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Abstract
On social media, due to complex interactions between users’
attention and recommendation algorithms, the visibility of
users’ posts can be unpredictable and vary wildly, sometimes
creating unexpected viral events for ‘ordinary’ users. How
do such events affect users’ subsequent behaviors and long-
term visibility on the platform? We investigate these ques-
tions following a matching-based framework using a dataset
comprised of tweeting activities and follower graph changes
of 17,157 scientists on Twitter. We identified scientists who
experienced ‘unusual’ virality for the first time in their profile
lifespan (‘viral’ group) and quantified how viral events influ-
ence tweeting behaviors and popularity (as measured through
follower statistics). After virality, the viral group increased
tweeting frequency, their tweets became more objective and
focused on fewer topics, and expressed more positive sen-
timent relative to their pre-virality tweets. Also, their post-
virality tweets were more aligned with their professional ex-
pertise and similar to the viral tweet compared to past tweets.
Finally, the viral group gained more followers in both the
short and long terms compared to a control group.

Introduction
Online platforms for professional networking (e.g.,
LinkedIn) grew tremendously over the last decade. Al-
though such professional networking channels exist,
general-purpose social platforms (e.g., Facebook and
Twitter, where the boundary between professional and
social communications is often blurred) are still being
used as major channels for professional communication
across science (Meishar-Tal and Pieterse 2017; Ke, Ahn,
and Sugimoto 2017), business (Sivarajah et al. 2020), and
politics (Buccoliero et al. 2020). Scientists, who serve
multiple audiences, including their peers, their institutions’
administration, the public, and others (Kozinets 2017), and
face pressures to develop an online presence and digital
personae (Duffy and Pooley 2017), may benefit from
participating in an open network such as Twitter.

Online platforms facilitate interactions among vast num-
bers of people from diverse backgrounds, and occasionally
‘viral’ events stem from such complex interactions. Going
‘viral,’ where a tweet is “spread quickly and widely” (Jen-
ders, Kasneci, and Naumann 2013), may have life-changing
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impacts on individuals, both favorable and adverse. For
example, individuals have gained internet fame (Stampler
2014) and career opportunities (Arató 2019) after memes
featuring them went viral. Contrarily, people faced severe
personal and social consequences after memes featuring
them went viral (Amon et al. 2020; Hasan et al. 2021), and
they lost their jobs and faced social embarrassment after
their tweets were judged as inappropriate and caught the at-
tention of the news media (Ronson 2015; Strehlke 2015).
Although such massive viral events are rare for ordinary
people, smaller-scale viral events that reach a ‘much larger
than average’ audience for the person posting the tweet oc-
cur more frequently. We term such events as ‘micro-viral
events.’ How does experiencing such micro-viral events for
the first time affect social media users, particularly those
who use the platform for professional purposes? Do the
users alter their behaviors, e.g., by increasing platform en-
gagement? Do such events help the users achieve higher lev-
els of visibility in the long-term?

In this paper, we examine these questions using a lon-
gitudinal dataset of scientists on Twitter and a matching-
based causal inference method (Stuart 2010). Specifically,
we study how anomalous, micro-viral tweets—tweets with
an unusually large number of retweets for the particular
user but that would not necessarily be considered viral in
the traditional sense—affect scientists’ subsequent tweet-
ing behaviors and their popularity on Twitter. Concretely,
we examine how scientists reacted to such exposures and
whether they used this sudden popularity to promote their
professional self, such as by adopting specific strategies
to create additional viral events. We further examine if
these events help accumulating followers, the ‘social cap-
ital’ in the virtual world. We focus on Twitter because of
its increasing popularity among scholars for professional
purposes and its general-purpose nature; indeed, a major-
ity of scholars use Twitter primarily to fulfill professional
goals (Yu et al. 2019). Scholars use Twitter to attract poten-
tial employers (Radford et al. 2020), advertise academic po-
sitions (Guzman, Alkadhi, and Seyff 2016), build an ‘expert’
identity (Han 2020; Dauenhauer 2020), and connect with
peers and related associations to build a community (Mo-
hammadi et al. 2018). Additionally, Twitter’s public nature
facilitates complex and unexpected interactions that breed
viral events, thereby making Twitter an appropriate and at-
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tractive platform to study our research questions.
We study the following research questions:

RQ1 Do micro-viral events influence people’s tweeting be-
haviors on Twitter (e.g., changing tweeting frequency,
sentiment, objectivity, and topics of tweets, and posting
tweets that are more similar to the viral tweets and rele-
vant to the users’ professional expertise)?

RQ2 Do micro-viral events influence short- and long-term
visibility on Twitter (i.e., follower gain or loss)?

We study the impact of micro-viral events on the posters
of a tweet using a matching-based inference framework on a
longitudinal Twitter dataset. The dataset was collected over
a period of more than two years and eight months. During
that time span, we monitored 17,157 Twitter users, who were
identified as scientists (Ke, Ahn, and Sugimoto 2017), and
recorded their tweeting activities and changes in the follower
graph using the Twitter API. From this data, those who expe-
rienced micro-viral events (the ‘viral group’; for simplicity,
in the rest of the paper we will omit the designation ‘micro’
unless we want to highlight the features of our definition;
the formal definition of micro-viral events is provided be-
low) for the first time since they started using Twitter were
identified. Using a matching procedure, we identified a ‘non-
viral’ control group of users who never experienced virality
but had a similar profile and tweeting activities as the users
in the viral group (until the viral event). By comparing these
two groups, we quantified the impact of micro-viral events
on viral users’ behaviors and the short- and long-term visi-
bility (follower gain or loss).

Our findings suggest that micro-viral events changed
scholars’ tweeting behaviors. After a viral event, viral schol-
ars tweeted and retweeted more frequently compared to their
matched non-viral counterparts. Compared with their pre-
virality tweets, they also posted tweets i) with a higher
positive sentiment, ii) containing more factual information,
iii) focused on fewer topics, and iv) similar to their first viral
tweet. Additionally, viral events facilitated short- and long-
term follower gains, and expanded one’s reach to the general
public. These findings add to the understanding of the use of
social media to promote professional reputation by scholars
and people in other professions where reputation helps to
advance their careers.

