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Abstract

Advances in Artificial Intelligence (AI) have made it possible
to automate human-level visual search and perception tasks
on the massive sets of image data shared on social media on
a daily basis. However, AI-based automated filters are highly
susceptible to deliberate image attacks that can lead to con-
tent misclassification of cyberbulling, child sexual abuse ma-
terial (CSAM), adult content, and deepfakes. One of the most
effective methods to defend against such disturbances is ad-
versarial training, but this comes at the cost of generalization
for unseen attacks and transferability across models. In this
article, we propose a robust defense against adversarial im-
age attacks, which is model agnostic and generalizable to un-
seen adversaries. We begin with a baseline model, extracting
the latent representations for each class and adaptively clus-
tering the latent representations that share a semantic similar-
ity. Next, we obtain the distributions for these clustered latent
representations along with their originating images. We then
learn semantic reconstruction dictionaries (SRD). We adver-
sarially train a new model constraining the latent space rep-
resentation to minimize the distance between the adversarial
latent representation and the true cluster distribution. To pu-
rify the image, we decompose the input into low and high-
frequency components. The high-frequency component is re-
constructed based on the best SRD from the clean dataset. In
order to evaluate the best SRD, we rely on the distance be-
tween the robust latent representations and semantic cluster
distributions. The output is a purified image with no pertur-
bations. Evaluations using comprehensive datasets including
image benchmarks and social media images demonstrate that
our proposed purification approach guards and enhances the
accuracy of AI-based image filters for unlawful and harmful
perturbed images considerably.

Introduction
The age of the internet brought rapid advances in the way we
share and consume information. Today’s connected world
enables real-time high-definition communication with peo-
ple across the globe, and social media is a huge catalyst of
this digital revolution. However, the rise of fake news, and
the wide adoption of easy services such as Fake TV News
Maker, Fake Newspaper Maker, Journalist CreativeBot, etc.
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has reduced trust in social media. Further, with the intro-
duction of deepfakes, the synthesis of convincing, highly
detailed, and novel human faces is easier to access, pro-
voking psychological dilemmas in discriminating the truth
(Pantserev 2020). Numerous research has shown the im-
portance of the impact of content and layout of social me-
dia posts for user engagement (Shahbaznezhad, Dolan, and
Rashidirad 2021). The actual content in the form of audio,
video, or text, is moderated by automated content filtering
algorithms, mostly driven by either rule-based or deep learn-
ing (DL) algorithms. As a rapidly developing area of re-
search, deep learning (DL) represents a change in the way
we interpret and make decisions from data (LeCun, Bengio,
and Hinton 2015).

Despite the use of content filtering algorithms, social me-
dia is plagued with fake audio-visual or text content, cyber-
bullying (Vishwamitra et al. 2021), as well as pornographic
adult content due to the inability to screen content across so-
cial media platforms. For example, the spread of fake images
generated for misinformation campaigns that were recently
found in Brazil and India used messaging platforms such as
Whatsapp (Reis et al. 2020) which are difficult to regulate.
Visual analytic systems for investigating misinformation are
driven by multimodal decision-making AI algorithms which
scrub the internet for textual and image-based data (Kar-
duni et al. 2018), which work well for platforms in which
they can be deployed. Similarly, child sexual abuse mate-
rial (CSAM) and online circulation of pornographic content
is accelerated by the borderless nature of internet and the
wide adoption of social media and messaging services (Lee
et al. 2020). However, child sexual abuse (CSA) detection
algorithms using deep learning methods utilize multimodal
image or video descriptors which can tag and classify porno-
graphic content with ease. Current deep learning algorithms
are shown to outperform other machine learning based clas-
sifiers, image hash databases, filename or metadata related
methods, image descriptors, or skin detectors for unknown
CSAM detection.

These classifiers are known to perform well in an inde-
pendent and identically distributed (i.i.d.) setting, when test-
ing and training data are sampled from the same distribu-
tion (Schneider et al. 2020). However, in many such appli-
cations involving large-scale web datasets, the i.i.d. assump-
tion does not hold (Chacon, Silva, and Rad 2019). Further-
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more, the shift in distribution can be artificially introduced
by adversarial attacks. Initially discovered by (Szegedy et al.
2014), adversarial attacks are small additive perturbations
that, when combined with the input data, cause models to
generate wrong predictions with high confidence. The ef-
fects of these perturbations in DL models can generate catas-
trophic consequences in safety critical applications. Addi-
tionally, adversarial attacks are mostly imperceptible to the
human eye, can be easily transferable across models, and
depend on relatively little information on the target model,
as seen in (Chen, Jordan, and Wainwright 2020; Ru et al.
2020). Hardly distinguishable from clean images, adversar-
ial examples largely lie in the tail of the dataset distribution
used in training (Song et al. 2018). As a consequence, there
is a possibility that adversaries will attack CSAM or cyber-
bully images such that the classifiers fail to filter CSAM or
cyberbully content (Vitorino et al. 2018; Castrillón-Santana
et al. 2018). In this paper, we study the impact of adversarial
attacks on social media content filtering algorithms and pro-
pose a countermeasure purification methodology for robust
semantic representations of adversarially attacked images on
social networks.

The methods and effects of adversarial attacks are thor-
oughly detailed in literature (Silva and Najafirad 2020). Sim-
ilarly, techniques to enhance robustness, either through ad-
versarial training (AT) or input transformation (IT), have re-
cently received considerable attention (Madry et al. 2018;
Wong, Rice, and Kolter 2019; Guo et al. 2018). The emer-
gence of almost imperceptible perturbations capable of
changing the model’s output, as well as the constant emer-
gence of new attack methods indicates that current super-
vised methods lack model features that determine a causal
relation between input and labels without failure. One of
these critical features is generalizability to unseen attacks,
that is, the model’s ability to memorize the attack pattern
and choose representations that are robust against small per-
turbations. To develop this feature, we go beyond standard
AT and combine it with IT to learn semantic representations
that demonstrate robustness against small input variations,
capture the semantic correlations of the clean dataset, and
purify adversarial images by removing perturbations. We ad-
dress these tasks in a three-stage algorithm that achieves per-
formance on par with state-of-the-art (SOTA) AT methods,
generalizes for unseen attacks, and is task and model agnos-
tic.

