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Abstract

Reducing inequality is a major goal of the Sustainable De-
velopment Goals. Inequality is many-sided and often appears
across geographic boundaries. Urban inequality refers to in-
equality between urban neighborhoods. Despite close dis-
tances, it reveals considerable disparities in income level, un-
employment rates, and other socio-economic indicators and is
highly dangerous for democratic societies. However, little is
known about determinants indicating urban inequality. Here,
we propose to explain urban inequality based on point-of-
interest (POI) data from the online platform OpenStreetMap.
For this, we leverage machine learning to predict three major
indicators of urban inequality, namely, unemployment rate,
income level, and foreign national rate. We evaluate our ma-
chine learning approach using POI data for neighborhoods
in Paris, Lyon, Marseille, Berlin, Hamburg, and Bremen. We
find: (1) POIs are highly predictive of intra-city inequality
explaining up to 75% of out-of-sample variance of urban in-
equality. (2) POIs generalize across cities and, thereby, can
help to explain urban inequality in other cities, where no
socio-economic data is available. (3) Important POIs for the
prediction model are, e.g., banks and playgrounds. To the best
of our knowledge, our work is the first to show urban inequal-
ity through POIs. As such, POIs can be used to infer granu-
lar mappings of urban inequality and thereby provide cost-
effective evidence for policy-makers.

Introduction
Inequality is a global issue, limiting prosperity and oppor-
tunities of individuals. Despite widespread public aware-
ness, differences between rich and poor continue to increase
dramatically across the globe, especially within developed
countries. The destabilizating forces of inequality put mod-
ern societies at risk. Hence, there is great urgency to reduce
inequality, which has become a top priority for public pol-
icy and constitutes a major objective of the Sustainable De-
velopment Goals (UNICEF Office of Research - Innocenti
2017; UN General Assembly 2015; Sachs et al. 2021).

Inequality at the macro level (e.g., between countries
and global regions) is evident and well-measured. However,
inequality also appears at the micro level between urban
neighborhoods (Bourguignon and Scott-Railton 2015; Elgar,
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Stefaniak, and Wohl 2020). This type of inequality is com-
monly referred to as urban inequality. Urban inequality ex-
poses considerable within-city variation in socio-economic
indicators such as unemployment rates, income levels, and
foreign national rates (Cassiers and Kesteloot 2012). As an
example, compare Manhattan and Bronx in New York City:
both neighborhoods are in close proximity; yet, the average
household income in Bronx is 54 % lower than it is in Man-
hattan. Of note, urban inequality is a particularly critical is-
sue in Western parts of the world (Musterd and Ostendorf
2013). Urban inequality drives higher crime rates and lower
population growth and can destabilize democratic societies
(Glaeser, Resseger, and Tobio 2008). Hence, reducing urban
inequality is of utmost importance to policy-makers.

Providing evidence on urban inequality is crucial to de-
velop effective policies for reducing urban inequality. How-
ever, urban inequality is often not measured and thus not
directly visible. Furthermore, little is known about deter-
minants explaining urban inequality. Therefore, it is im-
portant to improve our understanding on how inequality
is manifested through characteristics of different neighbor-
hoods. By identifying common determinants of urban in-
equality, one can develop counterbalancing measures aim-
ing at mitigating disadvantages in specific neighborhoods.
For instance, if public transport is linked to higher levels of
urban inequality, policy-makers can act by expanding public
transport networks in particularly poor neighborhoods. Such
associations with public transport have been found for other
social phenomena such as crime (Kadar et al. 2020), and it
might thus be likely that one can leverage similar patterns
for urban inequality.

In this paper, we propose to explain urban inequality
based on point-of-interest (POI) data from the online plat-
form OpenStreetMap. Generally, POIs refer to locations of
interest for individuals or businesses (e.g., museum, phar-
macy, hotel). Here, we hypothesize that POIs are associ-
ated with urban inequality represented by various socio-
economic indicators. This association can be hypothesized
due to diverse underlying causal effects. For example, a lack
of kindergartens and playgrounds in specific neighborhoods
may complicate child care and increase the burden of res-
idential parents, which negatively impacts family planning
and employment possibilities for them. A lack of kinder-
gartens and playgrounds may further prevent young families
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from moving to specific neighborhoods.
Our results show that a large share of urban inequality can

be explained at very granular levels of urban neighborhoods
using machine learning and POI data from the online plat-
form OpenStreetMap. More specifically, we predict various
socio-economic indicators characteristic for urban inequal-
ity, namely unemployment rate, income level, and foreign
national rate in six different cities (Paris, Lyon, Marseille,
Berlin, Hamburg, and Bremen).

Our results help to map urban inequality and provide im-
portant evidence for policy makers addressing underlying is-
sues of urban inequality. All results are corroborated by ex-
tensive robustness checks (e.g., different machine learning
models and different feature engineering). In summary, we
make the following contributions1:

1. We show the predictive power of POIs from Open-
StreetMap for estimating micro-level variation in ur-
ban inequality across different cities and different socio-
economic indicators. To the best of our knowledge, this
is the first work to explain urban inequality through POIs.

2. We confirm that POIs as inequality predictors – to some
extent – generalize across cities and explain inequality
for out-of-sample cities.

3. We establish which POIs have the largest predictive
power and thus are important determinants characteriz-
ing urban inequality.