Background and Related Work
Scholars’ Use of Twitter
Jordan and Weller identified four reasons for using so-
cial media platforms by academics: maintaining a personal
learning network, promoting the professional self, promot-
ing and seeking research publications, and advancing one’s
career (Jordan and Weller 2018). Maintaining presence on
online platforms (including Twitter) was regarded as creat-
ing a ‘digital self,’ where academics promote themselves in
a competitive environment (Shah and Cox 2017; Radford
et al. 2020; Mohammadi et al. 2018; Lemon, McPherson,
and Budge 2015). Twitter provides a unique opportunity for
scholars to communicate science to the public (Côté and
Darling 2018; Dudo and Besley 2016; Mohammadi et al.

2018) as Twitter is open to all and tweets are, by default,
public. Scholars use Twitter to share research ideas (Dauen-
hauer 2020) and build collaborations (Mohammadi et al.
2018) that may directly benefit professional success. Twit-
ter facilitates continued discussion and collaboration dur-
ing academic conferences (Li and Greenhow 2015; Kim-
mons and Veletsianos 2016). In this paper, we go beyond
understanding why and how scholars use twitter, and study
how unexpected, but perhaps desired, events (such as vi-
ral tweets) help them achieve their identified goals, such as
getting a community’s attention, and if and how impacted
scholars capitalize on such events by changing their behav-
iors on the platform.

Defining and Identifying Micro-viral Events

Previous research characterized ‘viral’ events from differ-
ent perspectives. Jenders et al. indicated a tweet as viral
when the number of retweets it had received exceeded some
threshold (such as 50) (Jenders, Kasneci, and Naumann
2013). Subbian et al. considered a tweet as a viral tweet
when it received a higher number of retweets compared to
other tweets (e.g., 90th percentile) (Subbian, Prakash, and
Adamic 2017). More complex measures of virality have also
been proposed that consider the structural properties of the
diffusion, such as the depth of the cascades (Dow, Adamic,
and Friggeri 2013) and the average distance between all
pairs of nodes in a diffusion tree (Goel et al. 2015). By con-
trast, we characterized a tweet as a micro-viral tweet if it
had received a higher number of retweets compared to other
tweets of the same user, as our goal is to measure the impact
of viral events that are rare and unusual for the person who
experienced them, even if they would be unremarkable for
highly popular users, which is why we call them micro-viral
events.

Impact of Viral Events and Strategic Behaviors

Prior research has shown that viral events help accumulate
followers (Myers and Leskovec 2014). Such events may help
scientists reach people outside of specific research fields or
even scientific professions (Côté and Darling 2018). Such
unusual but desired attention from peers may increase (or
decrease) scientists’ engagement to the platform and their
tweeting behaviors (Adelani et al. 2020). In particular, we
aim to detect if scientists’ behavioral changes are directed
to increase the odds of receiving more attention (e.g., subse-
quent viral tweets) and accumulate more followers. Prior re-
search has shown that frequent tweeting promotes follower
accumulation (Schnitzler et al. 2016). Regarding content,
Berger and Milkman found that content expressing positive
sentiment were more likely to go viral (Berger and Milk-
man 2012). Schnitzler et al. advocated scientists to maintain
objectivity in tweet content (i.e., free from personal bias)
and engage in professional conversations with fellow sci-
entists (Schnitzler et al. 2016). In this work, we investigate
whether scholars demonstrate more of these behaviors, and
several others, after achieving virality, even if it is a small
degree of virality.
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Method
Establishing causal effects with observational data is chal-
lenging, as it is difficult to eliminate all non-causal explana-
tions (Shalizi and Thomas 2011). Here, we employ a match-
ing method with a longitudinal database of tweeting activi-
ties and follower accumulation to compare outcomes expe-
rienced by viral and non-viral users after viral events. To
create this dataset, we followed 17,157 scholars on Twitter
from July 1, 2017 to February 15, 2020 and collected their
tweets, retweets, and changes in followers over time. Using
this dataset, we identified users who experienced micro-viral
events (we call them ‘viral users’) for the first time in their
profile’s lifespan. Although viral events may influence fu-
ture interactions and follower gains/losses on Twitter, simply
comparing tweeting behaviors and the number of followers
of viral users before and after viral events would lack a coun-
terfactual. Thus, to isolate the impact of viral events, each
viral user was matched with a user with a similar number of
followers and tweeting behaviors up to the point of the vi-
ral event but who never experienced virality. This matching
procedure approximates controlled experiments (Ho et al.
2007) and allows for stronger inference from observational
data. Although it is impossible to rule out possible influences
of unobserved confounders (e.g., factors that affect both the
ability to create engaging tweets that go viral and attract-
ing large followings), by comparing how the tweeting be-
haviors and number of followers of viral vs. non-viral users
diverge after a viral event, we provide a stronger argument
for a causal relationship between the viral event and the ob-
served changes than simply examining correlations.

Data Collection Procedure
Selecting the initial set of users. Our dataset builds on
previous research on the use of Twitter by scientists (Ke,
Ahn, and Sugimoto 2017). Their dataset comprised of
45,867 Twitter users, a majority being scientists or re-
searchers. Since Twitter API has rate limitations (Inc. 2010),
we selected a subset of the users for continuous data collec-
tion as follows. First, we identified the “novel tweets” (i.e.,
not a retweet, but can be a reply to another tweet) of each
user in the initial dataset with the highest number of retweets
to date (the ‘peak tweet’). Then, the difference between the
average number of retweets for tweets posted before and af-
ter the ‘peak tweet’ was calculated. After sorting users based
on these values, the top 3,000 and bottom 3,000 users were
selected for continuous monitoring. This set, therefore, con-
tains users with the maximum ‘ups’ and ‘downs’ during their
profile lifespan. We extended and diversified this set in two
ways: A) users who had at least one tweet with 50 or more
retweets were included, resulting in a set of 8,157 users and,
B) a random sample of 9,000 users who never had a tweet
with 50 or more retweets were included, totaling to 17,157
users. From July 1, 2017 to February 21, 2020, we contin-
uously collected tweets posted by these users and changes
in their follower graphs. This data collection procedure was
approved by our institute’s ethics board.