In our algorithm, we initially train a baseline model with
clean images. The baseline model is used to extract the la-
tent representations for all images in the training dataset.
Even within the corresponding classes, the latent represen-
tations present high variability that influence the model to
learn complex and susceptible to manipulation representa-
tions. We adaptively cluster the latent representations to cre-
ate clusters of semantically similar representations. More-
over, we extract the distribution of the latent representations,
and from the originating images, we learn semantic recon-
struction dictionaries. On the second stage, we train a se-
mantic robust model by modifying the standard adversar-
ial training. We constrain the latent representations to min-
imize the distance between adversarial representations and

the distribution of the clean cluster to which that sample
should belong. By constraining the latent representations,
we enable the model to extract similar features for clean
and adversarial samples. Finally, in the third stage, we purify
the adversarial images by reconstructing the high-frequency
components of this image using the reconstruction dictionar-
ies obtained from the clean samples in stage one. Once the
robust semantic feature purification method is trained, we
adversarially attack the Not-Safe-for-Work (NSFW) (Ala-
giri 2021) image classification dataset of adult content and
study the performance loss due to adversarial attacks and the
performance improvements due to image purification using
our proposed algorithm which is trained on ImageNet. More
specifically, this paper contributes the following:

• We propose a new adversarial training schema, minimiz-
ing the distance between the distribution of features ex-
tracted from the clean dataset and features from adversar-
ial inputs, thereby improving generalization for multiple
unseen attacks.

• We propose an Adaptive Clustering algorithm for robust
Semantic Representation (ACSR) of image latent space
in order to generate multiple reconstruction dictionaries
within a class of images based on their similar semantic
features to achieve adversarial image purification.

• We evaluate the efficacy of ACSR using quantitative and
qualitative methods on comprehensive datasets such as
CIFAR-10, ImageNet-10, NSFW dataset, and social net-
work images. We also show that ACSR significantly out-
performs other input transformation defenses and can re-
turn the classification accuracy of AI-based content fil-
ters against adversarially attacked images to roughly the
same level of accuracy as a clean image.

Related Work
Adversarial Data Attacks: Since the introduction of adver-
sarial attacks in (Szegedy et al. 2014; Biggio et al. 2013),
the field has been improved with a vast series of important
contributions (Goswami et al. 2018; Jia et al. 2019; Cao et al.
2019; Xiao et al. 2018). Adversarial attacks are small, norm-
constrained perturbations injected in the test data at infer-
ence time, capable of fooling a target model. These pertur-
bations can be generated in a white box setting (Papernot
et al. 2016; Morgulis et al. 2019), a black box setting (Chen,
Jordan, and Wainwright 2020) or a gray-box setting(Silva
and Najafirad 2020). We classify our image purification ex-
perimental setting as gray box. We assume the attacker has
full knowledge of the target model, but cannot extract gradi-
ent information from our transformation due to the nature of
the Convolutional Basis Pursuit Denoising (CBPDN) algo-
rithm. Our Robust Semantic Training is trained and tested in
a white box setting. More specifically, we evaluate our de-
fense capabilities against FGSM (Goodfellow, Shlens, and
Szegedy 2015), BIM, DeepFool (Moosavi-Dezfooli, Fawzi,
and Frossard 2016), and CW (Carlini and Wagner 2017) at-
tacks. Our robust model is trained with a projected gradient
descent (PGD) attack (Madry et al. 2018).

Social Media Classifiers: The openness, ease of access,
and ease of sharing content in social media platforms have
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Figure 1: Our purification method combines adversarial training with input transformation. We initially train fbsl in the clean
dataset. Based on fbsl, we extract clean reference distributions to train our robust model frob. We cluster the clean input images
based on their latent representations, and train semantic reconstruction dictionaries based on these clusters. We purify the
adversarial inputs with the dictionary from a cluster that minimizes the distance from extracted latent representation and cluster
distributions.

enabled adversaries to share content which are not suitable
for a general audience. This problem has disrupted the cy-
ber security and emotional integrity of individuals, leading
to the rise in the focus of sensitive media analysis. Several
deep learning and non-deep learning based content classi-
fiers were proposed to screen content flowing to social me-
dia. Some of the most prominent and highly researched ar-
eas are in CSAM, NSFW, FakeNews, and DeepFake con-
tent. In (Pantserev 2020), authors laid out the importance
of preventing content such as DeepFakes which includes
face swapping. This task often interests the entertainment
and pornography industries, but it also has business use
cases. In (Vitorino et al. 2018), authors introduced an adult
content detector which can not only screen sexual content,
but also screens suggestive materials and images of child
pornography. In (Moreira et al. 2016), authors introduced a
non-deep learning based, temporally robust feature extrac-
tor and a bag of visual words method to classify porno-
graphic videos with considerable accuracy. Content modi-
fied images, which skew perceptions of viewers (Reis et al.
2020), and unfair classifiers, which are biased to different
target populations (Kyriakou et al. 2019) are also topics con-
cerning social media image analytics.

