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Abstract

Information on social media spreads through an underlying
diffusion network that connects people of common interests
and opinions. This diffusion network often comprises multi-
ple layers, each capturing the spreading dynamics of a cer-
tain type of information characterized by, for example, topic,
language, or attitude. Researchers have previously proposed
methods to infer these underlying multilayer diffusion net-
works from observed spreading patterns, but little is known
about how well these methods perform across the range of
realistic spreading data. In this paper, we conduct an exten-
sive series of synthetic data experiments to systematically an-
alyze the performance of the multilayer diffusion network in-
ference framework, under varied network structure (e.g. den-
sity, number of layers) and information diffusion settings (e.g.
cascade size, layer mixing) that are designed to mimic real-
world spreading on social media. Our results show extreme
performance variation of the inference framework: notably, it
achieves much higher accuracy when inferring a denser dif-
fusion network, while it fails to decompose the diffusion net-
work correctly when most cascades in the data reach a limited
audience. In demonstrating the conditions under which the
inference accuracy is extremely low, our paper highlights the
need to carefully evaluate the applicability of the inference
before running it on real data. Practically, our results serve as
a reference for this evaluation, and our publicly available im-
plementation, which outperforms previous implementations
in accuracy, supports further testing under personalized set-
tings.

Introduction
Social media is a major channel of information diffusion
(Guille et al. 2013), and thus provides rich data for un-
derstanding the crowd. On item-sharing-based platforms
such as Twitter, item spreading patterns can reveal nuanced
dynamics of both human-human interaction (Starbird and
Palen 2012) and human-information interaction (Friggeri
et al. 2014; Vosoughi, Roy, and Aral 2018). While the who-
to-whom spreading traces of items are usually not directly
observable, researchers have proposed methods for inferring
the underlying diffusion network among users from item
spreading logs (Gomez-Rodriguez, Leskovec, and Krause
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2012; Myers and Leskovec 2010; Gomez Rodriguez, Bal-
duzzi, and Schölkopf 2011; Gomez Rodriguez, Leskovec,
and Schölkopf 2013; Du et al. 2012; Rong, Zhu, and Cheng
2016).

Earlier studies share the assumption of a single layer dif-
fusion network. However, item spreading dynamics among
the same set of actors can vary significantly depending on
the topic, language, attitude, or other features of the item.
This heterogeneity can be best represented with a multi-
layer network (Kivelä et al. 2014) where node existence,
edge connectivity, and edge weights can differ across layers.
A multilayer diffusion network inferred from social media
spreading data can potentially reveal exceptionally interest-
ing dynamics, especially when it groups together cascades
that spread similarly (i.e., on the same layer) and share more
nuanced characteristics than topic or language.

While researchers have developed methods for inferring
multilayer diffusion networks from spreading data (Wang
et al. 2014; Yang, Chou, and Chen 2014; He et al. 2015;
Liao, Chou, and Chen 2016; He and Liu 2017; Suny et al.
2018), these methods have only been tested under limited
synthetic settings that likely differ from real-world situa-
tions. It is therefore near impossible to conduct empirical
analyses using these methods, given the difficulty of assess-
ing the accuracy of their results when applied to real data
with unknown ground truth.

In this study, we bridge this gap by systematically testing
how well the multilayer diffusion network inference frame-
work performs under varied network and diffusion settings
designed to cover a wide range of realistic social media
spreading conditions. For each controlled feature, including
network size, network density, number of layers, layer over-
lap, cascade size, and layer mixing, we report the extent to
which the framework’s performance varies. Our results show
that the accuracy of the multilayer decomposition is heavily
dependent on multiple factors, including the density of the
diffusion network and the size distribution of cascades in the
spreading data. Notably, the inference framework fails to in-
fer an accurate multilayer diffusion network when the un-
derlying diffusion network is sparse or when most cascades
in the data do not reach a large audience.

Our work delineates the limits of the multilayer diffusion
network inference framework in potential social media ap-
plications. It highlights the need for researchers to evaluate
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the feasibility of the inference framework before applying it
to real data, to avoid interpreting incorrect results and reach-
ing invalid conclusions. The results of our experiments serve
as a reference for this applicability evaluation by providing
an estimate of the inference accuracy given the properties
of the dataset. Although our results cannot cover all possi-
ble network structure and information diffusion settings, our
open-source implementation1, which achieves higher infer-
ence accuracy than previous implementations in comparable
runtime, can be easily adapted for further testing under per-
sonalized setups.

Related Work
In the area of diffusion network inference, earlier studies
mainly focus on the task of inferring a single layer net-
work of information diffusion when the activation times of
individuals are available but the spreading traces are not.
Among them, NETINF (Gomez-Rodriguez, Leskovec, and
Krause 2012) is one of the pioneering frameworks. In this
study, the authors formulate the problem of estimating the
diffusion network that maximizes the cascade likelihood un-
der the Independent Cascade Model (Kempe, Kleinberg, and
Tardos 2003) of cascade transmission, and offer an approxi-
mated solution based on submodular optimization. CONNIE
(Myers and Leskovec 2010) deals with a similar inference
problem but assumes a different prior for the edge transmis-
sion probability of each edge, and uses convex programming
to optimize the objective, with an explicit l1-penalty term
that induces sparsity. NETRATE (Gomez Rodriguez, Bal-
duzzi, and Schölkopf 2011) further assumes a different edge
transmission rate for each edge under a continuous trans-
mission time model, and defines a convex objective func-
tion with an inherent l1-penalty so that no manual hyperpa-
rameter tuning is needed to select the appropriate level of
penalty. Other works further extend the NETRATE frame-
work, including INFOPATH (Gomez Rodriguez, Leskovec,
and Schölkopf 2013) that infers a dynamic diffusion net-
work which changes over time, and KERNELCASCADE (Du
et al. 2012) that uses kernel methods to support heteroge-
neous transmission time distributions beyond the assumed
exponential, power law, or Rayleigh form in NETRATE. Dif-
ferent from all approaches above, Rong, Zhu, and Cheng
(2016) proposed a completely model-free method that infers
a diffusion network by clustering the cumulative distribution
functions of transmission time intervals.