Selecting the final set of users. We monitored 17,157
users, but data from many of these users were discarded for

various reasons that we describe in this section. We aimed
to detect ‘anomalous’ viral events that were experienced by
the users for the first time. The Twitter API provides a max-
imum of 3,200 past tweets of a user. Thus, we discarded
5,573 users who had posted more than 3,200 tweets before
we started monitoring them. Next, users who either deleted
their profiles or made them ‘protected’ (N=3,113), or did not
post any tweets (N=762) during the data collection period,
were removed. From the remaining users, 753 (9.7%) were
identified as bots by the Botometer (Varol et al. 2017) (using
a classification threshold of 0.49 as suggested by the authors
of Botometer (Varol et al. 2017)). After this step, 6,956 users
remained in the final set.

Defining and Detecting Micro-viral Tweets
We consider a tweet as a micro-viral tweet only if it was
both popular (in ‘absolute’ terms, although using a rela-
tively low bar) and unusual (in ‘relative’ terms with respect
to the user’s past tweets). These criteria exclude some of
the hugely popular tweets (e.g., by celebrities or politicians)
because people with larger followings may regularly garner
large numbers of retweets. Therefore, in our definition, we
use both the absolute number of retweets and how anoma-
lous it is for a given user, which is estimated by the z-score
of the number of retweets. We chose 50 as the absolute
threshold for retweets based on a previous study (Jenders,
Kasneci, and Naumann 2013), which shows that retweets
follow a Pareto distribution and only 4% of tweets get 50
or more retweets.1 Thus, at first, we identified all tweets of a
user with at least 50 retweets and included them in the set of
‘potential viral tweets’, T , for that user. Then, for each tweet
t ∈ T , the z-score was calculated using the mean and stan-
dard deviation of retweets for tweets posted within the 10
weeks before t. If the z-score of a tweet was above eight, it
was classified as a ‘viral tweet.’ Below, we explain how the
10-week time window and z-score threshold of eight were
determined.

We chose 10 weeks as the window for calculating the
z-score based on the auto-correlation of the users’ weekly
tweeting frequency as follows. First, for the duration of
our data collection period, each user’s weekly tweeting fre-
quency was represented as a time series. Then, the auto-
correlation coefficients of that time series was calculated for
lags ranging from 1-to-20 weeks. For each time lag, we com-
puted the mean, standard deviation, and 95% confidence in-
tervals of the auto-correlation coefficients across all users
(Figure 1). We selected 10 weeks because this is the longest
time duration with mean correlation coefficient greater than
0.1, indicating that the users’ tweeting behavior had some
consistency over this time interval.

The threshold for z-score was selected with the goal of
maximizing the number of users who had only one viral

1We experimented with other threshold values: 75, 100, and
150. But using higher values simply resulted in a smaller set of
viral users, without any qualitative change. For example, using 100
as the threshold returned a proper subset of the set of viral users
who were identified using 50 as the threshold. This was true for
other higher thresholds as well.
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Figure 1: Auto-correlation of tweeting frequency per week.

event. This selection criterion would maximize the extraor-
dinary aspect of the event for an user and minimize the num-
ber of users with subsequent viral events so that the effect of
the first viral event on the outcomes could be isolated. To do
that, we computed the percentage of users with a single viral
event for different thresholds of z-score (ranging from two
to 30) and chose eight since this maximized the number of
such users.

Using these thresholds, we identified 1,610 tweets from
758 users as ‘viral’ events. Of them, 409 (54%) users had
only one viral event and 68 (8.9%) users had 5 or more viral
events.

Matching Procedure to Create the Control Group
To isolate viral events’ influence on users’ behaviors and
follower gain, we created a control group to compare with
the viral group. For a ‘fair’ comparison, users in the control
group should have similar follower networks and tweeting
behaviors as those who experienced virality (Stuart 2010)
until the viral event (after which the groups might diverge).
Thus, each user in the viral group was paired with the most
‘similar’ user from the ‘non-viral group’, and these matched
non-viral users formed the control group.

Selecting covariates for measuring ‘similarity’ between
a viral and a non-viral user. The similarity was mea-
sured based on the following variables: number of follow-
ers, number of novel tweets (i.e., not a retweet, reply, or
quoted tweet) and average number of retweets, URLs, and
hashtags. These covariates were selected based on relevant
literature. Prior research has shown that tweeting frequency,
number of followers, and including URLs and hashtags in
tweets were associated with obtaining large retweets (Suh
et al. 2010; Schnitzler et al. 2016). We included aver-
age number of retweets to pair users whose tweets usu-
ally received similar attention. Although account age may
influence retweets (Suh et al. 2010), we omitted it since
many Twitter users remain inactive after creating their pro-
files (Ruhela et al. 2016). We also omitted sentiment and
emotion of tweets as many viral and non-viral users had
posted only a few tweets and thus estimations of affec-
tive properties may be unreliable. Including these variables
would also increase the large number of covariates and
may result in a poor similarity measure in the Euclidean
space (Stuart 2010).

Estimating covariates. The identified covariates were es-
timated as follows. For viral users, the number of follow-
ers was equal to how many followers they had immedi-
ately prior to their respective first viral event. Covariates
whose value depended on tweets (e.g., the average number
of URLs) were computed using tweets posted by viral users
within 10 weeks prior to their respective first viral event. For
non-viral users, the covariates were computed based on the
viral users with whom they are being compared to measure
similarity. Thus, while computing the similarity between a
non-viral user and a viral user, tweets posted by the non-
viral user within 10 weeks before the first viral event of
the viral user were used to calculate the covariates, and the
number of followers was equal to how many followers the
non-viral user had immediately before the same viral event.
Measuring similarity based on covariates computed prior to
the viral events ensures that no covariate was affected by the
treatment (the viral events in our case) (Stuart 2010). The 10
week period was selected by observing the consistency of
users’ behavior within this interval. Table 1 shows covariate
estimates for the two groups before and after the first viral
events (the number of followers is not shown as they were
computed just before the viral events).