Adversarially Robust Classifier: Adversarial training
techniques modify the optimization objective of the objec-
tive model by incorporating an empirical maximum loss
term in the objective, turning the training process into a min-
max optimization. Several researchers have contributed em-
pirical methods to calculate this loss (Goodfellow, Shlens,
and Szegedy 2015; Madry et al. 2018; Kannan, Kurakin, and

Goodfellow 2018). Moreover, Song proposed variations in
the feature mapping to improve the accuracy of (re)trained
models (Song et al. 2019). A tighter upper bound for the
max in the loss was proposed by (Zhang et al. 2019). Al-
though shown to improve robustness even for large mod-
els (ImageNet (Xie et al. 2019)), these models come with
a drawback: when instantiated in practice with the approxi-
mation heuristics, these models are unable to provide robust-
ness guarantees, certifications, or even generalize to unseen
attacks. This class of defenses, even though very practical to
implement, are model and attack dependent.

Input Transformation Defenses: Input transformation
methods propose composing a set of transformations to ad-
versarial images, such that the output has minimum influ-
ence of the adversarial perturbation. (Das et al. 2018) used
JPEG compression as a countermeasure to the pixel dis-
placement generated by the adversarial attacks. (Guo et al.
2018) proposed a combination of total variation minimiza-
tion and image quilting to defend against adversarial attacks.
Even though these transformations are nonlinear, a neural
network was used to approximate the transformations, mak-
ing them differentiable and consequently easier to obtain
the gradient. (Raff et al. 2019) proposed an ensemble of
weak transformation defenses to improve the robustness of
the models. Among the transformations in the defense are
color precision reduction, JPEG noise, Swirl, Noise Injec-
tion, FFT perturbation, Zoom Group, Color Space Group,
Contrast Group, Grey Scale Group, and Denoising Group.
Input transformation methods are, by nature, model indepen-
dent, which improves transferability but limits efficiency;
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the general model is unaware of the important input features
that need restoration to improve the target model’s accuracy.

Methodology
Method Overview
Our method uses a model class F and a dataset D =
{xi, yi}ni=1 of feature vectors xi ∈ X ⊆ Rm, whereX is the
feature space, and labels yi from some label set Y , assuming
up to c possible values to yi, corresponding to the class set
C. This dataset is typically assumed to be sampled i.i.d from
the distributionP , which is unknown. A classification model
is a probability estimator, which maximizes the true class
probability p(yi|xi). On the contrary, an adversarial pertur-
bation is an additive noise δ, which maximizes another class
probability such that the model’s decision changes:

d(xi, xi + δ) ≤ ϵ, and f(x) ̸= f(x′)

in which ϵ is the maximum allowed perturbation, and d(., .)
is some specified distance. Our proposed method purifies
adversarial inputs x′i = xi + δ, such that f(T (x + δ)) =
f(T (x)) = f(x). Our method is a composition of adversar-
ial training and input transformation, and is divided in three
stages: i) Baseline Training; ii) Robust Semantic Training;
and iii) Robust Semantic Feature Purification. Algorithm 1
describes our approach. All details and notations are pre-
sented in the following sections of this section. Figure 1 rep-
resents all stages of our algorithm in detail. In a social media
context, we then evaluate the performance of our general-
ized purification DL model on a not-safe-for-work (NSFW)
classifier for adversarially attacked inputs. The manuscript
does not include any illustrations from the NSFW dataset or
any unlawful or harmful social media images due to ethical
concerns.

In i) Baseline Training, we train a Wide-Resnet model
(Zagoruyko and Komodakis 2016) that achieves high clas-
sification accuracy on the ImageNet dataset. We use this
model to extract all the latent representations R(x) ∈
Rk. For each class, we adaptively cluster all R(x) that
share semantic similarities, generating a cluster set Ψc =
{Ψc1,Ψc2, ...}, with an optimal number of clusters for class c.
Based on the cluster of R(x) we cluster the originating in-
puts x keeping track of images and clusters associations. For
each Ψci , we calculate the parameters defining their distribu-
tion (µci , σ

c
i ). In addition, for each cluster, based on the orig-

inating images x, we generate a sparse code reconstruction
dictionary, using Convolutional Dictionary Learning (CDL).
The details on the adaptive clustering, distribution calcula-
tion, and dictionary learning are discussed in the following
sub-sections.

In ii) Robust Semantic Training, we train a robust model
frob, which extracts robust latent representations that lie on
the same distribution, independent of whether xi is an adver-
sarial input or a clean input. We group samples which share
semantic similarity. To achieve this similarity, we constrain
the latent representation to minimize the distance between
adversarial latent representation and clean sample cluster
distribution. The robust model can classify the input, and
more importantly, generate a latent representation close to
that which would be generated by a clean sample.

Algorithm 1: Adaptive Clustering of Robust Semantic Rep-
resentations (ACSR) Image Purification Algorithm

Input: Dtr
Stage i - Baseline Training
fbsl ← standard-training(Dtr)
R ← extract-latent-representation(fbsl, Dtr)
for c ∈ C = {C1, C2, ...} do
ψc = elbow(R(xi)), ∀xi ∈ c
Ψc = k-means(R(xi), ψc), ∀xi ∈ c
for j ≤ ψc do
µjc =

1

size(Ψj
c)

∑
xi, ∀xi ∈ Ψjc

σjc = E[(Ψjc − E[Ψjc])(Ψjc − E[Ψjc])T ], ∀xi ∈ Ψjc
Φjc =concat(CDL(xi), (xi), (µjc, σ

j
c )), ∀xi ∈ Ψjc

end for
end for
Stage ii - Robust Semantic Training
for (x, y) ∈ Φ do
x′ = adversarial(x)
ŷ, R(x′)← frob(x

′)
l = loss(ŷ, y) + λ ∗ dist(R(x′), (µ, σ))
frob ← update(frob, l)

end for
Stage iii - Robust Semantic Feature Purification
xlow, xhigh = tikhonov(xi)
R(xi) = frob(xi)
Φrec = argminΦ dist(Φ, R(xi))
xrechigh = CBPDN(xhigh, Φrec)
xpur = xrechigh + xlow

In iii) Robust Semantic Feature Purification, we purify
xi by reconstructing the high frequency components of xi
with its semantic reconstruction dictionary learned in (i).
We use frob to extract robust latent representations from
xi, and match them with the semantic reconstruction dic-
tionary that minimizes the distance between R(xi) and Ci
obtained in (i). Following the semantic dictionary matching,
we decompose xi into its low and high-frequency compo-
nents. We use convolutional sparse coding to reconstruct the
high-frequency components of xi and combine with the low-
frequency to generate the purified and transformed version
of xi, T (xi).