Related Work
Inequality: Reducing inequality is a major objective of
the United Nations’ Sustainable Development Goals (UN
General Assembly 2015). In the literature, urban inequal-
ity is typically measured via the following three socio-
economic indicators: (1) unemployment rate (Morrison
2005; Todaro 1969; Xue and Zhong 2003), (2) income
level (Chakravorty 1996; Glaeser, Resseger, and Tobio 2009;
Schaffar 2008), and (3) foreign national rate (Benassi, Lip-
izzi, and Strozza 2019; O’Loughlin 1980; Strozza et al.
2016). Other dimensions of inequality (e.g., health or edu-
cation) are typically correlated with one of these indicators
(and thus not included in this study).

Policy-makers require evidence with sufficient granular-
ity (cf. Toetzke, Banholzer, and Feuerriegel 2022), such as
granular mappings that show the spatial variation in inequal-
ity (Puttanapong, Martinez, and Addawe 2020; Zhao et al.
2019), in order to reduce urban inequality. Such mappings
are commonly available at macro-level (e.g., between coun-
tries). However, there is a lack of inequality mappings at
micro-level. One work reports a mapping of inequality at
a regional level (Dong, Ratti, and Zheng 2019), yet this is
– by far – of much lower resolution than a neighborhood
level. To fill this gap, we later deliver a high-resolution map-
ping of urban inequality that is at the neighborhood level (=
administrative post code unit, or smaller).

1The code of all analyses is publicly available via https://github.
com/ManuelGanter/urban-inequality.

POI data: POIs have become a widespread source of geo-
tagged data, especially thanks to the success of online plat-
forms such as Google Maps or OpenStreetMap. POIs refer
to locations, which one might find useful or important (Rae
et al. 2012). Typical examples are restaurants, bars, phar-
macies, hospitals, or public buildings. POIs are known as a
decisive factor for explaining urban phenomena (Cranshaw
et al. 2012; Hidalgo, Castañer, and Sevtsuk 2020; Hristova
et al. 2016; Noulas et al. 2012; Taylor, Lim, and Chan 2018;
Tschernutter and Feuerriegel 2021; Yuan, Zheng, and Xie
2012). In particular, they are used for modeling social sci-
ence phenomena, such as education (Miller 2012), racial
segregation (Zenk et al. 2005), housing prices (Fu et al.
2019; Tang et al. 2018; Xiao et al. 2017), or crime (Kadar
and Pletikosa 2018; Kadar, Maculan, and Feuerriegel 2019;
Wang et al. 2016). In other context, they are used to infer hu-
man activities from GPS data (Furletti et al. 2013) or to plan
touristic tours within cities (Brilhante et al. 2013). However,
to the best of our knowledge, no paper has used POIs for
modeling urban inequality (i.e., modeling the strong varia-
tions in unemployment rates, income levels, and foreign na-
tional rates within cities).

POI modeling: POI modeling typically makes use of
feature engineering, which can be grouped according to
(1) distance-based features and (2) density-based features as
follows:

1. Distance-based features make inferences based on the
distance to the closest POI of the same type (e.g., dis-
tance to closest hospital or closest bar). The intuition
behind distance-based features is that the walking time
until reaching a respective type of POI can be relevant
for individuals (e.g., pharmacies).

2. Density-based features aggregate POIs in a certain area
of interest (e.g., within a spatial radius), for instance,
by counting the overall frequency (e.g., Kadar and
Pletikosa 2018; Kadar, Maculan, and Feuerriegel 2019;
Karamshuk et al. 2013; Puttanapong, Martinez, and Ad-
dawe 2020; Tingzon et al. 2019). The intuition behind
density-based features is that some areas benefit from
having many POIs of the same type in close vicinity
(e.g., bars in nightlife districts). Here, a common choice
is to count the number of POIs within a specific radius
when making inferences in a city context (e.g., Humm-
ler, Naumzik, and Feuerriegel 2022; Naumzik, Zoech-
bauer, and Feuerriegel 2020).

In line with existing literature, we adopt both ways of feature
engineering – i.e., (1) distance-based and (2) density-based
POI features – in our analysis.

Inferences from geo-tagged data have two key degrees
of freedom. (1) An appropriate spatial resolution has to be
chosen. For instance, many urban phenomena are recorded
based on data from official administrative units (e.g., Zenk
et al. 2005). Analogously, we make use of neighborhoods as
defined by official administrative units. (2) An appropriate
machine learning (ML) model must be selected. When fed
with features from POI data, granular associations between
POIs and urban phenomena are learned.
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Country City #Neighborh. #Buildings #POIs

France Paris 868 88,701 106,908
Lyon 177 36,880 33,959
Marseille 345 154,434 52,159

Germany Berlin 122 404,430 156,908
Hamburg 125 278,350 72,215
Bremen 129 165,448 29,710

Table 1: Number of neighborhoods, buildings, and POIs per
city.

A common limitation of previous works is that the above
feature engineering is computed with respect to the “cen-
ter” of a spatial unit. For example, let us assume a set-
ting where inferences are made at neighborhood level as the
spatial unit of interest. For this, let n denote a neighbor-
hood where the center is given by center(n) such as the
centroid of n. Then the distance-based feature for a POI
p is

∥∥(plat, plon)
T − center(n)

∥∥. However, this calculation
scheme ignores where people reside. As a remedy, we later
develop a tailored calculation scheme in which we compute
the feature with respect to all buildings in each neighbor-
hood n. That is, we extract all buildings b located in n, and,
then, compute the distance between each POI p and each
building b.