On top of the single layer inference methods, researchers
have developed methods for inferring multilayer diffusion
networks. Du et al. (2013) proposed TOPICCASCADE that
infers diffusion networks with topic-dependent transmission
rates, but their model infers a cascade’s topic distribution
from its content. Wang et al. (2014, MMRATE) and Yang,
Chou, and Chen (2014, MIXCASCADES) were among the
first to build a general framework that infers multilayer dif-
fusion networks solely from spreading data. Later, Liao,
Chou, and Chen (2016) proposed FASTEN that improves
the inference accuracy by incorporating a decay param-

1We have published our code at https://github.com/ecanet-
research/multic.

eter in the diffusion model. Another relevant line of re-
search uses the Marked Multivariate Hawkes Process (Lin-
iger 2009) to infer multilayer diffusion networks. This in-
cludes HAWKESTOPIC (He et al. 2015), MULTICASCADES
(He and Liu 2017), and MDM (Suny et al. 2018).

These studies on multilayer diffusion network inference
mostly demonstrate the accuracy of the methods with syn-
thetic data experiments. However, the range of synthetic test
settings, as reported in the papers, is often limited. For ex-
ample, the tests are usually performed on synthetic networks
with a fixed number of nodes, edges, and layers (Wang et al.
2014; Yang, Chou, and Chen 2014; Liao, Chou, and Chen
2016). These settings also likely differ from real-world situ-
ations in, for example, having independently generated net-
work layers and the assumption that any item spreads on ei-
ther one layer or another. Since these network and diffusion
settings can significantly affect the inference accuracy, the
applicability of the inference framework is largely unknown
under different, more realistic circumstances. We contribute
to this knowledge in our work through a systematic testing
of the framework.

Testing Setup
To systematically assess the limits of the multilayer dif-
fusion network inference framework, we tested its perfor-
mance under varied network and diffusion settings using a
series of synthetic data experiments. In each experiment,
we varied a single parameter of the synthetic data gener-
ation process and observed how the accuracy of the infer-
ence framework on synthetic data changes with the value
of the parameter. To cover a relatively wide range of realis-
tic spreading conditions, we varied cascade size distribution,
cascade filtering, network density, network size, number of
layers, layer overlap, and mixed spreading. In this section,
we outline our testing setup.

Inference Framework
We start by building an effective and efficient implemen-
tation of the inference framework to be tested. To the best
of our knowledge, MMRATE (Wang et al. 2014) is the most
recognized framework designed for multilayer diffusion net-
work inference from spreading data. Therefore, we use for
our testing an inference framework that has a similar prob-
lem formulation and inference method as in MMRATE, but
apply a more effective optimization method in our imple-
mentation. We will demonstrate in Validation Test the per-
formance of our implementation over other public imple-
mentations of multilayer diffusion network inference, in-
cluding MMRATE, MIXCASCADES (Yang, Chou, and Chen
2014) and FASTEN2 (Liao, Chou, and Chen 2016).

Problem Formulation We formulate the problem of mul-
tilayer diffusion network inference as follows. Suppose there
exists among a set of N nodes (i.e., users) an underlying
directed multilayer diffusion network of K layers, G =
{(V k, Ek)|k = 1 . . .K}, where V k is the set of nodes on

2All these implementations are provided at https://github.com/
plliao/FASTEN.
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layer k, and Ek is the set of edges on layer k. We define
αk
ij ∈ [0, 1] as the edge weight (or edge transmission rate)

from node i to node j on layer k. Here, we assume αk
ij is

defined for all i, j, and k, but a directed edge (i, j) exists in
Ek if and only if αk

ij ̸= 0, and a node i exists in V k if and
only if i is not an isolated node on layer k. Note here that
α stores complete information on edge connectivity, node
existence, and the exact edge weights, so the inference of α
implicitly includes the inference of G.

We then define a cascade c as an item (e.g., tweet, post,
hashtag, news article) that spreads on this network. We de-
note πc

k ∈ [0, 1] as the probability that cascade c spreads on
layer k (later referred to as the “layer membership param-
eter”), with

∑K
1 πc

k = 1 for all c. In real-world spreading
data, we can neither directly observe the edge transmission
rates α nor the cascade layers π. Instead, we observe for
each cascade c a set of user activation logs {tc1, . . . , tcN}:
here we let tcn be the time node (i.e., user) n gets activated
on cascade c (e.g., the time n retweets the tweet) if they are
activated, or the ending time T if they are not activated be-
fore T . The task is to infer α and π from the user activation
logs we observe.

Inference Method We conduct the inference by assuming
a generative diffusion model parameterized by α and π, and
finding the values of α and π that maximize the likelihood
of the observed spreading data under the assumed diffusion
model. More specifically, we adopt a continuous transmis-
sion time diffusion model and a survival analysis framework
for computing the likelihood of data, as first proposed in
NETRATE (Gomez-Rodriguez, Leskovec, and Krause 2012)
and generalized in MMRATE.