Problem Definition
The objective of supervised methods is to find a model f ∈
F , such that:

E(x,y)∼P [l(f(x), y)] ≤ E(x,y)∼P [l(f
′(x), y)] ∀ f ′ ∈ F ,

where the loss function, l(f(x), y), measures the error that
f(x) makes in predicting the true label y. In practice, P is
unknown, and in replacement we use a training data Dtr in
order to find a candidate f that is a good approximation of
the labels actually observed in this data. This raises the prob-
lem known as empirical risk minimization (ERM):

|s|θ
∑
i∈Dtr

l(f(xi; θ), yi) + λρ(θ), (1)
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in which θ are the model parameters and ρ(θ) is a regulariza-
tion function to constrain the changes of the model parame-
ters at each learning step. We refer to Equation 1 as the base-
line model training. The standard premise in DL is to find the
optimum parameters in Equation 1 in order to deliver high
performance on unseen data draw from the same distribu-
tion. On the contrary, the baseline objective from (Equation
1) is highly vulnerable to small perturbations, crafted by ad-
versarial algorithms. In a general formulation, these pertur-
bations are generated such that:

max
∥δ∥2 ≤ ϵ

l(f(xi + δ; θ), yi). (2)

By introducing the perturbation δ in the test data Dte, the
actual test distribution is shifted to the tail of the training
distribution, effecting the performance of f(x) when eval-
uated in Dte. A natural approach to mitigate the effects of
these manipulations is to introduce adversarial examples in
Equation 1, known as the robust optimization framework:

min
θ

E(x,y)∼D max
δ∈∆

l(f(x+ δ), y) + λρ(θ), (3)

Equation 3 is the standard adversarial training. The stan-
dard adversarial training addresses the immediate issue of
samples generated by the technique used to empirically ap-
proximate Equation 2 for model f(.). It has been shown by
many publications that this formulation does not generalize
to unseen attacks (Silva and Najafirad 2020). Moreover, the
need to retrain every model can make this formulation very
expensive.

In the baseline model (Equation 1), and adversarial model
(Equation 3), the convolutional layers learn to extract latent
representations R(x) ∈ Rk, which are meaningful to the
Fully Connected layers of the model. R(x) is the output of
the last layer before the fully connected layers of the model.
As shown in (Engstrom et al. 2019), considerably different
inputs can generate fairly similar latent representations. This
evidence shows that even though latent representations are
relevant condensed features for the model’s Fully Connected
layers, the similarity between latent representations of dif-
ferent classes is the source of the model’s susceptibility to
adversarial attacks.

Baseline Training
In the baseline training, we construct all the references for
robust model training and image purification. As mentioned
in the method overview, we train a Wide Residual Network
(WRN) for a classification task. The WRN model has been
used in several publications as a benchmark for adversarial
training in classification models and for its feature extrac-
tion capability. We refer to the baseline model fbsl, a model
trained without any adversarial training or robustness tech-
nique (except standard techniques), such as: Batch Normal-
ization, Dropout, and Parameter Regularization.

The baseline model fbsl is trained on Dtr. It is required
that fbsl accurately models the distribution of Dtr, and con-
sequently achieves evaluation accuracy onDte. This premise
allows us to assume a good class separation in the feature
space, and as a consequence, a well-defined set of class

distributions, which will be used for constructing the ref-
erences for stages (ii) and (iii). We initially construct a set
R = {R(xi), xi, yi} of the latent representations extracted
from dataset Dtr by model fbsl, and its originating images-
labels pair. The latent representations R(xi) correspond to
the set of features the model originally distilled from the in-
put, allowing the FC layers to generate the class probabili-
ties. We use such information as reference.

The set R contains the latent representations for all sam-
ples of all classes in Dtr. We divide R in C sub-sets, one
for each class, and we refer to each sub-set as Rc. The high
variability within each class image generates high variability
within Rc. Fitting such high-dimensional data, with high-
variability to a distribution, would generate meaningless pa-
rameters. We address the variability by adaptively cluster-
ing semantically similar latent representations within each
Rc. We are searching for features that gravitate around a
mean value and tolerate certain dispersion around this cen-
ter. Given the nature of the data, we are not fixing the number
of centers in the data, nor the radius of dispersion. Instead,
we semantically cluster our data based on the representa-
tions.

Using K-means clustering (Arthur and Vassilvitskii
2007), we cluster the data from eachRc. We chose to cluster
within each class to guarantee separation between classes.
Given the set Rc, composed of all xi ∈ Rc, we want to
minimize the within cluster variance:

arg min
Ψ

ψ∑
i=1

∑
R(x)∈Ψi

∥R(x)− µi∥2 (4)

where Ψ ⊂ Rc, and ψ is the number of cluster centers. We
iteratively search for the best value for ψ, taking into consid-
eration that a higher value would reduce variability within
clusters, but would also reduce the distance between clus-
ter centers. The objective is to find a number of clusters that
balances these two factors, such that the distance between
samples within the same cluster is minimized and the dis-
tance between clusters is maximized.

