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Abstract

Social media is increasingly used for large-scale population
predictions, such as estimating community health statistics.
However, social media users are not typically a represen-
tative sample of the intended population — a “selection
bias”. Within the social sciences, such a bias is typically ad-
dressed with restratification techniques, where observations
are reweighted according to how under- or over-sampled their
socio-demographic groups are. Yet, restratifaction is rarely
evaluated for improving prediction.

In this two-part study, we first evaluate standard, “out-of-
the-box” restratification techniques, finding they provide no
improvement and often even degraded prediction accuracies
across four tasks of esimating U.S. county population health
statistics from Twitter. The core reasons for degraded perfor-
mance seem to be tied to their reliance on either sparse or
shrunken estimates of each population’s socio-demographics.
In the second part of our study, we develop and evaluate RO-
BUST POSTSTRATIFICATION, which consists of three meth-
ods to address these problems: (1) estimator redistribution
to account for shrinking, as well as (2) adaptive binning and
(3) informed smoothing to handle sparse socio-demographic
estimates. We show that each of these methods leads to signif-
icant improvement in prediction accuracies over the standard
restratification approaches. Taken together, ROBUST POST-
STRATIFICATION enables state-of-the-art prediction accura-
cies, yielding a 53.0% increase in variance explained (R2) in
the case of surveyed life satisfaction, and a 17.8% average
increase across all tasks.

Introduction
Digital language has shown promise for inexpensive large-
scale population measurement (Coppersmith et al. 2015;
Mowery et al. 2016). Twitter, for example, has been
used to track public opinion (O’Connor et al. 2010; Mi-
randa Filho, Almeida, and Pappa 2015) and measure commu-
nity health (Mowery et al. 2016; Abebe et al. 2020; De Choud-
hury, Counts, and Horvitz 2013). The passive assessment of
community characteristics that are otherwise expensive to
obtain offers tremendous opportunities for both researchers
and practitioners, but it also poses a challenge that is often
overlooked: predictions made from social media are often
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prone to significant bias resulting from non-representative
samples.

Although the user bases of social media platforms are diver-
sifying, they do not accurately reflect the general population
(Duggan and Smith 2013; Greenwood, Perrin, and Duggan
2016). For example, Twitter users typically are younger and
have a higher median income (Duggan and Smith 2013). Per
location, such as counties in the U.S., these biases can further
differ. As a result, samples collected from Twitter are not
representative of the populations they are intended to model,
leading to a “selection bias” that can potentially skew results.

In this study, we address the issue of selection bias when
using spatially aggregated Twitter language to measure com-
munity health and well-being. We estimate age, gender, in-
come, and education distributions of a geolocated Twitter
sample through pretrained socio-demographic models. When
compared to known distributions of the community (via the
U.S. Census), these inferred socio-demographic variables al-
low us to quantify the selection bias per observation (a county
in this case). Using these insights, we estimate county-level
language features, weighting each county member accord-
ing to how over- or under-represented they are within the
community’s known socio-demographic distribution.

While addressing selection bias is a common procedure
in many quantitative social sciences, it is primarily used
to improve in-sample correlational statistics (Berk and Ray
1982; Winship and Mare 1992). In contrast, attempts to ad-
dress selection bias to improve predictive models (i.e. su-
pervised NLP) are rare. One potential explanation for this
gap is that socio-demographic information is rarely available
in predictive contexts, which rely on observable data rather
then self-report questionnaires. However, recent work demon-
strates that estimates of demographics from language can be
highly associated with self-reported demographics (Zhang
et al. 2016; Chen et al. 2015), which could provide a means
to estimating and correcting demographic selection bias.

Similar to in-sample corrections of selection biases, one
would expect that the accuracy of predictive models (e.g., pre-
dictions of representative health outcomes) can be improved
by taking account of observable selection biases. Here, we
show that this is not the case: applying standard in-sample
solutions (e.g., post-stratification and raking) leads to a de-
crease in performance when predicting representative county
health. Upon investigation, we identify that this drop in per-
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formance arises from two problems: (1) the use of estimated
socio-demographics and (2) the sparse socio-demographics
bins (i.e., socio-demographic subgroups which are sparsely
populated in a sample when compared to known populations).
Building on these findings, we propose novel solutions to
each of these problems in the form of (1) estimator redistri-
bution and (2) adaptive binning and informed smoothing.

This paper presents methods and results in two stages. First,
we define and contextualize the problem of selection bias, pre-
senting existing methods (Out-of-the-box Correction Tech-
niques) and highlighting the fact that standard methods fall
short in our setup (Results based on Existing Methods).
Second, we introduce novel methods to handle challenges
common to selection bias correction in Improving Correc-
tion Techniques and present results in Results: Estimation
and Sparsity Challenges.

Contributions Our key contributions include: (1) Intro-
duce the problem of selection bias correction for supervised
NLP, including standard methods from other fields; (2) Show
that standard reweighting techniques used widely in other
fields often lead to degraded performance in predicting health
statistics from social media language; (3) Identify the prob-
lems of standard reweighting and develop methods to mitigate
them; (4) Apply these techniques as ROBUST POSTSTRATI-
FICATION to obtain state-of-the-art prediction accuracies of
county life satisfaction and health. We also open-source all
code.1 and data2

Problem Statement: Selection Bias Correction3

Given hierarchical data where lower level individual data
points (i.e., Twitter users) are nested within a population
(i.e., U.S. county), we wish to estimate the representative
population-level expectation, µXi

, from the lower level data.
For example, when correcting for selection bias of language
on Twitter, X is a vector of linguistic features for which we
wish to derive a representative mean.

Simple averaging methods fail to account for differences
between the observed sample (individuals in our Twitter data
mapped to a county) and the target population (the entire
population of a county) for whom a measurement is desired.
Thus, with respect to a target population, the measurements
over the sample are biased, i.e. suffer a selection bias. More
formally, we define d = {dm} to be a set of individual level
auxiliary variables (in our case, d = {age, gender, income,
education}), Qi(d) to be the distribution of our sample (those
for whom we have a measurement in our data set) and Pi(d)
to be the distribution of the target population (those for whom
a measurement is desired) in U.S. county i. Then, following
Shah, Schwartz, and Hovy (2020), we take selection bias
to mean that the sample distribution is dissimilar from a
theoretically-desired distribution (the census-measured popu-
lation distribution in this case):

Pi(d) � Qi(d).