Methods
Data
We focus on France and Germany, the two countries with
the highest population in the European Union. Within these
countries, we choose three of the major cities, namely Paris,
Lyon, and Marseille (in France), and Berlin, Hamburg, and
Bremen (in Germany). Our dataset includes all neighbor-
hoods of the selected cities. Table 1 gives an overview of
the number of neighborhoods and other summary statistics.

Target variables: We collected data on urban inequality at
neighborhood level with respect to (1) unemployment rate,
(2) income level, and (3) foreign national rate as follows:2
(1) The unemployment rate measures the share of depen-
dent civilian labor force without a job in a neighborhood.
(2) The income level refers to the median income (in euro
per month) per neighborhood. (3) The foreign national rate
reports the share (in percent) of non-national people in each
neighborhood. Summary statistics for the three inequality
indicators can be found in Appendix . For notation, we refer
to the neighborhoods via n = 1, . . . , N and to an inequality
indicator in neighborhood n via yn.

Predictors: We collected POI data from OpenStreetMap
(OpenStreetMap 2021). Our data includes 118 types t of

2Source: PriceHubble AG: www.pricehubble.com; data origi-
nally collected from the National Institute of Statistics and Eco-
nomic Studies (INSEE) in France and from Infas360 in Germany.
For Germany, the income level is inferred by the weighted aver-
age of the underlying income ranges. Data is from 2015 (the most
recent year for which such census data are available).

POIs (e.g., bar, restaurant, hospital). A POI p is a 3-tuple
(plat, plon, ptype), where plat is the latitude, where plon is the
longitude, and where ptype refers to a type t ∈ T (i.e.,
whether the POI is a school, bar, pharmacy, etc.). For sim-
plicity, we write ∀p ∈ P(t) when indexing over all POIs of
type t. The POI data were filtered for the six selected cities
using the geographic polygons. To assure that the we avoid
a structural bias at the borders of the cities, we buffer the in-
dividual polygons with a buffer of 3000 m to allow POIs at
borders to be included in our dataset.

For our feature engineering, we additionally collected a
comprehensive dataset of all buildings.3 Specifically, we re-
trieved all residential or commercial buildings with a ground
area of more than 25m2 in each neighborhood n (we re-
moved buildings with a smaller ground area since these
typically do not house residents but represent, e.g., phone
boxes and bus stops). We represent each building b by its
geographic coordinates (blat, blon). For simplicity, we write
∀b ∈ Bn when indexing over all buildings within the spatial
boundaries of neighborhood n.

Standard preprocessing was applied as follows. (1) We
followed the recommendations in European Environment
Agency (2013) in order to compute distances in the unit
of meter. That is, we transform the POI and building loca-
tions from the projection EPSG 4326 to the projection EPSG
3035. (2) We merged some POI types for better interpretabil-
ity. For example, we replaced both “college” and “univer-
sity” by the latter; we replaced “beergarden” by “restaurant”,
“food court” by “fast food”, etc. Details are in the appendix.

ML Approach
In our ML approach, we combine (1) feature engineering
and (2) a prediction model. We later compare the prediction
performance across different variants of the ML approach
(i.e., we vary both feature engineering and the underlying
prediction model). Key to our ML approach is a strong reg-
ularization, which is owed to the fact that we have many POI
features relative to the number of neighborhoods.

(1) Feature engineering: We apply feature engineering to
the POI data as follows. In line with the above literature on
POI modeling (see Sec. ), we compute density- and distance-
based POI features (see Fig. 1 for an example).

Distance-based POI features: The distance features are
used to reflect that, for some POIs (e.g., hospitals), the dis-
tance from buildings in a neighborhood to the closest POI is
important. For this, we follow a two-step approach: (i) For
each building b, we compute the distance between building
b and the next POI p of type t. (ii) We then aggregate the
distances per building in each neighborhood by taking the
mean.

Formally, we first compute the shortest distance δb,t,n be-
tween building b and a POI p of type t, for all buildings b
and POI types t ∈ T . It is important to note that we evaluate
the distance to all POIs within the city and not just the POIs
within the neighborhood of the respective building. That is,
a POI p which is not located in the neighborhood n of the

3Source: PriceHubble AG: www.pricehubble.com
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Figure 1: Example for POIs of type“bus stop” in the city of Berlin. Left: Spatial point plot where each dot is a building,
colored by the distance to the next bus stop (in meters). Center: Spatial point plot where each dot is a building, colored by the
number of bus stops within 1000 m distance. Right: For comparison, urban inequality as measured by unemployment rate per
neighborhood.

respective building b can still be the one with the shortest
distance. We use the Euclidean distance for travel distances
as best-practice (Luo and Wang 2003). We thus yield

δb,t,n = argmin
∀p∈P(t)

∥∥∥∥(plat
plon

)
−
(
blat
blon

)∥∥∥∥
2

(1)

for all buildings b and all POI types t ∈ T , where P(t)
represents a set of POIs of type t, i.e.,

P(t) =
{
p
∣∣ p = (p′lat, p

′
lon, p

′
type), t = p′type

}
. (2)

Afterwards, we compute the distance-based POI feature for
each neighborhood by averaging over all buildings b, i.e.,

dt,n =
1

|{b | b ∈ Bn}|
∑
b∈Bn

δb,t,n (3)

for all POI types t and all neighborhoods n, where Bn is
the set of buildings b in the respective neighborhood n. The
feature dt,n is the input to the prediction model, thereby cap-
turing the average distance to the next POI of type t.