Matching with the Nearest Neighbor in an Euclidean
space. All users were embedded in a Euclidean space de-
fined by the covariates as axes. The z-scores of the covari-
ates defined the position of the users in that space. Then,
each viral user was paired with the closest non-viral user as
identified by the k-nearest neighbor (KNN) algorithm (with
k = 1). We used z-scores of covariates instead of raw val-
ues in the matching procedure since the covariates feature
widely different ranges. For example, number of followers
varies in the order of thousands, while the average number of
hashtags per tweet has a range of zero to one. Thus, if these
raw values were used, covariates with smaller ranges of val-
ues would have been ignored while computing the distance
between two users in the Euclidean space. Note that using z-
scores does not disregard the correlations among covariates
while computing the distance since it only normalizes with
variance and not co-variance.

Our goal was to find unique matches; one way to achieve
this was to match without replacement: once a non-viral user
had been matched with a viral user, we discarded the non-
viral user from the pool of potential matches for subsequent
viral users. But the result from this procedure would depend
on the order in which non-viral users were considered for
matching and may not result in the best possible matched
pairs. We avoided this shortcoming by considering all non-
viral users as potential matches for all viral users, pairing
two users when they had the smallest distance among all
potential pairs. This resulted in duplicate matches, which we
resolved with an iterative procedure outlined in Algorithm 1
and explained in the following section.

At first, this algorithm finds N non-viral users who are
nearest to a viral user (N was set experimentally, see be-
low). Then, it matches the closest (non-viral) neighbor with
the viral user. But that non-viral user may be nearest to more
than one viral user, creating duplicate matches. It then finds

326



Viral users Non-viral users
Before After Before After

Tweets 34.36 (51.68) 38.94 (115.58) 27.97 (47.22) 24.32 (38.30)
Retweets 5.14 (7.70) 9.93 (21.68) 4.20 (6.29) 3.94 (12.63)
URLs 0.75 (0.25) 0.81 (0.24) 0.76 (0.25) 0.78 (0.30)
Hashtags 0.37 (0.47) 0.33 (0.44) 0.38 (0.52) 0.39 (0.52)

Table 1: Mean (SD) number of tweets and retweets, URLs, and hashtags per tweet in 10 weeks before and after viral events.

and removes duplicate matches iteratively. In each iteration,
it identifies a non-viral user who was matched with multi-
ple viral users. Only the match with the lowest distance was
retained and the rest were removed. The viral users in the re-
moved pairs were re-matched with the next nearest neighbor
(from the initial set of N neighbors). This process continues
until there are no duplicate matches anymore, or it is not pos-
sible to find a unique match for every viral user. The latter
can happen when N is too small and it becomes impossible
to re-match a viral user after detecting a duplicate match. We
experimented with different values of N and found that set-
ting N = 10, i.e. initially identifying 10 nearest neighbors
for each viral user, was sufficient to obtain unique matches.
This procedure identifies the best possible unique matched
pairs regardless of the order of matching.

We removed pairs with distance greater than one standard
deviation to further enhance their comparability, resulting in
670 matched pairs.

Evaluating the quality of the matching procedure. To
assess the balance in the observed covariates in the matched
sample, we compared the standardized mean differences
(SMD) of the covariates for the matched pairs using our
algorithm with SMDs for randomly matched pairs (Zhang
et al. 2019). We conducted 100 trials of the random match-
ing, computed the mean SMDs of the covariates across these
trails, and compared them with the SMDs for the pairs
matched by our algorithm. As Fig. 2 shows, all covariates
except the number of followers had much smaller differ-
ences when matching was performed using our algorithm
compared to random matching. We followed up this anal-
ysis with significance tests to examine whether differences
in means are negligible for the matched pairs (see Table 2).
The significant differences between covariates disappeared
after matching, indicating that the paired viral and non-viral
users had comparable follower networks and tweeting be-
haviors before viral events.

To assess the balance in the unobserved covariates, we
conducted sensitivity analysis for three outcomes: change
in followers after 10 weeks, change in followers at the
end of data collection period, and change in the proportion
of ‘scientist’ followers (see below for details on outcome
variables). Note that the remaining outcome variables (e.g.,
tweeting frequency) cannot be used for sensitivity analysis
since they were not compared between the viral and non-
viral group; rather, they were compared within the viral
group at two time points (i.e., before and after viral events).
Figure 3) shows the results from sensitivity analysis using
Rosenbaum bounds (Rosenbaum 2014), where the grey hor-

Algorithm 1: Method to find unique matched pairs.
Data: Set of ‘viral users’ and set of ‘non-viral users’
Result: Returns subset of users from ‘non-viral user’

group each of who was matched against one
of the users in ‘viral group’

N=10
foreach u1 ∈ ‘viral group’ do

find the set V of the closest N users of u1 from
‘non-viral users’ in terms of the co-variates
using nearest neighbor search;

Sort these N neighbors in V according to their
distance from u1 in the ascending order and
match u1 with its closest neighbor v;

set V = V − {v};
end
while not all users in ‘viral group’ have unique
match do

foreach u2 ∈ ‘non-viral group’ who were
matched with more than one users in the ‘viral
group’ do

let U is the set of users who were matched
with u2;

find the user u ∈ U who has the minimum
distance with u2;

foreach u1 ∈ U − {u} do
remove u2 from the neighbors of u1, (i.e.
set V = V − {u2})

if V is empty then
Error(‘Failed to find unique match for
all users in viral group’);

Exit();
end
else

match v ∈ V with u1 where v has the
minimum distance with u1;

end
end

end
end
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Figure 2: Standard mean differences of covariates for match-
ing randomly and using our algorithm.

Before matching After matching
Covariate t-stat. p t-stat. p
Average hashtags -1.1 0.27 0.41 0.68
Average URLs 3.1 0.002 -0.4 0.7
Number of tweets 2.5 0.01 1.2 0.23
Followers 2.8 0.006 0.83 0.41
Retweet per tweet 4.6 0.0001 1.44 0.15

Table 2: Results of significance tests to assess the differences
in means among covariates before and after matching.

izontal line indicates p = 0.05.
We hypothesized that viral events would positively im-

pact follower-change. Thus, for the two outcomes related
to follower-change, we plotted the upper bound of p-
values (Rosenbaum 2014). As the plot shows, virality af-
fects both outcomes in the expected direction, and the ef-
fects become insignificant (i.e., p >= 0.05) only after bias
due to unobserved confounders (i.e., γ) exceeds 4.5 and 3.5,
respectively. Thus, our findings are robust against strong
bias from unobserved confounders (Rosenbaum 2014). For
example, our analysis and conclusion regarding follower
change after 10 weeks are valid even if the odds of treat-
ment (i.e., experiencing virality) increase by 350% due to
confounding bias.