1Code: https://github.com/wwbp/robust-poststratification
2Data and Supplemental Materials: https://osf.io/ae5w6
3See Table 1 for definitions of all terms.

Definition
d(s) Twitter user’s predicted socio-demographics value in

the Twitter sample s
d(t) Twitter user’s redistributed socio-demographics value

in the target distribution t
dm Twitter user’s predicted value for socio-demographic

m (age, gender, income, education)
Ddm Partition of the socio-demographic dm
D

(h)
dm

Subset of partition Ddm

i Index, population level observations (U.S. counties)
j Index, individual level observations (Twitter users)
m Index, socio-demographics (age, gender, income, edu-

cation)
h Index, socio-demographic partitions
d Set of socio-demographic variables (subsets of {age,

gender, income, education})
k Smoothing parameter
min

(s)
h Minimum socio-demographic value in subset D(h)

dm
in

our Twitter sample s
max

(s)
h Maximum socio-demographic value in subset D(h)

dm
in

our Twitter sample s
min

(t)
h Minimum socio-demographic value in subset D(h)

dm
in

our target distribution t
max

(t)
h Maximum socio-demographic value in subset D(h)

dm
in

our target distribution t
Ni Cardinality of Ui (number of Twitter users in county

i)
Pi(d) Distribution of the target population (U.S. Census)
Qi(d) Distribution of our sample (Twitter sample)
s Sample distribution (Twitter users)
t Target distribution (U.S. Census)
Ui Set of all individuals within a population (Twitter users

county i)
Xi Population level observation (county level linguistic

feature)
xi,j Individual level observation (Twitter user linguistic

feature)
ψi(d) Correction factor
µXi County level expectation of Xi

Table 1: Definitions for notation used throughout the paper.

We can then view selection bias correction as estimating a
correction factor for the given set of auxiliary variables d:

ψi(d) =
Pi(d)

Qi(d)
, (1)

such that our goal of estimating µXi
, the population expecta-

tion of the individuals’ features Xi for community i, can be
written as

µ̂Xi
=

1

Ni

∑
j∈Ui

ψi(d)rj(xj). (2)

Here Ui is the set of individuals in community i, with Ni =∣∣Ui

∣∣, and rj is some kernel function. Note that Eq. 1 is similar
to the Kullback-Leibler divergence (Kullback and Leibler
1951). Since we would like a multiplicative correction factor,
we do not take the log of the ratio.

This formulation, rooted in the literature on reweighting
and post-stratification techniques from economics and social
science (Kalton and Flores-Cervantes 2003; Hoover and De-
hghani 2020), includes several useful abstractions. First, d
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can contain any number of auxiliary variables, though, here
d is a set of socio-demographics of the Twitter users (e.g.,
various combinations of age, gender, income, and education).
Higher level populations need not be limited to counties (e.g.,
cities and countries), nor do these populations need not be
limited to spatial regions. Further, although our focus is so-
cial media-based community measurements, this formulation
could be used for other types of data: estimating consumer
metrics per household (Alexander 1987), state polling (Park,
Gelman, and Bafumi 2004), and, generally, individual-level
data from a biased sample of a population.

Bias in Social Media Population Measurement
Samples collected from Twitter aren’t generally representa-
tive of the real-world populations that they are intended to
model (Mislove et al. 2011; Culotta 2014). To some extent,
this is attributable to unbalanced user demographics – users
skew young, toward one gender or the other, toward wealthy
or poor, and toward urban rather than rural (Duggan and
Smith 2013; Greenwood, Perrin, and Duggan 2016; Hecht
and Stephens 2014). Beyond demographics of who “selects”
to use social media, data collection methods further con-
tribute to selection biases. The geotagging process can select
certain ages and genders (Pavalanathan and Eisenstein 2015),
and races may be partially excluded due to language filters,
prone to errors on region- or race-specific dialects such as
African-American English (Blodgett, Green, and O’Connor
2016).

Limited work has been done to correct for selection bi-
ases on social media. Recently, Wang et al. (2019) presented
a method for selection bias correction to create national
population estimates from social media. They showed that
one could use inferred demographics with a traditional post-
stratification technique to produce more representative pop-
ulation statistics. We also use estimated demographics, but
we find these traditional post-stratification techniques have
problems which lead to degraded performance for predictive
modeling. Other fields have presented social media-specific
frameworks (Zagheni and Weber 2015) but without predic-
tive evaluations.

While population studies often attempt to correct for se-
lection bias, few have explored the use of corrections to
improve predictive modeling. Non-representative samples
can have a significant impact on model performance. For
example, Weeg et al. (2015) used mentions of diseases on
Twitter and nearly doubled predicting prevalence rates for 22
diseases after limiting analysis to disease prevalence amongst
known Twitter users. Using Twitter to predict elections, Mi-
randa Filho, Almeida, and Pappa (2015) explored selection
bias as a reason for inconsistent election predictions. Attempt-
ing to construct stratified samples, they concluded that results
were encouraging but lacked sufficient data to make predic-
tions. Our method works even in cases such as this where
traditional restratification isn’t feasible.

Closest to our work, we build on ideas from Culotta (2014)
who explored reweighting schemes for predicting county-
level health statistics. They reweighted instances according
to users’ predicted gender and race, leading to improved pre-
dictions for 20 out of 27 variables. However, their evaluation

was limited to the top 100 most populous counties, which are
primarily homogeneous urban centers. In contrast, our work
explores methods for cases where the data is not homoge-
neous and/or when data is sparse. Further, we provide a more
comprehensive evaluation and correct for more variables (e.g.
age, gender, education, and income).