Density-based POI features: For some POIs, it is likely
that not the distance but the frequency in a spatial area is of
relevance (e.g., number of bars within close spatial proxim-
ity). Density-based features are computed by the number of
POIs within a radius of θ = 1000 meters around each build-
ing. (In our robustness check, we repeat our analysis also
with other radii θ but arrive at consistent conclusions.). For-
mally, we proceed as follows. First, we determine whether a
POI p is within the area of interest via

ab,p,n =

1, if
∥∥∥∥(plat

plon

)
−
(
blat

blon

)∥∥∥∥
2

≤ θ,

0, otherwise,
(4)

where ab,p,n equals 1 if POI p is within a distance θ of build-
ing b. Otherwise, ab,p,n is zero. Afterwards, we compute the
frequency of all POIs of type t around each building via

fb,t,n =
∑

p∈P(t)

ab,p,n, (5)

for all buildings b. Similar to the distance-based feature, we
finally compute the average score of the buildings within
each neighborhoods as

st,n =
1

|{b | b ∈ Bn}|
∑
b∈Bn

fb,t,n (6)

for all POI types t and all neighborhoods n, where Bn is the
set of buildings b in the respective neighborhood n. st,n is
the density-based POI feature that we put in the prediction
model.

Distance-to-city-hall POI: We further control for whether
a neighborhood is close or far away from the city center by
adding a feature that measures the average distance to the
city center. Here, we approximate the latter by the POI that
represents the city hall. Formally, we compute

ψn =
1

|{b | b ∈ Bn}|
∑
b∈Bn

δb,City Hall , (7)

where δb,City Hall is the distance from building shape b to
the city hall in the respective city and ψn is the resulting
POI-based feature.

As a result, we have 237 features for each neighbor-
hood (i.e., 118 distance-based, 118 density-based, and one
distance-to-city-hall POI feature).

(2) Prediction model: We choose predictions models that
come with comparatively strong regularization to prevent
overfitting (since we have more features than observations
(neighborhoods)). These are (i) lasso regression (Tibshirani
1996), where a L1-norm penalty on the coefficients per-
forms an implicit feature selection; and (ii) regularized gra-
dient boosting (XGBoost) (Chen and Guestrin 2016), where
the underlying trees are regularized by taking impurity and
the model complexity into account. By comparing lasso and
XGBoost, we can further assess the relative gain in predic-
tive power due to handling non-linearities.
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Variants: We compare the following variants of the above
ML approach:
• M1: a standard lasso regression is applied to reduce the

feature space via its regularization.
• M2: first performs feature selection via a lasso; then

feds the predictors into XGBoost.
• M3: first performs dimensionality reduction via a prin-

cipal component analysis (PCA); then makes predic-
tions from the principal components via a lasso.

• M4: first performs dimensionality reduction via a lasso
that is applied to the PCA output; then makes predic-
tions from the selected principal components via XG-
Boost.

• M5: an ensemble learner combining the models M2 and
M4 using the mean to make predictions.

The implementation details as well the details on the param-
eter tuning we performed during the training process of our
model pipeline can be found in Appendix .

Evaluation Setting
Our evaluation setting is a two-fold, namely (1) an intra-city
evaluation and (2) a cross-city evaluation, as detailed in the
following.

(1) Intra-city evaluation: We perform an intra-city eval-
uation where we test how well POIs predict urban inequal-
ity within a given city. Here, we train and evaluate the ML
approach separately with data from each city. For this, we
apply a 80/20 train/test split to the neighborhoods in each
city.

(2) Cross-city evaluation: We perform a cross-city eval-
uation to test how well predictions based on POIs can be
generalized across cities. Here, we evaluate three different
strategies:
(i) City-to-city: For each of the six cities, we train the ML

approach on one city and then evaluate it on another city.
This allows us to quantify the generalizability between
two specific cities of interest (e.g., how POIs transfer
from Paris to Berlin).

(ii) Leave-one-city-out: We train the ML approach using 5
out of the 6 cities and evaluate it on the hold-out city. We
repeat this for each of the different cities. Eventually, we
macro-average the performance metrics for each indica-
tor.

(iii) Leave-one-city-out-within-country: We train the ML ap-
proach using 2 out of the 3 cities from a given country
and evaluate it on the hold-out city. We repeat this for
each of the different cities and for both countries. Even-
tually, we macro-average the performance metrics, for
each indicator. Different from the above, we explicitly
account for the different countries and thus examine to
what extent POIs generalize within countries.

Baseline: For better comparability, we report the perfor-
mance improvement in mean squared error (MSE) compared
to a naı̈ve baseline without POIs, which is given by the in-
sample mean. As such, we can measure the predictive power
due to POIs by computing MSEbaseline−MSEvariant

MSEbaseline
· 100%.

Results
Intra-City Prediction
The prediction performance for the intra-city setting is re-
ported in Table 2 and 3. Our results show that the ML
approaches (M1–M5) outperform the naı̈ve baseline, thus
establishing the predictive power of POIs. For most cities,
the ensemble learner (M5) achieves the best prediction re-
sults for urban inequality indicators. It reaches an average
out-of-sample R2 across all cities between 0.395 and 0.528.
(Hence, we use M5 later for answering RQ2). The corre-
sponding improvements in MSE compared to the naı̈ve base-
line amount to 43.46% to 55.08%. The overall improvement
across all cities is statistically significant (p < 0.001; based
on t-tests on the residuals). Importantly, similar patterns can
be observed for the other variants (M1–M4).