Formally, let ∆tcij = tcj − tci denote the transmission time
of cascade c from node i to node j, namely the difference be-
tween the activation times of i and j on c. We assume ∆tcij
follows the exponential distribution3 parameterized by λc

ij ,
where λc

ij =
∑K

k=1 π
c
kα

k
ij is the sum of edge transmission

rates across all layers, weighted by the layer membership
parameters πc

k of cascade c. In other words, we assume the
probability of cascade c successfully spreading from node i
to node j with time interval ∆tcij to be f(∆tcij ;λ

c
ij), where

f(·) is the probability density function (PDF) of the ex-
ponential distribution parameterized by λc

ij . Intuitively, the
probability of observing a shorter transmission time ∆tcij in-
creases with λc

ij .
We then define the failure probability of transmissions us-

ing the survival function of the transmission time distribu-
tion, S(t;λ) =

∫∞
t

f(x;λ)dx. Given a node i that is acti-
vated on cascade c at time tci , and a cascade-specific edge
transmission rate λc

ij from node i to node j, we assume the
probability that j is not activated on c until time T to be
S(T − tci ;λ

c
ij). Intuitively, this is the probability that j sur-

vives the activation from i on c until time T .
From this, we get the likelihood of observing the cascade

spreading logs under this generative model. Specifically, the

3The framework potentially generalizes to other distributions,
yet for simplicity we will assume exponential form throughout this
work.

likelihood of observing node j activated on cascade c by a
previous node i will be

Γ+
ij(c) = f(∆tcij ;λ

c
ij)

∏
u:u̸=i,tcu<tcj

S(∆tcuj ;λ
c
uj) ,

which is the probability that node j is activated by exactly
node i and survives activations from all other nodes that are
activated earlier than node j. Then, the likelihood of observ-
ing node j activated on cascade c by any previous node is
the sum of the above likelihood over all possible i’s:

Γ+
j (c) =

∑
i:tci<tcj

Γ+
ij(c) .

On the other hand, the likelihood of a node n not being acti-
vated on cascade c by the ending time T is

Γ−
n (c) =

∏
m:tcm<T

S(T − tcm;λc
mn) ,

which is the probability that it survives all possible activa-
tions. The likelihood of observing the entire activation se-
quence of c, is then the joint likelihood of observing all the
successful activations and all the failed activations4:
L(c) =

∏
j:tcj<T

Γ+
j (c)×

∏
n:tcn>T

Γ−
n (c)

=
∏

j:tcj<T

 ∏
u:tcu<tcj

S(∆tcuj ;λ
c
uj)×

∑
i:tci<tcj

H(∆tcij ;λ
c
ij)

×
∏

n:tcn>T

S(T − tcj ;λ
c
jn)

 ,

where H(t;λ) = f(t;λ)/S(t;λ) is the hazard function of
the transmission time distribution.

The total likelihood of all cascades is then
∏

c L(c). When
f(·) is the PDF of the exponential distribution, we can write
the negative log likelihood of all cascades as

L(c;α,π) =
∑
c

(− logL(c))

=
∑
c

∑
j:tcj<T

 ∑
u:tcu<tcj

K∑
k=1

∆tcujπ
c
kα

k
uj

− log
∑

i:tci<tcj

K∑
k=1

πc
kα

k
ij +

∑
n:tcn>T

K∑
k=1

(T − tcj)π
c
kα

k
jn

 .

The goal of the inference is then to find the values of α
and π within the constraints that maximize the total likeli-
hood of all cascades, or equivalently, minimize the total neg-
ative log likelihood L(c;α,π). More formally, the inference
problem corresponds to the constrained optimization prob-
lem

minimize
α,π

L(c;α,π)

subject to 0 ≤ πc
k ≤ 1 for all k, for all c,

K∑
1

πc
k = 1 for all c,

0 ≤ αk
ij ≤ 1 for all i, for all j, for all k.

4We include all derivations in Derivation of Formulas.
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Implementation In our model, we have continuous con-
straints of π as opposed to discrete ones in the MMRATE
model (i.e., πc

k ∈ {0, 1}). This offers us a wider choice
of modern optimization tools that can potentially solve the
problem more efficiently. In specific, we use the PyTorch
Python library (Paszke et al. 2019) because it is known for
supporting fast computation and automatic differentiation
of heavy optimization problems using graphics processing
units (GPUs).

To make our optimization problem efficiently solvable
with PyTorch routines, we first transform the problem into
an unconstrained one by replacing the variable constraints
with variable transformations. Specifically, we first define
unconstrained variables α̂k

ij for all i, j, and k, and replace
every αk

ij with σ(α̂k
ij) in the objective function, where

σ(x) = 1/(1 + e−x) is the sigmoid function that con-
verts any input from (−∞,∞) to the (0, 1) interval. Sim-
ilarly, we define unconstrained variables π̂c

k for all c and
all k ∈ {1, 2, . . . ,K − 1}. To satisfy the constraints of∑K

1 πc
k = 1, we let

πc
1 =σ(π̂c

1),

πc
2 =σ(π̂c

2)(1− πc
1),

...

πc
K−1 =σ(π̂c

K−1)(1−
K−2∑
k=1

πc
k),

πc
K =1−

K−1∑
k=1

πc
k.

In this way, all constrained variables in the objective func-
tion can be converted from unconstrained ones, and the func-
tion can then be efficiently optimized using PyTorch.

To take full advantage of GPU resources that accelerate
large matrix computations significantly, we rewrite the ob-
jective function in matrix form. Suppose C is the number
of cascades in the dataset. Let Π be a C ×K matrix where
Πck = πc

k, A be a K × N × N matrix where Akij = αk
ij ,

and ∆T be a C ×N ×N matrix where

∆Tcij =


∆tcij , if tci < tcj < T

T − tci , if tci < T, tcj = T

0, otherwise

Additionally, let M be a C ×N ×N mask matrix where

Mcij =

{
1, if tci < tcj < T

0, otherwise

Then the objective function can be written as

sum(∆T ⊙ (ΠA))− sum(log(M ⊙ (ΠA))),

where ⊙ denotes the element-wise matrix multiplication,
sum(X) denotes the sum of all elements in matrix X , and
log(X) denotes the element-wise log operation of matrix X
where zero elements are preserved.