Data2

Our training data is broken into two pieces: (1) the biased
sample from tweets and (2) representative population-level
survey percentages. The biased sample consists of Twitter
data which we want to aggregate to the community level in
such a way that its socio-demographic makeup matches that
of our representative population, the U.S. Census.

Biased Sample: Twitter We use the open source County
Tweet Lexical Bank — a U.S. county-mapped Twitter data set
built over 1.6 billion tweets (Giorgi et al. 2018). The County
Tweet Lexical Bank Twitter data was pulled from July 2009
to February 2015, geolocated to U.S. counties (i.e., county
FIPS codes, which are unique numeric identifiers for U.S.
counties) via self-reported location information in public
account profiles and latitude / longitude coordinates (see
Schwartz et al. (2013a) for the county mapping/geolocation
process) and then filtered to contain only English tweets (Lui
and Baldwin 2012). At a high level, the county mapping
process is as follows: (1) if a tweet object contains latitude
/ longitude coordinates, we can trivially map that tweet to
a county, (2) if a Twitter account has self-reported location
information in the profile (e.g., “‘living in NYC”) we match
the location string in the profile to U.S. cities which can be
mapped to counties. The data was then limited to Twitter
accounts with at least 30 posts and U.S. counties represented
by at least 100 such unique accounts. The final Twitter data
set consists of 2,041 U.S. counties with 6.06 million users.

Representative Population: U.S. Census Five year esti-
mates (2011-2015) for age, gender, education, and income
were obtained from United States Census Bureau’s 2015
American Community Survey (ACS). Age records contain
the percentages of people within age ranges 18-19, 20-24,
25-29, 30-34, 35-39, 40-44, 46-49, 50-54, 55-59, 60-64, and
above 65. The gender records consist of the percentages
of males and females for each county. Percentages of in-
come for the following bins: less than $10,000, $10,000-
$14,999, $15,000-$24,999, $25,000-$34,999, $35,000-
$49,999, $50,000-$74,999, $75,000-$99,999, $100,000-
$149,999, $150,000-$199,999, and greater than $200,000.
Education is divided into two groups: percentage of the pop-
ulation with less than a Bachelor’s degree and percentage
higher than that of Bachelors.

Outcomes Selection bias correction is evaluated across
four different community level out-of-sample prediction
tasks, where we cross sectionally predict county level health
variables (i.e., the outcomes or dependent variable in each
task) from county level language on Twitter (i.e., the inde-
pendent variables). The four tasks include two measures of
objective health (heart disease and suicide mortality rates)
and two measures of subjective health and well-being (Life
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Satisfaction and Poor or Fair Health). From the Centers for
Disease Control and Prevention (CDC) we collected age-
adjusted mortality rates for heart disease (N = 2, 038) and
suicide (N = 1, 672), averaged across 2010-2015. Life satis-
faction scores are calculated as average individual level re-
sponse to the question “In general, how satisfied are you with
in your life?” (1 = very dissatisfied and 5 = very satisfied),
averaged across 2009 and 2010 (N = 1, 951) (Lawless and
Lucas 2011). Finally, Poor or Fair Health was obtained from
the County Health Rankings and is sourced from the Behav-
ioral Risk Factor Surveillance System (BRFSS) (Remington,
Catlin, and Gennuso 2015). This is an age-adjusted measure
of the percentage of adults who consider themselves to be in
poor or fair health (i.e., percentage of adults who answered
fair or poor to the question: “In general, would you say that in
general your health is Excellent/Very good/Good/Fair/Poor?”;
N = 1, 931). All N reported above are a subset of the 2,041
counties with sufficient Twitter data, and are therefore the
final number of observations in our four county tasks.

PEW: National Social Media and Twitter Use Since
Twitter socio-demographic populations are not known at the
county level we use National statistics collected from PEW’s
Social Media update (Greenwood, Perrin, and Duggan 2016),
including age, gender, income, and education for the years
2013-2016. Demographics were binned as follows: age (18-
29, 30-49, 50-64, and 65+), gender (female / male), income
(less than $30,000, $30,000-$49,999, $50,000-$74,999, and
$75,000+; yearly), and education (high school grad or less,
some college and college+). For each demographic bin we
collect the percentage of the population who use social media
and the percentage of the population who use Twitter. These
percentages are averaged over the four years available, the
closest available timeline to the Twitter sample. Using the
total U.S. population we then calculate the percentage of peo-
ple in each socio-demographic bin (i.e., total U.S. population
× average bin percentage of people who use social media ×
average bin percentage of people on Twitter).

Ethics Statement This study was reviewed and approved
by an academic institutional review board, found to be ex-
empt, non-human subjects data, with none to minimal chance
of harm to individuals. All raw data used in this study are pub-
licly available. Our aggregate anonymized (manually checked
for identifying information) language features by county are
publicly available.2 For additional privacy protection, no
individual-level estimates, intermediate information derived
within the approach, will be made available. The original
tweets, which are publicly available, are not able to be redis-
tributed due to Twitter’s Terms of Service.

Estimating Socio-demographic
Bias from Language

Sample socio-demographics are necessary in order to quan-
tify and correct non-representation, but such information is
not typically available in social media. We thus turn to socio-
demographic estimates of our sample from their language.
Such estimates have been validated in a number of contexts

Age Perc.
Female Income Perc. Bachelor’s

Degree
Census 39.3 50.4 $48,280 22.3
Twitter 22.1 53.8 $36,437 40.5
PEW 28.8∗ 48.3 $58,660∗ 42.9

Table 2: County mean of medians or percentages. ∗Imputed
from bin percentages as median not provided by Pew.

including Twitter (Sap et al. 2014; Matz et al. 2019),4 and
a similar approach was used by Wang et al. (2019). We pro-
duced language-based estimates for four socio-demographic
variables, which we will correct for selection bias: age, gen-
der, income, and education. All four estimators are described
below. The median (or percentage) county values for our sam-
ple estimates versus census population statistics are given
in Table 2. On average, our Twitter sample appears younger
and more educated than the population as a whole, but it is
important to remember bias may differ from one county to
the next and correction attempts to make each county more
representative of its population. We note that gender is fairly
evenly split across U.S. counties across all three categories:
U.S. Census, Twitter sample, and PEW.