We make further observations: (1) For all city-indicator
combinations, ML is able to explain a considerable amount
of variance in the target variable. For some cities, the results
are very good with an explained variance of over 75% and
consistent improvements over the naı̈ve baseline. (2) We find
that the ensemble learner (M5) achieves the overall best re-
sults. This may be expected due to the fact that it has access
to other ML variants. (3) We cannot infer a clear ranking
among the other ML variants. Some variants, like M4, are
not as strong as others, which can be attributed to the exces-
sive dimensionality reduction in the feature space. (4) The
prediction performance for unemployment rate is of similar
magnitude across cities. The explained variance of the best
models range from 35.9% to 55%. This implies that it can
be successfully modeled on the basis of POIs for all cities in
our study. (5) In contrast, a larger variability is observed for
the other target variables, namely income level and foreign
national rate. For instance, for foreign national rate, the ex-
plained variance of M5 ranges from 26% (for Hamburg) to
74% (for Marseille). This suggests that, for these indicators,
the role of POIs may differ across cities.

Cross-City Evaluation
City-to-city: Here, we use M5 due to its best average per-
formance for the intra-city predictions. Fig. 2 reports the
prediction results when training on one city and evaluating
on another to study the generalizability of POIs from one
city to another. Promising results are seen in the top left and
the bottom right quadrant. This indicates that a transfer of
POIs between cities of the same country is more effective.
For example, using the model from Hamburg to predict the
unemployment rate in Bremen allows us to explain 32% of
variance. However, in few cases, a transfer also works well
across country borders. For example, the prediction of the
foreign national rate in Berlin based on the model of Mar-
seille can explain up to 40% of variance in the data.

Leave-one-city-out: For better comparison of the results,
we again use model M5 in the following. The results are
shown in Table 4. On average, the trained models explain
between 12% and 20% of the out-of-sample variance in the
three socio-economic indicators representing urban inequal-
ity. While this is still an improvement compared to the base-
line of using the in-sample average. Using t-tests on the
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Inequality
indicator

City Naı̈ve baseline M1 M2

MSE RMSE R2 MSE RMSE R2 Impr. MSE RMSE R2 Impr.

Unemployment
rate

Paris 0.002 0.041 -0.014 0.001 0.034 0.322 33.179 0.001 0.033 0.359 36.797
Lyon 0.003 0.051 -0.002 0.002 0.045 0.227 22.838 0.002 0.039 0.412 41.320
Marseille 0.011 0.104 -0.001 0.006 0.080 0.416 41.680 0.007 0.084 0.351 35.214
Berlin 0.001 0.029 0.000 0.001 0.024 0.305 30.558 0.001 0.024 0.321 32.081
Hamburg 0.000 0.019 -0.124 0.000 0.015 0.326 40.074 0.000 0.013 0.441 50.268
Bremen 0.002 0.044 -0.043 0.001 0.034 0.377 40.244 0.001 0.029 0.528 54.756

Income level

Paris 840140 916 -0.006 241064 490 0.711 71.307 206929 454 0.752 75.370
Lyon 244401 494 -0.001 139584 373 0.428 42.887 116461 341 0.523 52.348
Marseille 361248 601 -0.001 91614 302 0.746 74.639 92147 303 0.745 74.492
Berlin 731046 855 -0.001 603192 776 0.174 17.489 439543 662 0.398 39.875
Hamburg 667237 816 -0.043 407304 638 0.364 38.957 418910 647 0.345 37.217
Bremen 626827 791 -0.205 420229 648 0.192 32.959 372419 610 0.284 40.587

Foreign
national rate

Paris 0.003 0.054 -0.022 0.002 0.045 0.288 30.350 0.002 0.043 0.333 34.698
Lyon 0.002 0.050 -0.002 0.002 0.043 0.265 26.653 0.002 0.043 0.249 25.032
Marseille 0.009 0.096 -0.026 0.003 0.052 0.696 70.372 0.002 0.048 0.746 75.275
Berlin 0.004 0.063 -0.034 0.001 0.038 0.615 62.772 0.002 0.040 0.583 59.713
Hamburg 0.005 0.072 -0.261 0.003 0.055 0.264 41.669 0.005 0.068 -0.116 11.529
Bremen 0.007 0.082 -0.013 0.005 0.073 0.188 19.853 0.005 0.068 0.290 29.928

Table 2: Prediction performance across different cities and indicators capturing urban inequality. Here, the naiı̈ve baseline is
without any access to POIs, while M1 and M2 leverage POIs for prediction.

Inequality
indicator

City M3 M4 M5

MSE RMSE R2 Impr. MSE RMSE R2 Impr. MSE RMSE R2 Impr.