While this considerably speeds up the execution time, the
memory consumption turns out to be a bottleneck: the pro-
gram requires O(N2 · C) memory space on GPU, which

makes it difficult to scale to large networks. To mitigate the
memory consumption issue, we split the inference into two
phases. In the single layer phase, we infer which edges ex-
ist on any layer of G. Or, in other words, we infer which
edges exist in the aggregated single layer network GA =

(VA, EA), where VA =
⋃K

k=1 V
k is the aggregation of all

nodes in all layers of G, and EA =
⋃K

k=1 E
k is the aggrega-

tion of all edges in all layers of G. The set of edges inferred
to exist in the aggregated network is denoted as ES . Then,
in the multilayer phase, we infer the layer-wise edge trans-
mission rates α within ES and cascade layers π.

Moreover, we notice that it is unlikely for an edge to ex-
ist between two nodes that never occur in the same cascade.
Therefore, in the single layer phase, we only consider the
set of “possible” edges – i.e., edges between nodes that co-
occur in at least one cascade – and denote this set as EP . We
include a formulation of the two inference phases in Formu-
lation of Inference Phases.

In the improved implementation, the single layer infer-
ence uses O(max(|EP |, N ·C)) memory, and the space com-
plexity of the multilayer inference reduces from O(N2 · C)
to O(|ES | · C).

Data
To conduct a systematic analysis of the inference frame-
work, we need to generate synthetic spreading data under
different realistic settings. To inform this data generation,
we collected real-world datasets of information diffusion
on social media. We first built the ClimateSkepticCascades
dataset from the Twitter climate discussion dataset (Xia,
Chen, and Kivelä 2021). The original dataset contains all
climate-related tweet, retweet, or reply records during the
announcement of the 2019 Nobel Peace Prize, where the au-
thors recognize a division of climate activists and climate
skeptics in the retweet network. Observing interesting dis-
cussion dynamics among the climate skeptics, we filtered
the original dataset to a subset with only nodes and records
from the skeptic group. The resulting ClimateSkepticCas-
cades dataset contains 5816 nodes (i.e., users) and 41385
cascades, with each cascade corresponding to the spreading
trace of one original tweet. Among them, 13007 have at least
one retweet. Figure 1a shows the cascade size distribution
in log-log scale. The distribution indicates that the dataset
contains a fair number of cascades with moderate size, but
the total number of cascades is rather small compared to the
number of nodes.

We then collected a second dataset where nodes in the
underlying network belong to a community that is relatively
stable and well-connected, instead of purely topic-induced.
Specifically, we built the PoliSciCascades dataset through
the following process: first, we extracted the Twitter handles
of 1236 political science professors at PhD-granting institu-
tions in the United States from the #polisci Twitter dataset
(Bisbee, Larson, and Munger 2020); then, we used Twit-
ter’s timeline v1.1 API endpoint5 to fetch the most recent
timeline records of each user, including up to 3200 tweet,

5https://developer.twitter.com/en/docs/twitter-api/v1/tweets/
timelines/api-reference/get-statuses-user timeline
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Figure 1: Cascade size distributions of the two real-world
datasets in log-log scale. Plot a) corresponds to the Cli-
mateSkepticCascades dataset, and plot b) corresponds to the
PoliSciCascades dataset.

retweet, or reply records per user before April 8, 2021. The
resulting PoliSciCascades dataset contains 1158 nodes and
1618544 cascades, of which 49255 have at least one retweet.
Figure 1b shows the log-log scale cascade size distribu-
tion. Overall, there is a large number of cascades circulating
within the community, but most cascades have a small num-
ber of retweets with respect to the total number of users in
the dataset.

Generating the Network Given the reference of real
spreading data, we design a set of controlled settings for
generating synthetic data. To begin with, we use the directed
configuration model (Newman, Strogatz, and Watts 2001) –
that produces random directed networks with designated in-
degree and out-degree sequences – to generate the ground-
truth diffusion networks that we need to infer; notably, such
degree-driven approach for generating synthetic networks is
widely used in previous studies of spreading processes on
multilayer networks (Salehi et al. 2015). We randomly gen-
erate the in-degree and out-degree sequences that feed into
the configuration model by sampling from log-normal dis-
tributions, based on the fact that log-normal models provide
good fit to the degree sequences of the Tumblr reblog net-
work (Xu et al. 2014).

Considering the computational limits, we have the core
network setting of N = 1000,K = 2, ϕ = 0, µin =
0.5, σin = 1, µout = 0, σout =

√
2, where N is the number

of nodes in the network, K the number of layers in the net-
work, ϕ the edge overlap parameter between the layers, and
µin (resp. µout) and σin (resp. σout) are the mean and stan-
dard deviation parameters of the log-normal distribution that
we use to generate the in-degree (resp. out-degree) sequence
for each layer of the network. For a multilayer network with
ϕ = 0, we independently generate each layer using the di-
rected configuration model. For each directed edge (i, j) that
exists on layer k in the network, we generate its edge trans-
mission rate αk

ij by sampling uniformly from (0.01, 1).
Beyond the core setting, we also generate networks of var-

ied density, size, number of layers, and layer overlap, specif-
ically under the four sets of settings below (parameters that
have the same values as in the core setting are omitted):

1. Varied network density:
(a) µin = 0, σin = 1, µout = 0, σout = 1

(b) µin = 1, σin = 1, µout = 0, σout =
√
3

2. Varied network size: N = 2000, N = 4000

3. Varied number of layers: K = 3,K = 4,K = 5

4. Varied layer overlap: ϕ = 1, ϕ = 0.5

Note that under the setting of ϕ = 1, we first generate
the first layer of the network and then simply copy the edge
structure to the second layer, while the edge transmission
rates are still sampled independently on each layer. Under
the setting of ϕ = 0.5, we generate the first layer, copy the
edge structure to the second layer, and then randomly rewire
50% of the edges on the second layer. We allow self-loops
and parallel edges when rewiring6 and remove them after the
entire process, therefore the true edge overlap rate is slightly
higher than 0.5; the actual overlap rate we got is around 0.58.