We utilized estimated age, gender, income, and education,
based on tweet language, using the following models.5

Age and Gender. Age and gender estimates were based
on a demographic predictive lexica (Sap et al. 2014). Sap
inferred these models over a set of annotated users with self-
reported age and gender (binary as multi-class gender was not
available at the time) from Facebook, Twitter, and blogs. Ac-
curacy of the estimates for age correlated with self-reported
age at Pearson r = 0.86 and the estimated gender with an ac-
curacy = 0.90 with self-reported gender. The model produced
real values for age which were thresholded to between 13
and 80. For gender, output was a continuous score from neg-
ative (more male) to positive (more female). Because county
statistics were limited to binary gender these were converted
to 1 for “female” and 0 otherwise.

Income. Income was estimated using the model built in
Matz et al. (2019). They collected a sample of 2,623 partic-
ipants from Qualtrics in 2015 who reported their annual in-
come and shared social media language. This model achieved
an out-of-sample accuracy of Pearson r = .41 for estimated
income as compared to true income. The model takes ngram
frequencies as well as social media topic loadings from
Schwartz et al. (2013b) as input.

Education. An education classification model was built
over a sample of users recruited from Qualtrics (Preoţiuc-
Pietro et al. 2017). A total of 4,062 users reported education
level and shared their Facebook status data. Mirroring Matz’s
income model, for each user, we extracted ngrams of length
1 to 3 and loadings for a set of 2,000 social media-based
LDA topics (Schwartz et al. 2013b). We used a multi-class

4While perfection is not necessary to achieve benefit, exces-
sive error would presumably prevent our approach from improving
county-level predictions.

5Age, gender, and income estimation models were previously
published, while education is novel to this paper.
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linear-svc classifier and train on the following classes: (1)
less than high school diplomam (2) high school diploma or
Associate’s degree, and (3) Bachelor’s degree or higher. This
model obtained an accuracy of .62 and an F1 score of .53
using 10-fold cross validation. We then used this model to
predict class probabilities for Twitter accounts and, because
most county data only indicated higher education percentages,
collapsed the first two classes into a single class. This resulted
in two final education classes: (1) less than a Bachelor’s
degree and (2) Bachelor’s degree or higher.

Study 1: Out-of-the-box Correction
Techniques

Our approach to applying standard selection bias correction
relies on three steps: (1) estimating socio-demographics, (2)
creating weight factors, and (3) reweighting user level fea-
tures and aggregating to the county (i.e., applying weight
factors).

In practice Pi(d) and Qi(d) are unknown and must be
estimated, typically by creating a partitionDdm

of each socio-
demographic variable dm into non-overlapping subsets D(h)

dm

where
⋃

hD
(h)
dm

= Ddm
:

ψ̂i(d) =
Pi(d|dm ∈ D(h)

dm
, ∀m)

Qi(d|dm ∈ D
(h)
dm
, ∀m)

. (3)

Furthermore, the population distribution Pi(d) is estimated
using population percentages from known national surveys,
in our case, the U.S. Census, and the sample distribution
Qi(d) is estimated from our sample percentages:

ψ̂i(d) =
percpop(d|dm ∈ D

(h)
dm
, ∀m)

percsamp(d|dm ∈ D
(h)
dm
, ∀m)

, (4)

where percpop and percsamp are the population and sample

percentages, respectively. The non-overlapping subsets D(h)
dm

are referred to as bins throughout.

Existing Methods
We investigate two common methods for creating weight
factors: (1) naive post-stratification and (2) raking, both of
which are a form of post-stratification. These two methods
can be viewed as different ways of estimating the joint prob-
ability distribution in the population domain of the given
socio-demographic d: Pi(d) from Equation 1.

Post-stratification. Post-stratification reweights each user
according to the joint distribution of a set of socio-
demographics (Holt and Smith 1979; Little 1993; Henry
and Valliant 2012). In practice, this joint distribution is rarely
known or available to researchers beyond two or three vari-
able combinations. The two methods below address this situ-
ation and use only the marginal distributions for each socio-
demographic.

Naive Post-stratification. Since joint distributions are not
always available for many variables of interest, one can
estimate the joint distribution from given marginals. One
approach is to assume all marginal distributions are inde-
pendent (Leemann and Wasserfallen 2017). This method

multiplies the proportion of people in each marginal bin to
estimate the proportion of people in each of the joint dis-
tribution’s bins, mirroring the assumption of Naive Bayes
(p(a, b) = p(a)p(b)).

Raking. Raking is an iterative method which operates on
the marginal distributions, adjusting each sample marginal
to match the population distributions (Deville, Särndal, and
Sautory 1993). For example, raking over age and gender
would first adjust age sample marginals to match age popula-
tion marginals, and then adjust gender sample marginals to
match gender population marginals. This process is repeated
until the marginal distributions of the sample variables match
the population marginal distributions within some small mar-
gin of error. The adjusted sample marginals are then substi-
tuted into the numerator of Equation 1.

Applying Weight Factors and Predictive Modeling
We apply our correction weights to individual level (Twitter
users) linguistic features, specifically the top 25,000 most
frequent unigrams across our entire sample, noting that this
procedure will work for any individual level data. We con-
catenate all tweets from each user in our data set and tokenize
using a tokenzier built for social media data (Schwartz et al.
2017). We then encode each unigram the relative frequency
of use for each given user. Using Equation 2, each linguistic
feature xj is aggregated from user j to county i:

µ̂Xi
=

1

Ni

∑
j∈Ui

ψ̂i(d)rj(xj). (5)

Here Ui is the set of users in county i, Ni is the total number
of Twitter users in county i, ψ̂i(d) is the correction weight of
the demographic set d, and rj(xj) is the relative frequency
of the unigram xj for user j. When aggregating from user to
county with no bias correction we set ψ̂i(d) = 1, ∀j ∈ Ui

and ∀i. The end results is a set of 25,000 county-level average
unigrams.