In Equation 4, the objective is to reduce the Within Clus-
ter Sum of Squares (WCSS). We employ the elbow method
to balance the cost of increasing ψ with respect to the vari-
ance reduction. The WCSS is used as a performance indi-
cator. We iterate over the value of ψ, smaller values on the
WCSS indicate greater homogeneity within clusters, yet in-
definitely increasing ψ will eventually reduce the separation
of the clusters. When the the value of ψ is closer to the opti-
mal number of clusters, the WCSS curve shows a rapid de-
cline, which reduces significantly as ψ increases. It is impor-
tant to highlight that this process is calculated independently
for eachRc. Datasets composed of multiple classes, as seen
in real applications, would not affect the performance of this
algorithm.

For each cluster Ψj , we obtain the mean µΨj ∈ Rk as the
average of each individual component of each R(x) ∈ Ψj ,
and the covariance:

σΨj
= E[(Ψj − E[Ψj ])(Ψj − E[Ψj ])T ]

where T is the transpose operator.
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Figure 2: The reconstruction output of ACSR on ImageNet-
10 images. From left to right: the first column shows the
original clean image; the third, fourth and fifth columns
show the output of FGSM (l2 ≤ 0.08), BIM and CW
(l2 ≤ 0.04). The last three columns show the reconstruc-
tion output of the respective attacks. The images are bet-
ter viewed in color and zoomed in to visualize better, with
FGSM attacks the most noticeable for the human eyes.

Each cluster represents a set of semantic features within
each of the classes. These semantic features are translated
from the originating images xi. In stage iii, we propose
reconstructing the images with dictionaries based on these
clean images. We generate reconstruction dictionaries based
on the known problem Convolutional Dictionary Learning
(CDL). Specifically, given a set of images xi ∈ Ψj com-
posed of S training images {xt}Ss=1, CDL is implemented
through minimizing:

min
{dm}, {rs,m}

1

2

S∑
1

∥∥∥∥∥
M∑
1

dm ∗ rs,m − xs

∥∥∥∥∥
2

2

+ λ
S∑
1

M∑
1

∥rs,m∥1

s.t. ∥dm∥2 ≤ 1, ∀m ∈ 1, ...,M

(5)

where dm are the M atoms that comprise the dictionary Ω,
and rs,m are a set of coefficient maps, defined as:

min
{rm}

1

2

∥∥∥∥∥
M∑
1

dm ∗ rm − x

∥∥∥∥∥
2

2

+ λ
M∑
1

∥rm∥1 (6)

We observe that CDL is a computationally expensive algo-
rithm that does not scale well to larger images and datasets.
To overcome scalability issues in our method, we implement
the optimizations proposed by (Liu et al. 2018) in an algo-
rithmic level. Currently, we use ADMM (Boyd, Parikh, and
Chu 2011) to solve the minimization problem. The clusters,
cluster distributions, and cluster reconstruction dictionaries
generated for all classes are utilized for the semantic recon-
struction dictionary, Φ = {D,Ψ, (µΨ, σΨ)}.

Robust Semantic Training
While the adversarial attack strategy of a min-max optimiza-
tion shown in Equation 3 has shown very successful results,
it fails in generalizing the method to unseen attacks. This is-
sue results from the empirical solution provided to the maxi-
mization term. Since no closed form solution can be derived
for such complex functions, it is often approximated by the
chosen adversarial attack algorithm. While it is very effec-
tive in adding resistance to this specific algorithm, it often
fails to generalize to other attacks. We argue that the net-
work does not learn to extract robust latent representations,
but rather learns to change the FC layers to classify latent
representations extracted from adversarial and clean samples
in the same class.

In our proposed solution, we address this issue by intro-
ducing a constraint in the representation space. Our objec-
tive is not to change the boundaries of the decision on the FC
layer, but rather extract robust semantic representations from
the adversarial and clean samples that lie on the same distri-
bution. We modify the standard adversarial training equa-
tion, adding an extra constraint in the objective function:

min
θ

E(x,y)∼D max
δ≤ϵ

l(f(x′), y) + λ ∥θ)∥22 +

α(R(x′)− µ)σ−1(R(x′)− µ)) 1
2

(7)

where the last term, the Mahalanobis Distance (MD), min-
imizes the distance between the extracted adversarial latent
representations R(x′) and the cluster distribution, following
the association in Φ. By minimizing the distance between
the clean distribution clusters and the adversarial latent rep-
resentations, the model, instead of learning the adversarial
attack pattern, learns to extract meaningful representations,
ignoring the added noise in the input. We refer to the robust
semantic model as frob, and latent representations extracted
from input, xi, with frob as Rrob(x).

Along with our empirical evaluation, we noticed a data-
dependent constraint to our MD formulation: some clusters
present covariance matrices that are not full rank. This con-
straint indicates near perfect correlation among some fea-
tures in the latent representation. In this case, finding the
exact inverse of the covariance matrix is not possible. For
those specific cases, we applied the Moore-Penrose pseudo-
inverse (Barata and Hussein 2012).
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Defense No-attack PGD CW BIM TPGD

No Defense 86.36 27.68 9.91 42.50 30.37

PGDAT+RST
(PGDAT)

79.79 67.43 50.74 62.59 75.25

PGDAT (PGDAT) 79.06 66.74 50.46 61.25 74.69

PGDAT+RST
(Random)

77.36 66.99 39.66 60.52 73.92

PGDAT (Random) 75.63 65.55 52.26 57.86 73.57

PGDAT+RST
(Trades)

87.56 73.60 56.30 75.27 78.18

Table 1: CIFAR-10 Classification accuracy (in %) using
WRN32-10 trained with PGDAT + RST.

Robust Semantic Feature Purification
The input purification occurs only at inference time. For
each input x′i, we extract Rrob(x′i). At inference time, no
label with respect to class or cluster is available. Moreover,
since the input can be adversarially manipulated, it is highly
important that frob extracts latent representations which lie
on the same distribution for both clean and adversarial im-
ages. Recognizing clean and adversarial inputs is beyond the
scope of this work. For the purposes of this study, we purify
all inputs.