Generating the Spreading Logs Given a synthetic dif-
fusion network, we use the Gillespie algorithm (Gillespie
1977) to generate the information cascades by simulating
susceptible-infectious-removed (SIR) processes (Newman
2002) on the network, under the SIR compartmental model
that is extensively used in previous studies for simulating
spreading processes on multilayer networks (Salehi et al.
2015).

Specifically, for each cascade c, we first sample kc, the
main layer it spreads on, uniformly from {1, 2, . . . ,K}. To
allow a certain level of mixed spreading on multiple layers,
so that the spreading of a cascade depends not only on the
edge transmission rates on a single layer but a weighted sum
of the rates on multiple layers, we additionally define a noise
parameter ϵc, such that πc

kc
= 1− ϵc, and πc

k = ϵc/(K − 1)
for all k ̸= kc. We sample ϵc for each cascade uniformly
from (0, ϵmax), where we let ϵmax be respectively 0, 0.2, or
0.4, to cover different levels of mixed spreading.

We then generate the spreading trace of each cascade c
by simulating an SIR process under the following setting:
initial infection rate ρ = 1/N , cascade-specific edge-wise
transmission rates λc

ij =
∑K

k=1 π
c
kα

k
ij , ending time T =

10, and recovery rate γ taking 1, 2, 4, or 8. By varying the
recovery rate γ as such, we are able to cover a relatively
wide range of spreading settings with different cascade size
distributions. Intuitively, the larger the γ, the more difficult
the cascades will spread to a broader set of nodes. Figure 2
shows the cascade size distributions varied by γ under the
core network setting. We can see that the case of γ = 2 best
matches the ClimateSkepticCascades dataset, and the case
of γ = 8 best matches the PoliSciCascades dataset.

After simulating all cascades, we remove the uninforma-
tive ones where only one node is activated and no spreading
is observed.

Technical Settings
The implementation of our inference program consists of a
single layer phase and a multilayer phase. In our testing, af-
ter the single layer inference that returns the estimated edge

6If not, the rewiring process will be biased in that edges adja-
cent to nodes of higher degrees will have a smaller probability of
being rewired successfully.
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Figure 2: Cascade size distributions of synthetic cascades
generated under different γ settings.

weights of the aggregated network GA, we rank the edges by
the estimated edge weights in descending order, and take the
top 1.1 · |EA| edges as the inferred edges ES , where |EA| is
the number of edges in the ground-truth aggregated network.
We expect to restrict memory usage by setting this limit, yet
meanwhile allow a decent level of error tolerance.

We measure the accuracy of the single layer inference by
the area-under-curve (AUC) score (Fawcett 2006) of the es-
timated edge weights on the aggregated network, which as-
sesses the overall classification accuracy of edge existence
across all possible thresholds of edge weights. For the mul-
tilayer inference, we measure respectively the classification
accuracy of the cascade layers (abbreviated as π accuracy),
and the Spearman’s rank correlation (Spearman 1904) be-
tween the inferred and ground-truth layer-wise edge trans-
mission rates of the non-zero entries of α (abbreviated as α
correlation).

We use for single layer inference the Adam optimizer
(Kingma and Ba 2014) with an initial learning rate of 0.5,
minimum 100 iterations, and maximum 500 iterations; for
multilayer inference, we use the Adam optimizer with an ini-
tial learning rate of 0.1, minimum 100 iterations, and maxi-
mum 3000 iterations. Additionally, we monitor the percent-
age decrease of the objective function value at each iteration,
and stop the single layer inference when the value decreases
less than 0.01%, and the multilayer inference when the value
decreases less than 0.0001%. We run each multilayer infer-
ence 3 times with respectively the randomization seed of 0,
1, and 2, and take the best set of results across the three
runs as measured by the π accuracy. All tests are run on an
NVIDIA Tesla P100 GPU card with 3854 threads and 16GB
memory.

Validation Test
Before conducting the experiments on our implementation
of the inference framework, we validate its effectiveness
by evaluating the performance of our code against exist-
ing implementations of multilayer diffusion network infer-
ence, including MIXCASCADES, MMRATE, and FASTEN.
We compare the inference accuracy and runtime of the im-
plementations when respectively applied to three synthetic

datasets generated under our model, and three other gen-
erated under the FASTEN model. Specifically, we use our
data generated under the setting of N = 1000, ϕ = 0, µin =
0.5, ϵmax = 0, γ = 2, K taking 2, 3, or 4; and we use
16 · |EA| cascades for the inference (where |EA| is the num-
ber of edges in the aggregated single layer network), while
in the multilayer phase we filter out cascades of size be-
low or equal to 8 (more about the motivation of cascade fil-
tering in Varying Cascade Filtering). Additionally, we use
FASTEN data generated under the exponential transmis-
sion time model on a network of 1024 nodes, 3 layers, 2048
edges per layer, and respectively a random, hierarchical,
or core-periphery network structure (with a parameter ma-
trix of respectively [0.5, 0.5; 0.5, 0.5], [0.9, 0.1; 0.1, 0.9], or
[0.9, 0.5; 0.5, 0.3] for the Kronecker graph generator). The
edge transmission rates are sampled uniformly from (0, 1)
for FASTEN data.