Predictive Modeling
Since our methods focus is on selection bias, we integrate our
correction approach into an established approach for estimat-
ing county-level health statistics from language (Eichstaedt
et al. 2015; Giorgi et al. 2018; Jaidka et al. 2020).

Features The county-level average unigrams are then used
to derive a set of topic loadings for each county. We use a set
of 2,000 topics derived from Latent Dirichlet Allocation (Blei,
Ng, and Jordan 2003). The topics were built over the myPer-
sonality Facebook data set, which consists of approximately
15 million; see Schwartz et al. (2013b) for more details on
the topic modeling process. These topics have been used
across a number of studies predicting county-level health and
well-being (Eichstaedt et al. 2015; Giorgi et al. 2018; Curtis
et al. 2018).

Modeling For each of our four county-level prediction
tasks, we predict the outcome (i.e., heart disease mortality,
suicide mortality, life satisfaction, and percentage in poor or
fair health) using the 2,000 topic features described above in
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Heart
Disease Suicide Life

Sat.
Poor/Fair

Health Avg.

Baseline .751 .614 .445 .748 .640
Age .622− .492− .239− .595− .487−

Gender .755+ .619+ .437− .744 .641
Income .703− .530− .455 .716− .599−

Education .762+ .617 .457+ .754+ .648+

Table 3: Standard methods using single correction factors.
Reported Pearson r., + and − indicate a significant increase
and decrease in performance, respectively (p < 0.05). Half
of the “out-of-the-box” correction factors reduce accuracy.

a 10-fold cross validation setup. Thus, the final data size is
dependent on the county outcome (i.e., dependent variable),
with 2,000 LDA topics (i.e., independent variables) constant
across each task: heart disease mortality N = 2, 038; suicide
mortality N = 1, 672; life satisfaction N = 1, 951; and per-
centage in poor or fair health N = 1, 931. The topic features
are then fed through a three step feature selection pipeline.
First, we remove all low variance features. Next, we remove
features which are not correlated with our county-level out-
comes at a family-wise error rate α of 60. At this point, all
features are standardized: mean centered and normalized by
the standard deviation. Finally, stochastic principal compo-
nent analysis is applied to the topic features in order to reduce
the size of the feature set to approximately 10% its original
size. For each of the 10 folds, we train an `2 penalized ridge
regression (Hoerl and Kennard 1970) on 9 of the folds and
apply the model to the held out 10th fold. All models use a
regularization term λ of 10,000. Similarly to the topic feature
set, this same pipeline has been successfully used across a
number of county-level health studies (Eichstaedt et al. 2015;
Giorgi et al. 2018; Jaidka et al. 2020; Abebe et al. 2020)

Results for Out-of-the-box Methods
In this section we evaluate how well existing post-
stratification techniques improve prediction accuracy by cor-
recting for selection bias. We focus on the average cross-
validation accuracy across the four health outcomes intro-
duced previously: heart disease mortality, suicide mortality,
life satisfaction, and percent in poor or fair health. The as-
sumption is that if a mitigation technique is useful it should
improve predictive performance, while unnecessary or erro-
neous techniques will have no or negative effect.

Predictive Performance As shown in Table 3, we found
a decrease in performance (Pearson r) when attempting to
correct for both age and income biases. Gender correction
has mixed results, as we see an increase for heart disease
and suicide, a decrease for life satisfaction and no change
for poor/fair health. Education gives a significant boost for
three out of four tasks, with no change for suicide. For each
correction factor we perform a pair t-test on the model’s resid-
ual as compared to the baseline model residual. We report
both positive (+) and negative (−) statistical differences at
p < 0.05.

Similar patterns hold when averaging across all four tasks.
We note that at this point in the paper we will report the

Baseline = .640
Naive

Post-Stratification Raking

Age + Gender .514− .473−
Income + Education .600− .591−
Age + Gen. + Inc. + Edu. .627− .541−

Table 4: Standard methods using multiple correction factors,
average predictive accuracy (Pearson r) across four tasks,
− significant decrease in performance at p < 0.05. All six
“out-of-the-box” combinations reduce predictive accuracy.

average Pearson r across all four tasks (heart disease, suicide,
life satisfaction, and poor/fair health). Additionally, tests for
significance are done by combining the dependent p-values
across the four county-level tasks using the methods devel-
oped by Kost and McDermott (Kost and McDermott 2002).
We also note that age and income have 10 and 11 possible
bins, respectively, whereas both gender and education are bi-
nary variables. An increased number of bins can lead to more
extreme weights if any bins are densely or sparsely populated,
thus increasing the noise in our model. This suggests some
issues perhaps arising from having many bins (e.g. sparse or
unstable estimates of people per bin; we will address this in
the next two sections).

Average predictive performance for combinations of cor-
rection factors is given in Table 4. Again, across the board we
see no increase in predictive performance when comparing
to baseline. Additionally, we see no increase in predictive
performance when comparing to a single factor correction in
Table 3.

Study 2: ROBUST POSTSTRATIFICATION for
Improved Correction

Standard selection bias mitigation techniques not only pro-
vided no benefit, but, on average, tended to hurt performance
within the context of predicting county health from social
media language. We hypothesize this is due to two chal-
lenges. First, socio-demographic estimation from language
introduces systematic effects to the distributions (e.g. from
shrinkage – bias toward the mean). Second, data sparsity is an
issue when dealing multi-dimensional socio-demographics,
since some counties contain as few as 100 individuals.

