are close to each
other; Sci-Fi, Adventure, and Fantasy are tightly grouped;
and, on the other side of the plot, Drama is close to Mys-
tery, Romance, Crime and War. These checks confirm that
our inferred embeddings capture the real data, and thus bol-
ster the validity of our experimental results, where we used
these embeddings to represent user and item positions in our
models.

Broader Impact

Our work is primarily motivated by broader impacts: our
goal is to develop a principled framework through which we
can meaningfully assess the impacts of recommender sys-
tems on society. Recommender systems are ubiquitous on
the web and social media platforms, and have the potential
for large-scale negative consequences such as pulling indi-
viduals into filter bubbles, increasing population-level polar-
ization, or exacerbating social inequalities. However, in or-
der to distill the role of recommender systems in contribut-
ing to these social phenomena, we need to compare user out-
comes under recommender systems to a credible assessment
of user outcomes without recommender systems. Thus, we
develop two contrasting models that capture each of these
worlds and systematically compare them, so that we can an-
alyze the consequences of recommender systems relative to
a counterfactual world without then.

As a model-based approach, we establish key general in-
sights about recommender systems, but we do not make
any claims about specific platforms nor do we offer instruc-
tion on how real-world recommender systems should be de-
signed. We use real movie ratings data from MovieLens
to demonstrate that our theoretical results translate to real-
world settings, not to demonstrate superior performance on
the movie recommendation task. The test users in our sim-
ulation experiments are synthetic, generated from a distri-
bution learned from the real users; the real users are also
anonymized in the data. Practitioners should be aware of the
limitations and theoretical nature of our work. They should
not directly apply our findings to their domains, but we hope
that they appreciate our main takeaways: that recommender
systems fundamentally alter how humans interact with con-
tent, and that seemingly minor algorithmic decisions (such
as regularization) can have major effects on user outcomes.
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