For the third outcome (i.e., change in the proportion of
‘scientist’ followers) we plotted the lower bound of p-values,
as we hypothesized that experiencing viral events would ex-
pand one’s reach outside of the scientist community, leaving
the proportion of ‘scientist’ followers lower than before. Ac-
cording to Fig. 3, the expected effect of virality on this out-
come only diminishes when γ reaches to around 1.7, indicat-
ing moderate sensitivity to unobserved confounders (Rosen-
baum 2014).

Pre-processing Tweets
Computations involving tweet content (e.g., sentiment) were
preceded by a pre-processing step using the TweetTokenize
library.2 This step removed white-spaces and punctuation,
and replaced usernames, URLs, phone numbers, and time
with USER, URL, PHONE, and TIME tokens, respectively.
Only English tweets were used for these analyses.

2https://github.com/jaredks/tweetokenize/
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Figure 3: Results from sensitivity analysis. The horizontal
axis shows odds of being treated (i.e., bias due to unob-
served variables) and the vertical axis shows the upper/lower
bounds of the probability of significant outcomes. The points
where the curves cross the horizontal line (representing p =
0.05) indicate when the outcome becomes non-significant
from significant (and vice versa). The large values of γ at
these points indicates that there has to be large amount of
bias for that switch to occur, demonstrating robustness of
our findings against unobserved confounders (Rosenbaum
2014).

Evaluating the Effects of Viral Events on Outcome
Variables
Below, we list the outcome variables (related to scholars’
behaviors and follower gains) we examined, detail the pro-
cedures for estimating them, and explain how the effects
of viral events on them were computed and compared. Al-
though we report findings involving all the users who had
(one or more) viral events, these computations were repeated
for users with only one viral event and yielded comparable
results.

Behavioral Changes
We studied virality’s impact(s) on behavioral changes. We
focused on behaviors related to building scholarly reputa-
tion as identified by prior research: tweeting frequency, sen-
timent, objectivity, and engaging professionally with other
scholars (i.e., posting tweets that are aligned with the posters
area of expertise) (Mueller and Stumme 2017; Schnitzler
et al. 2016). We also examined if viral users, after the first
virality, posted tweets that were more similar to the viral
tweet, presumably, as a way to re-create the cascading phe-
nomenon, and if they tweeted on more (or less) diverse top-
ics after the viral events, than before. Similar computations
were performed for the non-viral group. All computations
were performed on tweets posted in a 20-week time period
(within 10 weeks before or after the first viral event). Below,
we describe the behavioral measures we examined and how
they were computed using these tweets.

Change in tweeting frequency. The average number of
tweets per day for 10 weeks (≈ 75 days) before the first vi-
ral event was computed that indicates the baseline tweeting
frequency of each user. Then, the average number of tweets
per day within 7, 15, 30, 60, and 75 periods after the same
event was computed and compared to the baseline frequency

328



to detect any changes over time.

Change in tweet sentiment. The sentiment score of
a pre-processed tweet was estimated as follows. First,
the sentiment scores of individual English words in the
tweet were taken from the NRC Word-Emotion Asso-
ciation Lexicon (Mohammad and Turney 2010) dataset
and then summed. Next, the emoticon sentiment lexicon
dataset (Hogenboom et al. 2013) and the emoji lexicon
dataset (Kralj Novak et al. 2015) were used to obtain sen-
timent scores for emoticons and emojis, respectively. The fi-
nal sentiment score of a tweet is just the average of the previ-
ous three scores. The average sentiment scores of the tweets
that were posted within 75 days before viral events represent
the ‘baseline’ score. As before, the average sentiment scores
across the tweets posted within different time intervals after
viral events were computed and compared with the baseline
to detect changes in tweet sentiment.

Objectivity of tweets. Following the pre-processing step,
a tweet’s objectivity score was estimated using the Senti-
WordNet dataset (Baccianella, Esuli, and Sebastiani 2010).
Each lexicon in this dataset has both positive (P ) and neg-
ative (N ) subjectivity ratings. The objectivity of a lexicon
was calculated using the equation: objectivity = 1− (P +
N) (Baccianella, Esuli, and Sebastiani 2010). The average
objectivity score across all tokens in a tweet represents to
what extent the tweet was free from positive/negative sub-
jectivity of the author. Change in objectivity was compared
in a similar way as the sentiment estimates.

Similarity of tweets with users’ professional exper-
tise. We examined if post-virality tweets were more (or
less) related to their authors’ professional expertise com-
pared to pre-virality tweets. To do that, first, we estimated
users’ area(s) of professional expertise using list member-
ship (Ghosh et al. 2012). Using TF-IDF, the top five key-
words were identified from the titles and descriptions of all
lists that a user created or subscribed to. The keywords were
then embedded in a vector space using Gensim (Rehurek
and Sojka 2010) library and a FastText (Bojanowski et al.
2016) model for vector embedding that was trained with 400
million tweets (Godin 2019). Next, we computed the World
Mover’s Distance (WMD) (Kusner et al. 2015) between the
keywords and a tweet (after embedding it in the same vec-
tor space). WMD between two text sequences is the sum of
the distances from each word of one sequence to the near-
est word (in a vector space) of the other sequence. WMD
allows one to compute a ‘meaningful distance’ between two
text documents even when they share no common words and
has been shown to outperform other state-of-the-art meth-
ods (Kusner et al. 2015).We treat WMD as the similarity
measure of a tweet with the tweeter’s professional expertise
where smaller WMDs indicate more similarity.

Similarity of tweets with the viral tweet. We examined if
users, after experiencing the first viral event, posted tweets
that were more (or less) similar to the viral tweet than be-
fore. To do that, first, for each viral user, we computed aver-
age similarity of the first viral tweet with the tweets posted

within 75 days before that tweet. This score represents ‘base-
line’ similarity. Next, the average similarity of the viral tweet
with the tweets posted within different intervals (7, 15, 30,
60, and 75 days) after the viral event was computed and
compared to the baseline similarity. Similar computation
was repeated for tweets posted within those intervals before
the first viral event to verify whether any observed change
in similarity was due to the experienced virality or simply
a function of time (e.g., people may post similar tweets for
a specific amount of time regardless of the tweets’ popular-
ity). The similarity between two tweets was indicated by the
Word Movers’ Distance (WMD) between them after they
were embedded in a vector space; lower WMD indicates
higher similarity between two tweets.