Methods
Challenge 1: Estimator Shrinking The first challenge
originates in Step 1 of our pipeline: estimating socio-
demographics from text. The estimators used to create the
linguistic socio-demographic scores are regularized which
shrinks the estimated distribution towards the mean of the
training data. To compensate for this, each users’ esti-
mated socio-demographics are redistributed such that our
source distribution matches that of a target distribution, in
our case, that of the national distribution of Twitter users
(expectedBinPercs, as reported by the PEW Reseach Cen-
ter). Estimator redistribution shifts each acount’s linguistic
socio-demographic estimates such that the population per-
centage in each source bin matches those of the target bins.
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Specifically, for a given socio-demographics bin h, the bin
boundaries in the source data (min(s)h and max(s)h ) were deter-
mined such that they match proportions in target population
distribution bins (min(t)h and max(t)h ). See Algorithm 1 for
details and the Supplemental Materials2 for a step-by-step
example of this method.

A given user’s estimated socio-demographic d(s) (where s
is the source distribution) is redistributed using the following
equation:

d(s) −min(s)h

max(s)h −min(s)h

=
d(t) −min(t)h

max(t)h −min(t)h

,

The redistributed estimation value is obtained by solving for
d(t), the socio-demographic in the target distribution t:

d(t) =
(
d(s) −min(s)h

)max(t)h −min(t)h

max(s)h −min(s)h

+ min(t)h . (6)

Figure 1 shows the age distributions of our national Twitter
sample and PEW’s reported national percentages.

We expect estimator redistribution to help when there is
a large number of socio-demographic bins and when there
exists large differences between the sample and target distri-
butions, regardless of the number of bins. The redistribution
process will move users from densely populated bins into
sparser bins, yielding more stable correction factors — users
in extreme bins (either dense or sparse) are severely under or
over-weighted.

Challenge 2: Sparse Data Bins The second challenge
originates in Step 2 of our pipeline: creating weight fac-

Algorithm 1: Estimator Redistribution

Input: {d(s)} - demographic estimates from users
expectedBinPercs - Expected percentages

Output: {d(t)} - redistributed demographic estimates
from users

1 Def EstRedist({d(s)}, expectedBinPercs):
2 for h in length(expectedBinPercs) do
3 p = percentBetween(min

(t)
h , max

(t)
h )

4 if l == 0 then
5 min

(s)
h = min

(t)
h

6 else
7 min

(s)
h = max

(s)
h−1

8 max
(s)
h = min

(s)
h + 1

9 while percentBetween(min
(s)
h , max

(s)
h ) < p do

10 max
(s)
h += 1

11 for {d(s)} do
12 if min

(s)
h ≤ d(s) < max

(s)
h then

13 d(t) = EquationSix(d(s))

14 return {dt}
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Figure 1: Probability density of the age distributions of our
Twitter sample (red) versus the expected Twitter population
distribution according to PEW (blue). Due to regularization
which shrinks estimates toward the mean, our age distribution
skews significantly younger than PEW.

tors. As we (1) increase the number of bins of our socio-
demographic variables and (2) increase the number of socio-
demographic variables we wish to correct for, the probability
that any one of our sample users falls into a given bin also
shrinks. As seen in Equation 1, as the percentage of users in
our sample shrinks, weights will increase. The raking process
described above also suffers from the fact that convergence
is not guaranteed if empty bins are present (Battaglia et al.
2009). Therefore we focus on ways of estimating Qi(d) in
Equation 1 such that we mitigate this data sparsity problem.

Adaptive Binning Our first method to account for sparse
data sets a minimum threshold on the number of observa-
tions within each bin (or partition subset) for a given socio-
demographic variable. Adjacent bins are iteratively combined
until all bins meet our threshold or we have a single bin. Since
both gender and education start with two bins, if either bin
fails to meet the threshold then we end up with a single bin
and therefore no correction. Thus, we do not expect either
variable to significantly increase or decrease predictive per-
formance from baseline. We also note that adaptive binning
occurs per socio-demographic (e.g., when correcting for both
age and income, we bin age and income separately). While a
minimum bin threshold has previously been used (Battaglia
et al. (2009) who suggest a minimum bin percentage of 5%),
we know of no systematic study of the effect of minimum bin
sizes. Additionally, our threshold is set on the number of ob-
servations as opposed to a percentage, since percentages will
be noisy for sparsely populated counties. The Adaptive Bin-
ning algorithm is shown in Algorithm 2; see Supplemental
Materials2 for a step-by-step example of this method.

Informed Smoothing The second method we develop to
account for data sparsity uses a smoothing technique that
pads each weight with a fraction of users from a known
distribution. More formally, we state the source probability
in terms of the smoothing constant k as

Q̂
(k)

i (d|dm ∈ D(h)
dm
, ∀m) =

Ns + kP̂i(d)

Ni + k
. (7)

Here Ns is the number of sample users with socio-
demographic d, Ni is the number of Twitter users in county i
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Figure 2: Average, absolute log of the county income weights
at different smoothing levels; colored by terciles with (top)
and without (bottom) estimator redistribution.

and h is summed over the socio-demographic partition. Note

that as k → ∞ as have Q̂
(k)

i (d) → P̂i(d) and therefore all
correction weight factors equal 1.

Unlike adaptive binning, informed smoothing does not
depend on the total number of bins. Thus, we expect it to
have an effect on gender and education correction. This ap-
proach is inspired by similar approaches to modeling ngram
probabilities in language modelling (Kneser and Ney 1995).

Results: Estimation and Sparsity Challenges
To be sure our methods work as expected, we first observe
their effects on the correction weights. Figure 2 shows results
for both estimator redistribution and informed smoothing for
income alone. Each figure shows the county average, absolute
log of the users’ correction factors. First, ignoring the effects
of smoothing (i.e., focusing on k = 0), we see that estimator
redistribution shrinks the variance in the correction factors.
This is to be expected since estimator redistribution spreads
out the distribution — the sample distribution (red) in Figure
1 is spread to match the true distribution (blue). This causes

Algorithm 2: Adaptive Binning
Input: binCounts - list of bin counts

minBinNumber - min integer bin threshold
binRanges - list of bin ranges

Output: binCounts - list of combined bin counts
binRanges - list of combined bin ranges