Unemployment
rate

Paris 0.001 0.033 0.347 35.577 0.001 0.035 0.281 29.095 0.001 0.033 0.354 36.335
Lyon 0.002 0.045 0.228 22.908 0.002 0.039 0.407 40.835 0.002 0.039 0.423 42.387
Marseille 0.006 0.078 0.444 44.439 0.006 0.076 0.463 46.359 0.006 0.076 0.469 46.930
Berlin 0.001 0.024 0.304 30.441 0.001 0.023 0.377 37.697 0.001 0.023 0.384 38.399
Hamburg 0.000 0.016 0.254 33.660 0.000 0.015 0.347 41.923 0.000 0.013 0.441 50.257
Bremen 0.001 0.032 0.459 48.184 0.001 0.032 0.445 46.799 0.001 0.029 0.551 56.941

Income level

Paris 237427 487 0.716 71.740 248646 498 0.702 70.404 213180 461 0.745 74.626
Lyon 125048 353 0.488 48.835 114525 338 0.531 53.140 103497 321 0.576 57.653
Marseille 86080 293 0.762 76.171 117659 343 0.674 67.430 89192 298 0.753 75.310
Berlin 933634 966 -0.278 -27.712 896577 946 -0.228 -22.643 513697 716 0.297 29.731
Hamburg 422752 650 0.339 36.641 401822 633 0.372 39.778 352175 593 0.450 47.219
Bremen 430742 656 0.172 31.282 375476 612 0.278 40.099 338858 582 0.348 45.941

Foreign
national rate

Paris 0.002 0.045 0.286 30.146 0.002 0.045 0.285 30.013 0.002 0.043 0.339 35.326
Lyon 0.002 0.043 0.259 26.076 0.002 0.043 0.268 26.926 0.002 0.042 0.275 27.669
Marseille 0.002 0.050 0.722 72.938 0.003 0.058 0.621 63.060 0.003 0.050 0.717 72.405
Berlin 0.002 0.041 0.552 56.644 0.001 0.037 0.637 64.860 0.001 0.036 0.665 67.604
Hamburg 0.004 0.063 0.050 24.711 0.005 0.074 -0.317 -4.445 0.004 0.063 0.059 25.432
Bremen 0.005 0.073 0.184 19.423 0.005 0.069 0.272 28.074 0.005 0.067 0.315 32.321

Table 3: Prediction performance across different cities and indicators capturing urban inequality for models M3 – M5
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0.35 0.05 0.09 -1.1 -1.1 -0.98

-0.05 0.42 0.02 -0.19 -0.27 -0.18

0.14 -0.13 0.47 0.25 0 0.06

-0.08 -0.19 0.12 0.38 0.28 -0.08

-0.2 -0.22 -0.11 0.38 0.44 0.32

-0.28 -0.18 -0.22 0.1 0.26 0.55

Unemployment rate

Paris Lyon

Marse
ille Berlin

Hamburg
Bremen

0.74 -0.02 0.18 0.08 -0.02 -0.09

-0.19 0.58 -0.07 -0.34 -0.16 -0.19

0.24 -0.03 0.75 0.01 -0 -0.02

0.05 -0.12 0.02 0.3 0.12 -0.03

0.05 -0.22 0.06 0.22 0.45 0.12

-0.04 -0.32 -0.18 0.09 -0.14 0.35

Income level

Paris Lyon

Marse
ille Berlin

Hamburg
Bremen

0.34 0.06 -0.05 -0.15 -0.15 -0.53

0.04 0.28 0.04 -0.11 -0.02 -0.31

-0.14 -0.18 0.72 0.41 0.11 -0.19

0.01 -0.35 0.21 0.67 -0 -0.22
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Figure 2: Out-of-sample explained variance (R2) of city-to-city prediction.

Unemployment Income level Foreign nat.
rate rate

Paris 0.13 0.10 0.12
Lyon −0.00 −0.06 −0.01
Marseille 0.25 0.19 0.30
Berlin 0.34 0.20 0.32
Hamburg 0.33 0.20 0.19
Bremen 0.23 0.13 0.01

Mean 0.21 0.13 0.16
Better: larger values

Table 4: Out-of-sample R2 for the leave-one-city-out evalu-
ation across different target variables (i.e., columns).

residuals, the overall improvement across all cities is sta-
tistically significant (p < 0.05) for all three indicators. Yet,
the results are not as good as for the intra-city prediction
approach. Again, the prediction performance is better and
more stable for unemployment rate as compared to the other
urban inequality indicators, which could indicate that un-
employment has more similar patterns across different cities
than income and foreign national rates.

Leave-one-city-out-within-country: This evaluation
strategy yields good results for income level and unem-
ployment rate (see Table 5). For instance, for the income
level, POIs explain up the 16% of the variance. Again,
results are based on M5. The overall improvement across all
cities statistically significant for both indicators (p < 0.05
using t-tests on the residuals). This suggests that POIs for
both unemployment rate and income level are transferable
indicators of urban inequality within countries. In contrast,
the average out-of-sample R2 for the foreign national rate is
around zero, suggesting that POIs lack predictive power for
foreign national rates.

Important POI Predictors
To understand which POIs are particularly important for ex-
plaining urban inequality, we make use of SHAP (SHapley
Additive exPlanations) values (Lundberg and Lee 2017). For
this, we train one model for each target variable on all six
cities as this allows to understand the overall feature impor-

Unemployment Income level Foreign nat.
rate rate

Paris 0.12 −0.00 −0.04
Lyon 0.08 0.04 −0.02
Marseille 0.17 0.26 −0.10
Berlin 0.32 0.23 0.24
Hamburg 0.34 0.16 0.18
Bremen 0.14 0.12 −0.33

Mean 0.19 0.16 −0.01
Better: larger values

Table 5: Out-of-sample R2 for the leave-one-city-out-
within-country evaluation across different target variables
(i.e., columns).

tance per urban inequality indicator. The results are based
on variant M2. The reason is that similar analyses are in-
feasible for M5 due to the fact that the latter uses principal
component, whereas M2 uses raw POIs as predictors.