Based on Rrob(x′i), we select the semantic reconstruction
dictionary which best reconstructs the high-frequency com-
ponents of x′i. We compute the MD between Rrob(x′i) and
all clusters in Φ. The cluster with minimum distance is se-
lected as the reconstruction dictionary. In parallel, we de-
compose x′i into a high-frequency component, x′high, and a
low frequency component, x′low, using the Tikhonov filter
(Garcia-Cardona and Wohlberg 2018):

arg min
xlow

1

2
∥xlow − x∥22 +

λ

2

∑
j

∥Gjxlow∥22

where Gj is an operator that computes the discrete gradient
along image axis j. Therefore, x′high = x′ − x′low.

The reconstruction of x′high follows the standard sparse
coding representation:

xrechigh ≈ Dr = d1r1 + · · ·+ dMrM ,

in which D is the dictionary learned only from patches of
clean images. Under such circumstances, we have a high fre-
quency component formed by patches of clean images, and
are therefore free from adversarial manipulation. The full
image purification follows from adding the low and high-
frequency components:

xpur = xlow + xrechigh (8)

Experiments
Experimental Settings
We evaluate our proposed model on two main datasets,
CIFAR-10 (Krizhevsky, Hinton et al. 2009), and ImageNet
(Russakovsky et al. 2015), from which we extract 10 classes

Model No
attack

FGSM
0.08

FGSM
0.04 BIM DF CW

AlexNet 91.07 73.07 76.78 83.92 82.69 86.53
VGG-16 94.23 78.57 75.00 76.78 83.92 87.05
ResNet50 95.19 76.78 86.53 84.61 90.38 90.78
GoogleNet 90.38 79.80 83.65 87.5 88.5 85.57

Table 2: CIFAR-10 classification accuracy (in %) against ad-
versarial attacks across different models when the input is
purified with ACSR. DF denotes DeepFool algorithm.

Defense Clean FGSM
0.08

FGSM
0.04 BIM DF CW

No Defense 94.23 58.16 65.23 18.03 17.60 9.36
MagNet 90.35 61.45 65.21 43.12 65.35 48.45
PixelDefend 85.26 68.10 73.29 77.29 74.14 75.79
STL 83.60 71.03 75.47 75.31 79.59 79.06
ACSR 94.23 78.57 75.00 76.78 83.92 87.50

Table 3: CIFAR-10 classification accuracy (in %) using
VGG-16 on images reconstructed with ACSR. ‘No Defense’
indicates no image reconstruction was applied. DF denotes
DeepFool algorithm.

Resolution 64x64

Defense Clean FGSM
0.08

FGSM
0.04 BIM DF CW

No Defense 86.65 28.16 30.8 18.83 8.11 7.51
TVM 75.55 59.97 69.3 71.56 72.1 71.87
Quilting 77.41 73.04 74.18 76.42 76.46 76.62
Crop-Ens 75.08 69.68 72.21 73.69 74.01 73.04
PD-Ens 82.5 66.34 76.07 79.03 79.55 78.13
STL 84.21 75.14 80.38 81.03 82.21 81.22
ACSR 87.50 84.37 78.12 87.50 84.37 81.25

Resolution 128x128

Defense Clean FGSM
0.08

FGSM
0.04 BIM DF CW

No Defense 89.91 21.23 24.09 17.90 5.84 5.04
TVM 85.91 25.68 43.86 65.86 63.60 61.29
Quilting 81.49 39.03 58.89 64.34 62.42 59.22
Crop-Ens 77.30 46.22 64.47 68.76 70.60 68.88
PD-Ens 87.89 23.33 42.86 72.21 73.59 72.72
STL 86.54 47.33 66.06 73.23 73.01 74.32
ACSR 87.50 87.25 89.28 87.5 90.62 88.25

Table 4: ImageNet-10 classification accuracy (in %) using
VGG-16. In images with resolution 64x64 and resolution
128x128. DF denotes DeepFool algorithm.

to compose ImageNet-10. CIFAR-10 is composed of 60000
images (50000 for training and 10000 for testing), uniformly
distributed among 10 classes. ImageNet is composed of
1000 classes with roughly 1300 images per class for training
and 50 samples for testing per class.

To evaluate the efficiency of our model, we use
VGG16 (Simonyan and Zisserman 2014) and ResNet-50
(He et al. 2016) as classification models for comparison
with other defense methods. We attack our model with
FGSM(Goodfellow, Shlens, and Szegedy 2015), BIM (Ku-
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rakin, Goodfellow, and Bengio 2017), DeepFool (Moosavi-
Dezfooli, Fawzi, and Frossard 2016), and CW (Carlini and
Wagner 2017). For FGSM, we evaluate under the l2norm <
0.04 and l2norm < 0.08, and for BIM, DeepFool, and CW,
we restrict to l2norm < 0.04 and 100 iteration steps. The
images in the dataset are normalized in the range between 0
and 1. For all experiments, a single model is robustly trained
to extract robust features for each dataset evaluated.

We provide a qualitative evaluation of the effects of dic-
tionary selection based on the semantic cluster. Even though
PSNR can measure the signal to noise ratio, we have ob-
served that this is not a good metric for adversarial compar-
ison, since attacks like CW and DeepFool are effective in
adding perturbations without changing PSNR significantly.
In all tables, we refer to our image purification algorithm as
(ACSR), and the Robust Semantic Training as RST.

To study the impact of our proposed ACSR purification
algorithm on social media content moderation neural net-
works, we adversarially perturb the NSFW dataset (Alagiri
2021) to fool classifiers. Adversarial attacks on the social
media data could spoof and bypass the content moderation
classifiers. The NSFW dataset consists of 334327 images
in total from five classes including neutral, drawing, hentai,
porn, and sexy. A classification model based on ResNet-50
model was trained on a 14:3:3 split for training, validation,
and testing data. All further evaluations were carried out on
the test set.