1 Def AdaptBin(binCounts, minBinNumber):
2 while min(binCounts) < minBinNumber do
3 m = min(binCounts)
4 if m ≥ minBinNumber then
5 break
6 i = binCounts.index of(m)
7 combineAdjacent(binCounts[i],

min(binCounts[i-1],binCounts[i+1]))
8 combineAdjacent(binRanges[i],

min(binRanges[i-1],binRanges[i+1]))
9 return binCounts, binRanges

Baseline = .640
Post-

Stratification
Naive Post-

Stratification Raking

Age .587+ - -
Gender .639 - -
Income .625+ - -
Education .648 - -
Age + Gender - .582+ .584+

Inc. + Edu. - .629+ .626+

All - .638+ .588+

Table 5: Average predictive accuracies (Pearson r) across four
tasks when using estimator redistribution. + and − indicate
a significant increase or decrease, respectively, as compared
to same correction variable / method pair in Tables 3 and 4.
All correction factors, except gender and education, show
significant increases over the “out-of-the-box” methods. “All”
includes age, gender, income, and education.

our bins to (1) be less sparse near the tail of the distribution
(thus, shrinking large correction factors towards the mean);
and (2) less dense near the peak of the distribution (similarly,
increasing small correction factors towards the mean).

Informed smoothing also has a similar shrinking effect at
large k, with average log weights converging to zero. This
is expected since Equation 7 says that, as k increases, the

estimated sample distribution Q̂
(k)

i (d) matches the estimated
population distribution P̂i(d). Thus, ψ̂i(d)→ 1 and the log
approaches 0. Finally, we see that the variance in weights
does not monotonically decrease, with maximum variance at
k = 100. At k = 100 we see the terciles calculated at k = 0
spreading out. Since we are correcting weights on a county-
by-county basis, with each county having it’s own selection
bias, we would hope that the average county weights show
variance. At k = 0 we see this is not the case and all counties
have similar average weights, implying that all counties are
experiencing the same selection bias (i.e., a similar ratio of
population to sample; Equation 1).

Table 5 evaluates the benefit of applying estimator redis-
tribution. Comparing to Tables 3 and 4, we see a marked
improvement above post-stratification without estimator re-
distribution in almost all situations. It does not put us above
baseline (r = .640) but it is moving in the right direction, so
we use estimator redistribution in all remaining experiments.

The predictive accuracies for the adaptive binning experi-
ments are shown in Table 6. This marked our first improve-
ment over the baseline average Pearson r of .640. In most
cases, we see a decrease in performance when setting the
minimum bin threshold to 1 when compared to no binning.
We also see naive combining outperforming raking when k
is low, though k ≥ 50 reverses this and raking outperforms
naive. Increasing the minimum bin threshold gradually im-
proved results, with peaks around 100 where all approaches
did better than no adaptive binning. As expected, most factors
approach baseline when the bin threshold is 1,000.

Figure 3 shows the predictive accuracies of the informed
smoothing method. Figure 3(a) shows informed smoothing
with single correction factors. For single factors alone, we see
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Figure 3: Prediction accuracies when using informed smoothing, averaged over all four tasks: Graphs zoomed in to highlight
difference near baseline; smoothing constant k = 0 is equivalent to no smoothing (see Table 5). Results show selection bias
mitigating, when adjusted with informed smoothing with k > 10, can increase accuracy over baseline.

a slight increase using age and larger increases for income
and education. Consistent with our previous results, we see
no improvements for gender correction. All results converge
to no correction with large enough k since the Informed
Smoothing has the effect of backing off to assuming the
county is fully representative (i.e. no correction).6

Figures 3(b) and 3(c) show Informed Smoothing with naive
and raking factors, respectively. We see that the combination
of age and gender does not drastically improve over baseline.

6Uninformed smoothing, such as Lapacian smoothing, would
push counties toward a non-representative (uniform) distribution,
negating the point of selection bias correction. See Supplement2 for
an “add one” smoothing.

Baseline = .640 Minimum Count Threshold
1 10 50 100 1000

Age .583 .605+ .624+ .636+ .634+

Gender .639 .639 .639 .640 .640
Income .612− .666? .674? .663? .642+

Education .648? .648? .648? .647? .642
Age + Gender

Naive .580 .598+ .622+ .633+ .633+

Raking .580 .603+ .623+ .635+ .634+

Inc. + Edu.
Naive .612− .659? .673? .662? .643
Raking .611− .662? .674? .664? .643

All
Naive .634 .633 .620− .634 .645+

Raking .579− .610+ .634+ .649? .647?

Table 6: Average predictive accuracies (Pearson r) across
four tasks when using adaptive binning. + and − indicate a
significant increase or decrease, respectively, as compared
to the same correction variable / method pair in Table 5, ?

increase over baseline. “All” includes age, gender, income,
and education. This method shows mitigating selection bias
can improve predictive accuracy when adjusting for error in
demographic scores by using adaptive binning.

We also see raking helping more for the age-gender-income-
education correction factor (for both Informed Smoothing
and Adaptive Binning), suggesting that raking might work
better than naive post-stratification as the number of correc-
tion factors increases.

Recommended System Due to the large number of tuning
parameters evaluated above, we perform a backwards elim-
ination on our correction variables to find the model with
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Figure 4: Effect of mitigation on average bias. Bars indicate
bias for both (a) continuous attributes (age and income) quan-
tified as difference in standardized means, or (b) dichotomous
attributes (gender and education) quantified as percentage dif-
ference between census populations and our measurements.
Darker bars indicate the debiased version, from our final
suggested approach using estimator redistribution, adaptive
binning, and informed smoothing – settings from the last
line of Table 7). Bias is reduced for all factors except gender
(which only had a small baseline bias).
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Baseline Optimal Model based on Backwards Elimination

Pearson
r R2 RMSE Strat.