The ten most important features based on the SHAP val-
ues for all three urban inequality indicators are shown in
Fig. 3. Across all indicators, Muslim places of worship (dis-
tance feature) has the most predictive power. Interestingly,
the four most important features for the target variables un-
employment rate and income level are largely identical. A
decisive POI for modeling unemployment rate are banks,
due to the fact that both the distance- and the density-based
feature for banks are among the top-10 predictors. A sim-
ilar pattern can be detected for the importance of Muslim
place of worship for the foreign national rate. Other POIs
which have substantive predictive power for more than one
target variable are playgrounds (distance feature) and bever-
age shops (distance feature). This answers research question
RQ3.

Discussion
Main findings: Our results demonstrate that urban in-
equality can be modeled on the basis of POI data at a highly
granular and accurate level. POIs are able to explain a large
portion of the out-of-sample variance for different indicators
of urban inequality (with an out-of-sampleR2 of up to 75%).
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Figure 3: Most important SHAP values (top-10) for the three
urban inequality indicators. Top: Unemployment rate; Cen-
ter: Income level; Bottom: Foreign national rate.

Across all three indicators, the findings are robust to differ-
ent variants of our approach. Moreover, the estimated rela-
tionships among POIs are further transferable across cities,
especially if the cities are from the same country.

Interpretation: The identified association at the POI level
may have different explanations. For example, POIs related
to leisure (e.g., cafes, restaurants) are relevant for modeling
urban inequality, as they may attract young people or people
with high income. Schools and playgrounds, on the other
hand, may attract young families with a different income
structure. Therefore, some POIs related to the attractiveness
of neighborhoods for certain population groups, while others
may not. This establishes that POIs are important determi-
nants of urban inequality.

The performance of the cross-city evaluation (i.e., training
the ML approach on one city and evaluating it on a different,
out-of-sample city) varies, which is best seen in the follow-
ing, interesting examples. (1) The roles of specific types of
POIs are subject to heterogeneity across cities. For example,
the shortest distance to restaurants is an important feature
for predicting urban inequality in Paris, but not in the case of
Berlin and Bremen. This explains why the prediction perfor-
mance of a model trained on one city can drop significantly
when it is used to predict inequality in another city. (2) We
find that POIs as predictors entail comparatively low trans-
ferability across cities for foreign national rate. This can be
attributed to the nature of the target variable itself. In some
cities, the foreign national rate is strongly negatively corre-
lated with income (e.g., Marseille), whereas, in other cities,
it is only weakly negatively correlated with income (e.g.,
Berlin), implying that the residence of foreigners is less seg-
regated.

Limitations and generalizability: Our work is subject to
limitations, similar to related research involving POI data
(Kadar et al. 2020). First, we build upon a comprehen-
sive dataset of POIs. The availability and accuracy of POI
data has been subject to discussion (e.g., Thebault-Spieker,
Hecht, and Terveen 2018). Nevertheless, our results show
that POIs are strong predictors of urban inequality. Second,
we study inequality in six European cities. This choice was
done because urban inequality is a critical issue in West-
ern parts of the world (Musterd and Ostendorf 2013). Third,
our findings are associative rather than causal in nature as
we are interested in modeling urban inequality. Here, it is
important to further investigate the causal nature of highly
predictive POIs for urban inequality. Forth, the socioeco-
nomic data were collected in 2015 while POI data have been
downloaded in 2021. However, we believe that urban in-
equality most likely has not changed substantially over these
years, and, thus, results may only change marginally. Fifth,
all buildings are weighted the same, regardless of their size.
This may provide opportunities for future research. Sixth,
we made use of SHAP value method to generate insights
into our predictions but acknowledge that there are issues
regarding interpretability (Kumar et al. 2020; Weerts, van
Ipenburg, and Pechenizkiy 2019).

For end-users, care is needed when deploying our ma-
chine learning framework in practice in order to mitigate
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risks of feedback loops. One example is that data quality
is lower in areas with large urban inequality (e.g., fewer data
on POIs), which may result perpetuate bias in the predic-
tion and thus lead to errors in downstream decision-making.
Hence, interpretations and, more importantly, interventions
based on the predictions must be carefully inspected to re-
duce risk of feedback loops during decision-making.

Implications: Our results offer new insights to policy-
makers aiming at reducing urban inequality. By identifying
predictors of urban inequality, our results inform targeted
policy-making at the micro level. For instance, a widespread
assumption in computational social science is that public
transport infrastructure is directly associated with many ur-
ban phenomena (e.g., Kadar et al. 2020). Interestingly, we
find that the corresponding association (1) between public
transport infrastructure and unemployment rate and (2) be-
tween public transport infrastructure and income level is not
among top-10 features in our model.

For policy-makers, it is of direct value to analyze the most
predictive POI as this will help to understand certain ur-
ban phenomena. Based on evidence from POI data, policy-
makers can implement effective measures that mitigate pop-
ulation dynamics that lead to segregation and, eventually, ur-
ban inequality. For example, building schools, playgrounds,
and kindergartens in disadvantaged urban neighborhoods
could facilitate family planning or attract young families to
the respective neighborhood. Our results of how POI relate
to urban inequality can thus represent important factors for
such decision-making to reduce urban inequality.