We run our implementation on an NVIDIA Tesla P100
GPU card with 3854 threads and 16GB memory, and run the
other implementations using 10 cores from an Intel Xeon
Gold 6248 @ 2.50 GHz Processor, with a hyperparameter
setting as reported in the FASTEN paper. For the validation
test in specific, we stop the optimization process of MUL-
TIC at respectively 25, 50, and 100 iterations, to observe the
growth of its inference accuracy with its runtime. Addition-
ally, we evaluate the inference accuracy of the implemen-
tations by the average precision-recall AUC (abbreviated as
PR AUC) of inferred edge transmission rates on each layer,
which is the metric proposed in the FASTEN paper that
measures the accuracy of the inferred multilayer network.

As plotted in Figure 3, the results show that on all of our
datasets, our implementation achieves significantly higher
accuracy than previous ones in shorter runtime. Remarkably,
on two of the FASTEN datasets where the data generation
model is different from what we assume, our implementa-
tion also achieves higher accuracy within comparable run-
time.

The superiority of our implementation in inference accu-
racy is probably due to the fact that the other implemen-
tations use stochastic gradient descent for optimization, so
that in each of their iterations only a part of the data is used
for calculating the gradient; by contrast, all data is used to
inform the direction of optimization in every of our itera-
tions, so that our implementation should converge better to
the optimum. It usually takes very long time to run the opti-
mization with full data used in every iteration, but we have
managed to achieve with GPU computing a comparable run-
time as previous implementations.

Results
Using the inference framework and synthetic data described
above, we systematically assessed the performance of the
inference framework under different network and diffusion
settings. Specifically, we looked at how the inference accu-
racy varies with cascade size distribution, cascade filtering,
network density, network size, number of layers, layer over-
lap, and mixed spreading. We report these results in the fol-
lowing paragraphs.
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Figure 3: Inference accuracy of MULTIC compared with
MIXCASCADES, MMRATE, and FASTEN, on synthetic
data generated respectively under the setting of (a) MUL-
TIC, K = 2, (b) MULTIC, K = 3, (c) MULTIC, K = 4,
(d) FASTEN, random, (e) FASTEN, hierarchical, and (f)
FASTEN, core-periphery.

Varying Cascade Size Distribution
In our first experiment, we have the setting of N =
1000, µin = 0.5,K = 2, ϕ = 0, |EA| = 4422, ϵmax = 0,
no cascade filtering, and γ taking 1, 2, 4, or 8. Under each γ
value, we inspect how the inference performance changes as
we increase the number of cascades, more specifically when
the cascade-edge ratio (i.e., the ratio between the number of
cascades C and the number of edges in the aggregated net-
work |EA|, abbreviated as C-E ratio) is 1, 2, 4, 8, or 16.

The results are shown in Figure 4a. We see that the accu-
racy of the single layer inference almost always grows with
the number of cascades used, but it remains lower for larger
γ values. This is reasonable because cascades generated un-
der larger γ values are of smaller sizes, and thus contain
less information for the edge inference. However, regardless
of the γ value, the AUC score always exceeds 0.99 when
provided 16 · |EA| cascades. We provide in Table 1 a map-
ping from the AUC score to the recovery rate of edges in
the ground-truth network, which serves as a reference for
interpreting the values. For example, under the setting of

AUC Edge Recovery Rate

C-E Ratio=1 0.863 2989/4422 = 67.6%
C-E Ratio=2 0.933 3567/4422 = 80.7%
C-E Ratio=4 0.969 3938/4422 = 89.1%
C-E Ratio=8 0.987 4113/4422 = 93.0%
C-E Ratio=16 0.994 4257/4422 = 96.3%

Table 1: Mapping from the AUC score to the recovery rate
of ground-truth edges (N = 1000, |EA| = 4422, |ES | =
4864, γ = 8).

N = 1000, |EA| = 4422, |ES | = 1.1 · |EA| = 4864, γ = 8
and C-E ratio=4, the AUC score is approximately 0.97, and
the single layer inference is able to discover about 89% of
the ground-truth edges, among the 4864 edges it infers.

With respect to the multilayer inference accuracy, we ob-
serve that when γ = 4 or γ = 8 and there is no cascade fil-
tering, the π accuracy and α correlation are not significantly
better than baseline (0.5 and 0 respectively), and both met-
rics do not necessarily increase with the number of cascades
used. At best, when γ = 1, the π accuracy reaches about
80.5%, and the α correlation reaches 0.566, given 16 · |EA|
cascades. In a more realistic case of γ = 2, the best α corre-
lation is 0.373 and the best π accuracy is only 66.0%.

Varying Cascade Filtering
In our second experiment, we explore if excluding small
cascades helps improve the multilayer inference accuracy.
The idea stems from the observation that an extra cascade
layer membership variable needs to be inferred in the mul-
tilayer inference when a new cascade is added to the data;
for the entire inference system, it is not clear whether this
extra burden brought by a small cascade will outweigh the
extra information it contributes. We test specifically under
the setting of N = 1000, µin = 0.5,K = 2, ϕ = 0, |EA| =
4422, ϵmax = 0,C-E ratio = 16, γ taking 1, 2, 4, or 8, and
cascade size threshold sc taking respectively 1, 2, 4, 8, or
16. With a certain threshold sc, all cascades of size below
or equal to sc will be excluded in the inference. Note that
taking the threshold of sc = 1 is equivalent to no filtering
because we have already removed cascades of size 1 (i.e.,
those with no spreading).