Vars.
Adaptive
Binning

Smoothing
k

Pearson
r R2 RMSE

Heart Disease .753 .563 30.14 inc. + edu. 50 10 .769∗ .588 29.26
Suicide .614 .371 3.67 inc. 50 10 .626∗ .388 3.62
Life Satisfaction .445 .187 0.024 inc. 50 10 .542∗ .286 0.022
Poor/Fair Health .746 .552 3.82 inc. + edu. 50 10 .778∗ .603 3.60

Average .640 .418 9.41 inc. 50 10 .677∗ .464 9.18
inc + edu 50 10 .676∗ .463 9.13

Table 7: Predictive performance of baseline vs. our recommended system. Across each of our four individual county-level
prediction tasks we present a recommended system (i.e., the combination of settings which resulted in the highest prediction
accuracy with the smallest number of correction factors). ∗ indicates significant reduction in error over baseline; p < .05.

the highest accuracy and the smallest number of correction
factors. To make this selection process simpler, we evaluate
our backwards selection using raking, as this method tended
to outperform naive post-stratification, as well as estimator re-
distribution. The algorithm behaves as follows. First, we start
with the maximum number of correction factors (age, gender,
income, and education) and then perform a grid search over
Adaptive Binning and Informed Smoothing parameters. We
then choose a smaller set of correction factors and perform
the same grid search, until we find a model with the smallest
number of correction factors that gives us the best accuracy.
This evaluation is performed across our four county-level out-
comes, as opposed to an average of the four. Table 7 shows
predictive accuracies for each of our four outcomes using the
above algorithm. Here we see a fairly consistent set of tuning
parameters: a minimum bin threshold of 50, a smoothing con-
stant k = 10, and income as a correction factor. For two of
the our outcomes, heart disease and poor/fair health, we see
education as an additional correction factor. The maximum
percent increase occurs for life satisfaction (52.9%) while
heart disease has the smallest significant increase (4.44%).
In the end, both models are very similar, with the only dif-
ference being the addition of education correction. Thus, in
the end, we recommend using both income and education
since, everything else being equal, we believe it is better to
correct for more factors in order to make the model more
“fair”. In Figure 5 show county level heat maps of the true
values of the Poor/Fair Health measure (as reported by the
BRFSS) and Twitter predicted values (as determined by cross
validation using our recommended system). Here we see our
recommended system in Figure 5(a) reasonably tracking the
ground truth values in Figure 5(b).

Quantifying Bias Reductions
Here we quantify the reduction in bias in our recommended
system. For our two continuous variables (age and income)
we take the absolute difference in means of the census bin
percentages and our estimated demographics, normalized by
the pooled standard deviation, and average across all coun-
ties (i.e., average absolute Cohen’s D). We do this once for
our “out-of-the-box” socio-demographic estimates (to get a
baseline bias) and again for the weighted estimates from our
recommended model (i.e., correcting for income and edu-

cation with a minimum bin threshold of 50 and smoothing
k = 10). For the two categorical variables (gender and edu-
cation), we take the absolute difference in county percentage
female and percentage with a bachelor’s degree, and then
average across all counties. This process is repeated for each
of our four county level tasks.

Figure 4 shows the results of this experiment. Here we see
a significant reduction in bias for age, income, and educa-
tion across all four tasks. Gender, on the other hand, shows a
slight increase in bias, though we note that this increase is not
nearly as dramatic as the decreases seen across age, income,
and education, nor have we attempted to fully correct for gen-
der (as this model corrects for income and education only).
These results seem to match the county-level statistics re-
ported in Table 2, which shows a small difference difference
in gender between the Census data and our Twitter sample.
That is, we do not expect our methods to drastically address
gender biases because gender is evenly distributed across
counties, in both the Census data and our Twitter sample.
Finally, we note that, while our recommended system only
performs raking across income and education, we apply es-
timator redistribution across all four correction factors (age,
gender, income, and education). Thus, we might expect our
final bias measures to correct for age despite the fact our
post-stratification process does not consider this variable.

Conclusion
Selection bias — producing measurements over a population
sample that differs from the target population — is a frequent
criticism of automatic social media-based population predic-
tions (Hoover and Dehghani 2020; Wang et al. 2019; Shah,
Schwartz, and Hovy 2020). While post-stratification tech-
niques are frequently used to address selection bias in opinion
polling or social sciences, we found “out of the box” meth-
ods generally resulted in worse performance, as compared to
no correction, for the task of predicting population (i.e., U.S.
county) health and well-being statistics from social media lan-
guage. We discovered two reasons for this lack of benefit: (1)
estimating sample user demographics from predictive mod-
els (as opposed to having self-reported demographics of the
Twitter users) introduces additional biases when compared to
known distributions and (2) sparse or underpowered data for
estimating the observed community demographic distribu-
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(a) BRFSS Reported Poor/Fair Health (b) Twitter Predicted Poor/Fair Health

Figure 5: Maps of northeastern U.S. counties showing the deciles of adults living in Poor/Fair Health (a) as reported by the
BRFSS and (b) as predicted from Twitter, using our recommended model in Table 7. Out-of-sample Twitter predictions obtained
though the cross validation process. Blue is less poor/fair health (i.e., better health); red is more poor/fair health (i.e., worse
health), and white is unreliable self-report or Twitter data (i.e., missing data).

tions. To the best of our knowledge, neither of these issues has
been previously investigated for improving post-stratification.
In fact, few works have even evaluated commonly used se-
lection bias mitigation techniques for predictive tasks (Wang
et al. 2019; Culotta 2014), likely because such techniques are
traditionally applied without access to ground truth validation
data (e.g., in most opinion polls).

We proposed ROBUST POSTSTRATIFICATION which in-
cludes several techniques to address challenges in selection
bias correction for predicting population statistics and eval-
uating their efficacy. First, we found that using estimator
redistribution to counter shrinkage bias of estimated demo-
graphics provided modest benefits. Then, we explored two
techniques for addressing sparse bin issues: adaptive binning
and informed smoothing, finding both provided a substantial
benefit and resulted in an overall improvement to the predic-
tive models, yielding state-of-the-art results (a 52.9% increase
in variance explained for life satisfaction). Many approaches
for addressing demographic biases in AI try to correct them
without sacrificing accuracy (Gonen and Goldberg 2019). In
the case of selection bias, we believe we have shown that
properly correcting bias can yield substantial benefits.
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