Diversity in tweet topics. We examined if tweeters diver-
sify the tweet topics after experiencing virality compared to
the non-viral group. We trained an LDA (Latent Dirichlet
Allocation (LDA) (Blei, Ng, and Jordan 2003)) model us-
ing all tweets posted by users in both viral and non-viral
groups. To improve model accuracy, we identified and ex-
tracted unigrams, bi-grams, and tri-grams in tweets using
Gensim’s ‘Phraser’ module (Rehurek and Sojka 2010) and
used them to train several LDA models. The number of top-
ics was set as a hyper parameter, which varied from 50 to
500 with a step size of 50. The models were evaluated based
on the coherence score, which is a widely used metric to
evaluate topic models (Röder, Both, and Hinneburg 2015).
We picked the model with 100 topics as it had the highest
coherence value. Then, tweets posted within 75 days be-
fore the viral events were combined and the top five topics
(based on probability) were identified using the trained LDA
model. Next, for each topic, the top five words/phrases were
extracted from the model and pairwise similarities among
these 25 phrases were computed and summed that indicated
how similar the tweets’ topics were. The difference in sim-
ilarity score for tweets posted after viral events and tweets
posted before viral events was computed; a positive value
indicates less diversity in tweet topics after virality than be-
fore. Similar computations were done for non-viral users.
The differences in similarity scores were then compared to
assess whether viral events impacted the topic distributions
of tweets.

Changes in the Number and Composition of
Followers
Change in the number of followers. To measure viral
events’ influence in follower gain, the changes in followers
of viral and non-viral groups after 10 weeks of the respective
first viral events were compared. To assess the long-term im-
pact, the same comparison was made at the end of the data
collection period.

Change in the proportion of ‘scientist’ followers. For
both viral and non-viral groups, their followers who are also
scientists were identified using scientist titles compiled by
Ke, Ahn, and Sugimoto (2017): if at least one title was found
in the profile description of the followers, they were consid-
ered as scientists. The change in the proportions of scientist
followers between two time points—immediately before the
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first viral event and at the end of data collection period—
were compared for both viral and non-viral groups.

Findings
Descriptive Statistics
We identified 1,426 viral tweets posted by 670 users. Most
of these tweets received less than three hundred retweets:
mean = 515, sd = 2721, min = 50, Q1 = 72, Q2 = 113,
Q3 = 243, and max = 63695. There were 147 (10.3%)
non-English tweets from 69 users. The number of viral
events per user ranged from 1 to 18: a majority of the viral
users (54%, N = 366) had only one viral event, 132 (20%)
and 65 (9%) had two and three viral events, respectively,
and 63 (9.4%) had five or more viral events. During the 20-
week period covering the viral events (10 weeks before and
after the viral events), the viral users posted 239,459 novel
tweets (i.e., those with some original content, and not simply
retweets) where 214,330 (89.5%) of them were in English.
Within the same time period, non-viral users posted 150,796
novel tweets; 121,445 (80.5%) of them were in English.

Influence of Viral Events on Tweeting Behaviors
Tweet frequency. Fig. 4a shows the number of tweets
per day for different time intervals before and after vi-
ral events. Immediately after experiencing virality, users
increased tweeting activities, which then dropped off af-
ter some time. Viral users posted significantly more tweets
within 7, 15, and 30 days after the viral event com-
pared to their baseline frequency (t = 4, 2.92, 2.3, d =
0.17, 0.13, 0.10 and p < .001, p = .004, and p = .021).
Differences for more than the 30 day interval were not
significant. In contrast, non-viral users reduced tweeting
activities over time; they posted significantly lower num-
ber of tweets in all intervals compared to their baseline
frequency (t = −3.13,−2.57,−3.10,−3.06,−3.12, d =
0.10, 0.10, 0.10, 0.11, 0.11 and p = .002, .01, and .002).

Change in tweet-sentiment. Fig. 4b shows the changes
in the sentiment of tweets posted within different time in-
tervals after the first viral event compared to the mean sen-
timent scores of tweets posted within 75 days before that
event. Tweets posted by viral users within 7 and 15 days
of experiencing viral events had a higher (positive) senti-
ment (t = 2.66, 2.87, d = 0.15, 0.14, and p = .012, .007)
than their baseline; but after this interval sentiment scores
reverted to the baseline levels. No significant difference in
tweet sentiment was found for the non-viral group.

Change in objectivity. Viral users posted tweets that were
more factual and contained less subjective opinions com-
pared to the non-viral users (Fig. 4c). The objectivity scores
of their tweets went even higher after the viral events: for all
intervals, the tweets had higher objectivity scores compared
to the tweets they posted over 75 days before the viral events
(t = 2, 2.51, 3.42, 3.91, 4.28, d = 0.9, 0.9, 0.10, 0.11, 0.12
and p = .042, .016, .001 for 7, 15, and 30 days and p < .001
for 60, and 75 days intervals, respectively). No difference in
the objectivity score was found for the non-viral group.
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Figure 4: Tweeting frequency, sentiment and objectivity of
the tweets, and similarity of tweets with the viral tweet; they
were measured using tweets posted within 7, 15, 30, 60, and
75 days intervals before and after the viral events. The sim-
ilarity of tweets with the viral tweet was measured only for
viral users, as shown in Fig. 4d where the dotted line rep-
resents the ‘baseline similarity’ score. Note that, in Fig. 4b
and 4c, measurements (sentiment and objectivity) before
the viral event (the ‘baseline’ measurements) are not paral-
lel to the x-axis. This is because the comparisons were pair-
wise, i.e., measurements for a specific time interval after vi-
ral events for each user were compared to the baseline mea-
surements of the same user. But not all users tweeted within
a given interval (e.g., seven days) after the viral event, and
they were not considered when the means of sentiment and
objectivity were computed. Thus, these baseline measure-
ments varied across the time intervals.