We find that filtering out small cascades effectively im-
proves the accuracy of the multilayer inference, as shown in
Figure 4b. Overall, we can observe significant improvement
in π accuracy under all γ settings, but especially under γ = 1
and γ = 2. Specifically, as the cascade size threshold grows
from 1 to 16, π accuracy grows from 80.5% to 99.0% under
γ = 1, and from 61.7% to 95.5% under γ = 2. On the other
hand, α correlation mostly fluctuates under all γ settings,
which potentially reflects the fluctuating level of balance
in the entire inference system as cascade-wise information
increases and the total number of cascades decreases. Al-
though no monotonic trend can be observed, the good news
is that compared with the baseline where no filtering is per-
formed, there exist cascade size thresholds for all γ values
under which π accuracy is significantly higher than baseline,
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Figure 4: Experimental results of inference accuracy varied
with respectively (a) cascade size distribution, (b) cascade
filtering, (c) network density, (d) network size, (e) number
of layers, (f) layer overlap, and (g) level of mixed spreading.

while α correlation also increases upon baseline or at least
stays at the same level. For different downstream tasks, the
most appropriate cascade size threshold can be chosen based
on a weighted evaluation of both metrics.

Varying Network Density
We conduct our third experiment under the setting of N =
1000,K = 2, ϕ = 0, ϵmax = 0, γ = 2, sc = 8, µin taking
0, 0.5, or 1 (consequently, |EA| taking 2361, 4422, or 7595),
and C-E ratio taking 1, 2, 4, 8, or 16. We see in Figure 4c
that the single layer inference seems to have the worst per-
formance on the sparsest network, given the same cascade-
edge ratio; yet with 16 · |EA| cascades, the AUC score still
exceeds 0.98 in all cases. The multilayer inference also per-
forms better on denser networks both evaluated by π accu-
racy and α correlation, which can be explained by the higher
proportion of large cascades in denser networks. It is worth
noting that on the sparsest network we have here, the mul-
tilayer inference accuracy is extremely low and almost does
not increase at all with the number of cascades.

Varying Network Size
We conduct our fourth experiment under the setting of K =
2, ϕ = 0, µin = 0.5, ϵmax = 0, γ = 2, sc = 8, N taking
1000, 2000, or 4000 (consequently, |EA| taking 4422, 8707,
or 17768), and C-E ratio taking 1, 2, 4, or 8. Figure 4d shows
that the accuracy of neither the single layer inference nor the
multilayer inference differs significantly with network size.

Varying Number of Layers
We conduct our fifth experiment under the setting of N =
1000, ϕ = 0, µin = 0.5, ϵmax = 0, γ = 2, sc = 8, K taking
2, 3, 4, or 5 (consequently, |EA| taking 4422, 6797, 8948 or
11082), and C-E ratio taking 1, 2, 4, 8, or 16. We observe
in Figure 4e that the accuracy of the single layer inference
does not vary significantly with the number of layers in the
network. Meanwhile, within a certain level of fluctuation,
the multilayer inference achieves slightly less accurate re-
sults when the number of layer increases. This matches the
intuition that it is relatively more difficult to decompose a
network into more layers given the same amount of infor-
mation.

Varying Layer Overlap
In our sixth experiment, we have the setting of N =
1000,K = 2, µin = 0.5, ϵmax = 0, γ = 2, sc = 8, ϕ
taking 0, 0.5, or 1 (consequently, |EA| taking 4422, 3040,
or 2142), and C-E ratio taking 1, 2, 4, 8, or 16. Figure 4f
shows that the edge existence in the aggregated network is
inferred more accurately on a network with full layer over-
lap, presumably because in the single layer inference, this
situation is equivalent to having double number of cascades
for inferring the same network. However, the cascade layer
membership is inferred extremely inaccurately (i.e., with be-
low 60% accuracy) on a network with full layer overlap, due
to the limited amount of differentiation between the layers
(i.e., only layer-wise edge transmission rates are different).
Between half overlap and no overlap settings, there is no
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significant difference in the accuracy of the edge existence
inference or the cascade layer membership inference. On
the other hand, the accuracy of the inferred layer-wise edge
transmission rates in general decreases with layer overlap.

Varying Level of Mixed Spreading
In our final experiment, we have the setting of N =
1000,K = 2, ϕ = 0, µin = 0.5, γ = 2, sc = 8, ϵmax

taking 0, 0.2, or 0.4, and C-E ratio taking 1, 2, 4, 8, or 16.
We find that the accuracy of both edge existence and edge
weight inference does not differ significantly with the level
of mixed spreading, but the accuracy of the cascade layer
membership inference indeed decreases with layer mixing,
as shown in Figure 4g.

Runtime and Memory Usage
According to our empirical testing, the runtime of our single
layer inference scales approximately linearly with the num-
ber of edges in the network, and the memory usage scales
approximately linearly with max(|EP |, N · C), as we ex-
pected. Meanwhile, both the runtime and the memory usage
of the multilayer inference scale approximately linearly with
both the number of the edges in the network and the num-
ber of cascades used in the multilayer phase. In our most
computationally heavy test case with γ = 2, sc = 8, a net-
work with 4000 nodes and 17768 edges when aggregated,
and 142144 (resp. 15405) cascades before (resp. after) filter-
ing, the single layer inference finishes 500 iterations in 108
minutes with 3.1 GB of GPU memory usage, and the mul-
tilayer inference finishes 3000 iterations in 23 minutes with
13.3 GB of GPU memory usage. As we can see, the runtime
of the inference is relatively acceptable on large networks;
but for the inference to run within limited GPU memory, one
might have to decrease either the number of nodes, the num-
ber of edges, or the number of cascades used in the infer-
ence, for example by focusing on a smaller subset of nodes
and edges, or filtering out relatively uninformative cascades.