Finally, our ML approach could serve another use case:
Policy-makers can use machine learning to generate inequal-
ity mappings at a granular level. This is directly needed in
practice, since there is widespread lack of granular data on
inequality in many cities. Oftentimes, obtaining census data
at micro level is highly costly (The Economist 2011). As
a remedy, policy-makers could train our ML approach us-
ing POIs from one city where such urban inequality indica-
tors are available at neighborhood level, and then generate
predictions for a different city of interest with similar char-
acteristics. However, before applying such an approach in
practice, further research is needed to investigate the trans-
ferability of the trained models between cities and poten-
tial biases. Combining our ML approach with other methods
for inferring inequality (e.g., from satellite or mobile phone
data) could further improve the robustness.

Appendix
Encoding of POI Types

Table 6 presents the manual encoding to adjust POI types for
interpretability reasons.

Target Distribution

Figure 4 shows the Kernel density estimation for the distri-
bution for the different indicators of urban inequality (i.e.,
target variables) in the six cities).

Original POI type 7→ Replacement
‘college’ 7→ ‘university’
‘bus station’ 7→ ‘bus stop’
‘railway halt’ 7→ ‘railway station’
‘biergarten’ 7→ ‘restaurant’
‘pub’ 7→ ‘bar’
‘food court’ 7→ ‘fast food’
‘christian anglican’ 7→ ‘christian’
‘christian catholic’ 7→ ‘christian’
‘christian evangelical’ 7→ ‘christian’
‘christian lutheran’ 7→ ‘christian’
‘christian methodist’ 7→ ‘christian’
‘christian orthodox’ 7→ ‘christian’
‘christian protestant’ 7→ ‘christian’
‘christian baptist’ 7→ ‘christian’
‘muslim sunni’ 7→ ‘muslim’
‘muslim shia’ 7→ ‘muslim

Table 6: Manual encoding to adjust POI types for inter-
pretability reasons.

0.0 0.1 0.2 0.3 0.4 0 2000 4000 6000 0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0 1000 2000 3000 4000 0.0 0.2 0.4

0.0 0.2 0.4 0.6 0 1000 2000 3000 4000 0.0 0.2 0.4

0.00 0.05 0.10 0.15 2000 4000 6000 0.0 0.2 0.4

0.00 0.05 0.10 2000 4000 6000 0.0 0.2 0.4 0.6
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Foreign national rate
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Marseille
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Figure 4: Kernel density estimation for the distribution for
the different indicators of urban inequality (i.e., target vari-
ables) in the six cities).
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Model Tuning parameter Values
Lasso Regularization strength α 0.0001, . . . , 5
XGBoost Learning rate η 0.01, 0.1, 0.3,

0.5
Max. tree depth 1, 2, 4, 8

Table 7: Grid-search for hyperparameter tuning.

Implementation
Hyperparameter tuning: Hyperparamter tuning is per-
formed via a grid-search (as part of a five-fold cross-
validation). The search grid is reported in Table 7.

Implementation details: Training was done using an L2
loss. We implemented all the ML approach in SCIKIT-
LEARN (Pedregosa et al. 2011). Both features and target
variables were scaled using the RobustScaler from SCIKIT-
LEARN. The scaler was chosen over the standard scaler
for an important reason: neighborhoods with particularly
large/small values should not be treated as outliers but are
particularly relevant for policy-makers.

Robustness Checks
Distance-based POI features: We vary the radius used
for the density-based features for POI modeling. Here, we
test two alternatives. (1) We set the radius to 500 m (i.e., half
of the radius from the main analysis). (2) We set it to 2000 m
(twice the radius from the main analysis). The prediction
results of the models using the two alternatives are robust.

Density-based POI features: We compare the impact of
other aggregations when computing the the density-based
POI features. Rather than simply aggregating all POIs with
equal weight, we now introduce a “score”, so that POIs
closer to buildings receive a larger value. This should cap-
ture a possible preference for POIs that are in closer prox-
imity. For this, we use a kernel function as follows. In a first
step, every POI p in the area of interest receives a score

a
′
b,p,n =

1 −
1

θ

∥∥∥∥∥
(
plat
plon

)
−
(
blat
blon

)∥∥∥∥∥
2

, if

∥∥∥∥∥
(
plat
plon

)
−
(
blat
blon

)∥∥∥∥∥
2

≤ θ,

0, otherwise,

(8)

where a′b,p,n is the weight of a POI with respect to build-
ing b. If the distance is larger than the radius θ, zero will
be assigned to the weight as before. In a second step, all
scores for each building b and all POIs of the same type t
are summed up to provide the final score via

f ′b,t,n =
∑

p∈P (t)

a′b,p,n, (9)

where f ′b,t,n is the density-based POI score for each building
b. We finally also average the score of all buildings within
each neighborhood according to

s′t,n =
1

|{b | b ∈ Bn}|
∑
b∈Bn

f ′b,t,n (10)

which is then used as a input to the ML approach. The pre-
diction results based on the above weighting are robust and
largely overlap with our main results from Table 2 and 3.

Meta learner: We also repeated the leave-one-city-out
evaluation using a meta learner which learns to combine
M5 of five cities via a regression to predict the left-out
city. Thereby, the different city models are assigned differ-
ent weights. However, this approach led to overfitting due
to the sample size but, nevertheless, the overall qualitative
conclusions are confirmed.

Prediction models: We also experimented with different
neural networks; however, even with a high dropout rate,
we experienced overfitting. We also considered the use of
(Naumzik, Zoechbauer, and Feuerriegel 2020) but requires
a spatial distribution as target variable, not data at neighbor-
hood level, because of which this was inapplicable.

Ethical Statement
This research did neither involve interventions with human
subjects nor individualized human data. Thus, no approval
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