Robust Semantic Training

In evaluating the effectiveness of our adversarial training, we
first use the adaptive semantic clusters as a reference for the
cluster approximation and the generalization capabilities of
our method. To achieve this, we use CIFAR-10 dataset, and a
WideResNet32-10 (WRN32-10), as proposed in (Song et al.
2019). Moreover, we adversarially train WRN32-10 using
the standard adversarial training method approximating the
maximization with Projected Gradient Descent (PGD) at-
tack (Madry et al. 2018), in which 10 steps are used, with
l2 norm perturbation limit of δ = 0.3.

Table 1 shows the accuracy of our model minimizing the
distance between the distribution of reference clusters and
the model’s extracted latent representation. We used PGD
Adversarial Training (PGDAT) in composition with Robust
Semantic Training (RST). In parenthesis, we indicated if
we used any pre-trained weights set as initialization for our
model parameters, (Random) indicates no pre-training.

As seen in Table 1, we have evaluated our model under
several conditions, including transfer learning from other
techniques (we restricted our study to only using other tech-
niques as weight initialization, no modifications to Equa-
tion 7 was used). We observed that when combined with
transfer learning from other techniques such as TRADES
(Zhang et al. 2018), we achieve high performance; however,
we achieve relatively low performance when training from
random initial weights. It is important to highlight that this
mechanism is meant to extract robust latent representations,
it is not meant to be a standalone defense.

Robust Semantic Feature Purification Evaluation
Our defense method is advantageous in its transferability
among multiple attacks and across multiple models. Fig-
ure 2 shows the reconstruction capabilities of our model
under different attacks for samples in ImageNet-10. Table
2 shows a quantitative evaluation of our model to defend
AlexNet, VGG16, GoogleNet, and ResNet-50 attacked by
FGSM, BIM, DeepFool, and CW. We train a single model
frob to extract the robust latent representations and defend
any of the models in Table 2.

We compare our model to other robust defenses that in-
volve input transformation. In Table 3, we use a pre-trained
VGG-16, adjusting the parameters and output layer for
CIFAR-10, and obtain the accuracy against the mentioned
attacks and compare against defenses such as MagNet(Meng
and Chen 2017), PixelDefend (Song et al. 2018), and STL
(Sun et al. 2019), following the experimental setting of (Sun
et al. 2019). Table 4 summarizes our results against the de-
fenses proposed in (Guo et al. 2018) (TVM, Quilting, Crop-
Ens), (Prakash et al. 2018) (PD-Ens) and (Sun et al. 2019)
(STL), in ImageNet-10 for image resolutions of 64x64 and
128x128.

Table 5 summarizes the improvement in accuracy of the
NSFW classifiers on the attacks explored in Table 4. Here,
we reuse our pretrained robust cluster embeddings to purify
novel images from social media. Hence, the NSFW classifier
does not need any retraining to purify novel images from
the web. This significantly improves the wider use of our
proposed algorithm for social media images in the wild.

For CW and DF attacks which considerably reduced the
accuracy of the adult content classifier, our ACSR purifica-
tion algorithm provided a 14.75% and 28.75% increase in
accuracy respectively. Additionally, we see a marginal im-
provement of performance for FGSM (with epsilon of 0.08)
and BIM methods with 1.94% and 5.84% accuracy.

Ablation Studies: We’ve evaluated the efficacy of our
model with and without the influence of transfer learning.
As seen on Table 1, our adversarial model achieves better
results when trained with already saturated models, provid-
ing an improvement in accuracy. Consequently, we improve
the clean data accuracy which is lost on standard adversarial

C1 C8 C9

C2Perturbed Image (CW)

Figure 3: Qualitative analysis of the reconstruction based on
the cluster selection. Top images are attacked and best recon-
struction. C1, C8, and C9 are reconstructions from manually
selected clusters.
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AI-based
Content Filters

Image
Purification

Method

Image w/o
Perturbations CW BIM DF

Robust Classifier
(NSFW-ResNet-50)

w/o ACSR 86.87 61.82 69.23 53.84
w/ ACSR 83.89 76.34 75.07 82.69

Classifer
(NSFW-AlexNet)

w/o ACSR 94.23 69.23 71.15 5.76
w/ ACSR 94.21 82.75 82.69 80.76

Table 5: Performance statistics (classification accuracy in %) of our proposed algorithm in purifying social media content
classifiers. Our purification algorithm significantly increases the classification accuracy of different NSFW classifiers for strong
attacks like DeepFool. The NSFW-AlexNet classifier that is not robustly trained sees a performance drop of nearly 88% when
evaluated against DeepFool perturbations. With the use of ACSR image purification we are able to recover 75% of the accuracy
that was lost due to perturbations.

training.
Moreover, we evaluated the effects of using our cur-

rent setting, pre-trained (ImageNet) classification models,
against the models trained from scratch. For CIFAR-10,
clean images attacked with CW, classified with vanilla
VGG-16, and trained from scratch, these models achieve
an accuracy of 61.53%, in contrast to our reported 87.5%.
This shows that transfer learning also contributes to our de-
fense. Without our defense, in both cases, the models per-
formed poorly, achieving only 9.36% accuracy for the trans-
fer learning model. Qualitative evaluation reveals that the
reconstruction quality is dependent on the cluster selection,
as illustrated in Figure 3.

Discussion
ACSR Purification Algorithm
Comparison results show that our method outperforms cur-
rent state-of-the-art input transformation methods based on
image transformation and on sparse code image reconstruc-
tion at defending models against gray box attacks. We as-
sume the attacker has full knowledge of the model, but no
awareness of the transformation itself.