Similarity of tweets with users’ professional expertise.
The mean World Mover’s Distance (WMD) between pro-
fessional expertise and tweets posted within 75 days before
viral events was 7.65 and 7.68 for the viral and non-viral
groups, respectively. Thus, both groups behaved similarly
in posting tweets aligned with their professional expertise.
This behavior remained unchanged after viral events (mean
WMD 7.68 and 7.67 for viral and non-viral groups, respec-
tively).

Similarity of tweets with viral tweet. Tweets that were
posted during the surrounding days of viral events were
more similar to the viral tweets (i.e., lower WMD) where
the most similar tweets were posted immediately following
the viral events (Fig. 4d). The tweets posted within 7, 15,
30, 60, and 75 days after the viral event were more sim-
ilar to the viral tweet compared to the baseline similarity
(i.e., average similarity of tweets posted within 75 days be-
fore viral event with the viral tweet, indicated by the dotted
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line in the plot) (t = −3.33,−4.17,−3.89,−3.56,−3.18,
d = 0.22, 0.26, 0.23, 0.21, 0.19, and p < .001 in all cases).
The similarity between tweets posted within the same inter-
vals before the viral tweet did not differ from the baseline
similarity (p = .58, .71, .66, .96, .98). These results suggest
that the similarity among tweets posted by the same user
may not vary as a function of time; instead, the users may
have deliberately posted tweets that were more similar to
the tweet that went viral.

Diversity in tweet topics. For viral users, the tweets
posted before the viral events had an average similarity score
(as measured from similarities between pairs of keywords)
of 144.37 (SD= 27.30), while the score for the tweets posted
after the viral events was 140.53 (SD=36.04). For non-viral
users, the average similarity scores in tweet topics before
and after the analogous time points were 137.41 (SD=38.38)
and 117.90 (SD=59.19), respectively. Thus, both groups had
diversified tweets over time, although non-viral users did
so at a significantly larger scale (t = 6.1, d = 0.32, and
p < .001). In other words, experiencing virality resulted in
more focused tweeting in terms of topic distribution.

Impact of Viral Events on Gaining Followers
Gaining followers. Ten weeks after the first viral event,
the viral group gained followers: mean = 322.9, SD = 1196,
median = 133. The matched non-viral group also gained fol-
lowers within this time period: mean = 66.8, SD = 162.5,
median = 34. The changes in followers had log-normal dis-
tributions, as verified by conducting Kolmogorov-Smirnov
tests of goodness of fit (ks = .041, .046 for viral and non-
viral groups, respectively, p > .2 in both cases). The differ-
ence between the two groups were compared using a Mann-
Whitney U test: u = 70339.0, p < 0.001, with a ‘large’
effect-size (r=0.62) (Cohen 1988), indicating that virality in-
deed resulted in large gains in followers.

At the end of our data collection period, the average fol-
lower gain was 2,793.7 (SD = 9356.4, median = 998) for the
viral group and 652.14 (SD = 2515.9, median = 283) for the
non-viral group. By comparing the log-normal distributions
of follower gains (ks = .036 and .035, p > .4 in both cases),
we detected a ‘medium’ to ‘large’ effect (r=0.49) of virality
in increasing followers (u = 113686, p < 0.0001) in the
long-term.

Change in the proportion of ‘scientist’ followers. Be-
fore the first viral event, on average, 11.2% followers of the
viral users were scientists, and at the end of the data col-
lection period, this proportion became 10.9%. The differ-
ence between these proportions was negative and significant
(t = −2.84, d = 0.04, p < 0.001). For non-viral users,
the proportions were 9.2% and 9.3% during the same time
points, but the difference was not significant (p > 0.05).
Thus, virality facilitates a slightly greater reach to the gen-
eral public.

Robustness of the Findings
To demonstrate that our findings represent true differences
between the viral and non-viral groups, we conducted

random-split analyses. Specifically, we randomly assigned
treatment and control conditions to users and again com-
pared the three outcomes (change in followers after 10
weeks, change in followers at the end of data collection pe-
riod, and change in the proportion of scientist followers) be-
tween these two groups using the Mann-Whitney U test. In
all cases, the effect size was negligible (0.00008, 0.01, and
0.03), and not significant (all p > 0.1). These results further
corroborate our findings.

Discussion
Developing an online-presence is becoming increasingly im-
portant for scientists and researchers. Atlhough many stud-
ies have documented why and how celebrities use social
media and behave online, scientists’ goals for using these
platforms differ than those populations. Celebrities engage
with social media to seek publicity for their already famous
public personae, and, thus, their actions are oriented toward
projecting an intimate and relatable image while maintain-
ing fans’ expectations (Marwick and boyd 2011). The goal
of scholars are probably closer to micro-celebrities. The
term micro-celebrity was coined by Senft (2008) to refer to
people that aim to develop a following by leveraging dig-
ital media technologies. They use social media to develop
a self-brand, and they personally engage with their follow-
ers (Abidin 2018; Senft 2008). However, big differences ex-
ist in the goals of micro-celebrities and scholars, e.g., scien-
tists serve multiple audiences, and their professional success
is tied to scientific contributions and recognition within the
community (Kozinets 2017). Thus, it is important to docu-
ment scientists’ behaviors on social platforms and how they
change behaviors after receiving attention from their peers.

In this paper, we examined how scientists adjust their
Twitter behavior after their first surges in visibility, which
we called micro-viral events. We employed a longitudinal
dataset of scientists on Twitter that captured both tweeting
activities and their follower network structure over a span
of two years and eight months. Different from prior stud-
ies, our definition of virality included both absolute and rel-
ative measures, as we seek to identify the impact of events
that are ‘exceptional’ relative to the users’ usual experiences
on Twitter, and investigated how such events influenced the
users’ subsequent engagement with and their popularity on
the platform.

Our results suggest that scientists modify their behaviors
after experiencing micro-virality. We observed increased en-
gagement with the platform: both tweeting and re-tweeting
frequency surged immediately after viral events. For a short
period after the viral event, we also observed that tweets ex-
pressed more positive sentiments but reverted to normal after
a few weeks.

Our results also suggest that viral users consistently
posted tweets with more objective content compared to the
non-viral group, which was further enhanced after experi-
encing a viral event. Moreover, following the event, users
posted tweets that were more similar to viral tweets and fo-
cused on fewer topics. None of these behavioral changes
were observed for the non-viral users who had similar pro-
files and tweeting patterns as the viral users until the later
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group experienced viral events. Since we analyzed our data
using a matching-based causal inference framework, these
group differences may be attributable to the viral events.

These behavioral changes agree with the previously iden-
tified behaviors that are beneficial for building online repu-
tation (Suh et al. 2010; Schnitzler et al. 2016). However, our
data did not allow us to examine whether the users strategi-
cally changed their behaviors to get additional viral events
and/or followers, which is an interesting direction for future
research.

Finally, our analysis shows that scholars on Twitter ac-
crued significantly more followers in the long term after
experiencing micro-viral events relative to comparable non-
viral scholars. While prior work has established correlations
between large-scale viral events and follower-gain (Myers
and Leskovec 2014), we define virality relative to the users’
past experiences, and we established causal relationships be-
tween micro-virality and the observed outcomes.

Limitations
Although we collect a novel longitudinal dataset that allows
us to study the evolution of users’ followers and tweeting
behaviors, our data is limited to a small subset of Twitter
users (scientists). Personal reputation and broad impact of
one’s work is particularly important for career outcomes in
the academia. Thus, it might have been easier to observe be-
haviors related to advancing one’s reputation, visibility, and
diffusion of work in this group of users. People in other pro-
fessions, however, may behave differently, and our results
may be less relevant to other populations.

One of our key motivations for engaging in this research
was to understand how Twitter users may leverage the plat-
form to enhance their professional reputation. In practice,
we analyzed the impact of viral events on follower gain and
users’ tweeting behaviors. Although the number of follow-
ers indicates ‘popularity’ on Twitter, and being followed and
discussed by fellow scholars may result in increased schol-
arly reputation, more research with other metrics and prox-
ies is needed to further triangulate the effects of virality on
professional reputation.

We approximated virality as random exogenous events;
but they could be the result of a deliberate strategy to in-
crease visibility on the platform or confounded by unob-
served characteristics of the users that may lead to large
follower accumulations. Although we attempted to reduce
confounding bias through matching and demonstrated the
robustness of our findings against unobserved confounders
through sensitivity analyses, causal effect can rarely be es-
tablished with certainty from observational data.

Finally, our analysis was limited to Twitter. Other exter-
nal, unobserved factors might have influenced virality and
changes in behaviors and followers (e.g., popularity on other
platforms or research findings being discussed in the news).

Conclusions
When people’s posts on social media go viral, it can have a
major impact on their lives, both positive and negative. Such
viral events can also cause significant changes in people’s

posting behaviors, particularly if virality is experienced for
the first time.

We monitored a population of scientists (N=17,157), who
are known to leverage Twitter to increase professional rep-
utation, for nearly three years. We identified 670 scien-
tists who experienced ‘micro-viral’ events—viral events that
may be insignificant for popular users but an ‘extraordi-
nary’ experience for a large fraction of Twitter users—for
the first time in their profile’s lifespan. We then examined
how micro-viral events influenced the subsequent behaviors
of viral users on Twitter, and the long-term effect on the total
number of their followers as well as the composition of the
followers.

We found that after experiencing virality, users increased
tweeting and retweeting frequency, posted tweets that were
more objective and similar to their viral tweets, expressed
a higher positive sentiment, and focused on fewer topics.
Additionally, viral users gained and retained followers at a
higher rate than non-viral users, and virality helped scien-
tists to reach Twitter users outside of the scientific commu-
nity. Although our strategy is not without limitations, these
findings may advance our understanding of how ‘everyday’
Twitter users react to ‘unusual’ visibility at a scale they
had never experienced before. Additionally, our methodol-
ogy may be leveraged by platform developers to detect viral
events and increase the associated users’ engagement with
the platform and motivate them to improve the quality of
user-generated content.
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2015. Sentiment of emojis. PLoS ONE, 10(12): e0144296.
Kusner, M.; Sun, Y.; Kolkin, N.; and Weinberger, K. 2015.
From word embeddings to document distances. In Interna-
tional conference on machine learning, 957–966.
Lemon, N.; McPherson, M.; and Budge, K. 2015. Aca-
demics Doing it Differently: Wooing, Hooking up and Spin-
ning Stories. Journal of Perspectives in Applied Academic
Practice, 3(2).
Li, J.; and Greenhow, C. 2015. Scholars and social me-
dia: tweeting in the conference backchannel for professional
learning. Educational Media International, 52(1): 1–14.
Marwick, A.; and boyd, d. 2011. To see and be seen:
Celebrity practice on Twitter. Convergence, 17(2): 139–158.
Meishar-Tal, H.; and Pieterse, E. 2017. Why Do Aca-
demics Use Academic Social Networking Sites? The Inter-
national Review of Research in Open and Distributed Learn-
ing, 18(1).
Mohammad, S. M.; and Turney, P. D. 2010. Emotions
Evoked by Common Words and Phrases: Using Mechanical
Turk to Create an Emotion Lexicon. In Proceedings of the
NAACL HLT 2010 Workshop on Computational Approaches
to Analysis and Generation of Emotion in Text, CAAGET
’10, 26–34. Stroudsburg, PA, USA: Association for Compu-
tational Linguistics.
Mohammadi, E.; Thelwall, M.; Kwasny, M.; and Holmes,
K. L. 2018. Academic information on Twitter: A user sur-
vey. PLOS ONE, 13(5): 1–18.
Mueller, J.; and Stumme, G. 2017. Predicting rising follower
counts on Twitter using profile information. In Proceedings
of the 2017 ACM on Web Science Conference, 121–130.

333



Myers, S. A.; and Leskovec, J. 2014. The Bursty Dynamics
of the Twitter Information Network. In Proceedings of the
23rd International Conference on World Wide Web, WWW
’14, 913–924. New York, NY, USA: Association for Com-
puting Machinery. ISBN 9781450327442.
Radford, M. L.; Kitzie, V.; Mikitish, S.; Floegel, D.; Rad-
ford, G. P.; and Silipigni Connaway, L. 2020. “People Are
Reading Your Work,”: Scholarly Identity and Social Net-
working Sites. Journal of Documentation.
Rehurek, R.; and Sojka, P. 2010. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, 45–50. Valletta, Malta: ELRA.
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