We have shown that our defense is model agnostic and
is able to maintain accuracy across different models, unseen
attacks, and on different applications. We credit this to two
features of our design: our model’s ability to approximate
the robust latent representations to the clean distribution; and
our sparse dictionaries made from clean images and used for
reconstructions, allowing our model to be minimally depen-
dent on the attack’s empirical approximation of equation 3.

The assumption of the class separation based on the ac-
curacy has proven reasonable within the set of experiments
proposed in this manuscript. With the increase in the num-
ber of classes, it would be expected that a reduction in
the distance between the distributions would occur, lead-
ing to a reduction of the accuracy of the algorithm. But
in a high-dimensional setting, common in the SOTA mod-
els used for this vision task, R(x) ∈ Rd generally has a
high-dimensional feature space (d ≥ 2048). With this high-
dimensional feature space, we can enforce the class separa-
tion through the training loss, hence the effect of increasing
the number of classes is almost indifferent for the overall ac-
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Figure 4: Accuracy evaluation on CIFAR-10 (yellow miters)
of ResNet-50 and VGG-16 on ImageNet-10 FGSM under
l∞ norm.

curacy. Moreover, the increase in resolution of the images,
as discussed in Table 4, could lead Equation 6 to be un-
solvable due to the exponential computational cost. But our
implementation of the CBPDN problem, based on the opti-
mizations proposed in (Liu et al. 2018), allowed a scalable
solution to this problem.

All the experiments we have presented demonstrate the
effectiveness of our method to attacks in which the space
norm is defined by l2 norm. We have observed that l2
bounded attacks generate less visible corruption on the in-
put. We have also evaluated our model under l∞ norm
bounded FGSM. In Figure 4, we show the efficacy of our
defense method under different levels of l∞ attack. We ob-
served that as the perturbation level increases, it affects the
low-frequency components of the image, and our method
cannot purify these images. Therefore, it would be necessary
to supplement our method with those involving GANs and
Autoencoders in order to complete the full reconstruction.

Social Media Image Purification for Perturbed
Images
Social media cyber-security is prone to adversarial attacks
and deepfakes (Lago et al. 2021; Korshunov and Marcel
2018; Neekhara et al. 2021) while being an avid source of
pornographic content (Lee et al. 2020) and cyber-bullying
(Vishwamitra et al. 2021). We saw from Table 5 that adver-
sarially attacking images uploaded to social media, for ex-
ample, can fool and bypass social media content regulation
deep learning algorithms. As a response, we used our pro-
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posed ACSR purification algorithm as a counter measure to
clean adversarially attacked pornographic images such that
the classifier’s accuracy improves considerably.

We tested the accuracy of this task on two models. The
first model was an adversarially robust (Madry et al. 2017)
ResNet-50 classifier that was trained from ImageNet-50
weights and fine-tuned to NSFW classification, which we
name NSFW-ResNet-50. The second model we tested was
an AlexNet classifier that was trained from scratch on the
NSFW dataset, which we name NSFW-AlexNet. Table 5
shows that the NSFW-ResNet-50 classifier’s accuracy suf-
fers when adversarially attacked. When this model takes in
particularly effective image attacks, such as the DeepFool
attack, we find that our image purification method improved
classification accuracy by more than 28%, compared to the
adversarially attacked baseline. The NSFW-AlexNet classi-
fier benefited even more from the use of ACSR image purifi-
cation. The NSFW-AlexNet classifier showed an accuracy
greater than 94% with an AUC of 0.89 and F1-score of 0.88
when tested against images without pertubations. However,
when the NSFW-AlexNet model was tested against images
perturbed by the DeepFool algorithm, the classification ac-
curacy drops to less than 6% with an AUC of 0.1. A user
of an AI image classifier for social media content could be
misled to believe that they have a highly accurate classifier
due to the 94% accuracy they found in testing, however,
the danger of image perturbation attacks shows that these
classifiers will not be as effective in practice as they may
seem. On the other hand, when these perturbed images are
processed by our ACSR image purifier, and then passed to
NSFW-AlexNet model, we are able to recover 75% of the
classification accuracy, resulting in an accuracy of 80.76%
with an AUC of 0.85 and F1-score of 0.80.

The difference between the gains in accuracy between
the robust NSFW-ResNet-50 model and the NSFW-AlexNet
model shows us in what circumstances our ACSR image
purifier provides the most value. Large organizations with
the resources to train a robust classifier may see less benefit
to using image purification methods. On the other hand, as
the NSFW-AlexNet model demonstrates, non-robust models
can retain most of their accuracy even when facing perturbed
images after these images are processed by our ACSR image
purifier.

We reuse the robust semantic reconstruction dictionary
initially trained for CIFAR-10 dataset for NSFW purifica-
tion. We find that the semantic dictionaries are generalized
and hence, we do not have to retrain any part of the algo-
rithm or neural network parameters for social media image
purification. Thus, our proposed ACSR works as a general-
ized method to purify social media content, even though the
input images were out of distribution.

Conclusion
In this paper, we have presented Adaptive Clustering of Ro-
bust Semantic Representations Algorithm, our novel method
of image purification that shows state-of-the-art results
against l2 bounded adversarial attacks, unseen at training
time. We designed a new methodology for input transfor-
mation which creates semantic reconstruction dictionaries

for high-frequency components of each cluster of latent
representations of the images in our dataset. We evaluate
our proposed methodology on CIFAR-10, ImageNet, NSFW
dataset, and social media images. We have also proven that
our defense data purification method achieves robustness
against several unseen attacks and different target mod-
els such as AlexNet, VGG-16, GoogleNet, and ResNet-50
trained on disturbing social media images. We have also
evaluated our model against l∞ bounded perturbations and
have observed a less effective transformation. Our qualita-
tive and quantitative data on l∞ perturbations indicate that
when the corruption achieves lower frequency portions of
the image, the image needs to be regenerated rather than pu-
rified, suggesting a need for generative approaches.
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