Discussion
Findings & Implications
Our results first reveal interesting performance dynamics of
the multilayer diffusion network inference framework when
applied to realistic spreading data. For example, the accu-
racy of the edge existence inference on the aggregated net-
work always increases with the number of cascades, regard-
less of any network structure or diffusion setting. Mean-
while, given the same cascade-edge ratio, the accuracy of the
inferred layer-wise edge weights and the layer membership
of cascades increases with network density, decreases with
the number of layers in the network, and regresses to base-
line when there are fewer large cascades in the spreading
data for inference. More interestingly, we find that exclud-
ing small cascades when conducting the multilayer inference
significantly increases the classification accuracy of the cas-
cade layers, especially when there exists a sufficient number
of large cascades in the data. This is also a very practical
improvement of the inference method since it also decreases

runtime and memory usage, and thus potentially mitigates
the shortage of time and memory resources.

More importantly, we have shown a wide range of cases
where the inference accuracy of the multilayer diffusion net-
work is only slightly better than the random guessing base-
line, for example when the number of cascades in the data
is very limited, or the proportion of large cascades is very
low. Our work thereby shows the potential inapplicability of
the inference framework to social media data, and highlights
the need for carefully evaluating the framework’s applicabil-
ity before trying to infer a multilayer diffusion network from
real-world spreading data. Otherwise, the interpretations of
the results can be extremely misleading when the solution
quality is not guaranteed. Our results and our open-source
implementation can serve as a useful tool for this applica-
bility evaluation. By matching the objective real-world set-
ting to the most similar synthetic setting among those we
reported, or running our code under a further personalized
setting that best mimics the dataset, one can get a rough es-
timate of how well the inference performs when applied to
the target dataset.

Limitations & Future Work

Our work is limited in the minimality of the generative dif-
fusion model we assume, and the exponential transmission
time model we specify. However, our implementation can
be easily extended to support diffusion models with extra
elements that stay constant during the inference process, as
well as power law or Rayleigh transmission time models.
Our implementation is also limited in scalability, due to the
relatively high consumption of GPU memory in the multi-
layer phase of inference. The optimization process can po-
tentially be redesigned to improve memory usage, for exam-
ple by further decomposing the multilayer phase into sepa-
rate stages, and using only a fraction of the data to inform
the optimization in each stage. We leave these extensions of
our implementation for future work.

As much as we tried to cover a wide range of realistic
network and diffusion settings in our synthetic data experi-
ments, there definitely remain cases that need to be further
explored. For example, it will be interesting to examine the
performance of the inference framework when the ground-
truth diffusion network has different community structures,
as information diffusion is shown to be affected by commu-
nity structure in online social networks (Tsugawa 2019). Be-
sides, it remains to be studied how well the inference works
under threshold-based complex contagion models, such as
the Watts’ threshold model (Watts 2002).

We are also unfortunately not able to show the results of
the inference framework when applied to real social media
data, because both real datasets we collected match cases
of inference inaccuracy. However, this failure exactly re-
flects how inapplicable the inference framework can be to
real datasets. In future work, we expect to inspect a broader
range of real datasets, among which we can hopefully find a
few that allow the accurate inference of multilayer diffusion
networks and the interpretation of the inferred results.
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Appendix
Derivation of Formulas
The likelihood of cascade c is

L(c) =
∏

j:tcj<T

Γ+
j (c)×

∏
n:tcn>T

Γ−
n (c)

=
∏

j:tcj<T

 ∑
i:tci<tcj

f(∆tcij ;λ
c
ij)

∏
u:u̸=i,tcu<tcj

S(∆tcuj ;λ
c
uj)


×

∏
n:tcn>T

∏
m:tcm<T

S(T − tcm;λc
mn)

=
∏

j:tcj<T

 ∑
i:tci<tcj

f(∆tcij ;λ
c
ij)

∏
u:u̸=i,tcu<tcj

S(∆tcuj ;λ
c
uj)


×

∏
n:tcn>T

S(T − tcj ;λ
c
jn)


=

∏
j:tcj<T

 ∏
u:tcu<tcj

S(∆tcuj ;λ
c
uj)×

∑
i:tci<tcj

H(∆tcij ;λ
c
ij)

×
∏

n:tcn>T

S(T − tcj ;λ
c
jn)

 .

Under the exponential transmission time model, the neg-
ative log likelihood of cascade c can be written as

− logL(c) = −
∑

j:tcj<T

 ∑
u:tcu<tcj

logS(∆tcuj ;λ
c
uj)

+ log
∑

i:tci<tcj

H(∆tcij ;λ
c
ij) +

∑
n:tcn>T

logS(T − tcj ;λ
c
jn)


=

∑
j:tcj<T

 ∑
u:tcu<tcj

λc
uj∆tcuj − log

∑
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λc
ij

+
∑
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λc
jn(T − tcj)


=

∑
j:tcj<T

 ∑
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K∑
k=1

∆tcujπ
c
kα

k
uj − log
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K∑
k=1

πc
kα

k
ij

+
∑
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K∑
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(T − tcj)π
c
kα

k
jn

 .

and the total negative log likelihood of all cascades as

L(c;α,π) =
∑
c

∑
j:tcj<T

 ∑
u:tcu<tcj

K∑
k=1

∆tcujπ
c
kα

k
uj

− log
∑
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K∑
k=1

πc
kα

k
ij +

∑
n:tcn>T

K∑
k=1

(T − tcj)π
c
kα

k
jn

 .

Formulation of Inference Phases
The single layer phase of inference in our implementation
can be formulated as solving the optimization problem

minimize
α′

∑
c

∑
j:tcj<T

 ∑
u:tcu<tcj
(u,j)∈EP

∆tcujα
′
uj − log

∑
i:tci<tcj

(i,j)∈EP

α′
ij

+
∑

n:tcn>T

(T − tcj)α
′
jn


subject to 0 ≤ α′

ij ≤ 1 for all i, for all j,

where α′
ij is the edge indicator variable in the aggregated

network. We derive the set of edges that exist in the aggre-
gated network, ES , by setting a threshold δ, and assuming
(i, j) exists in ES if and only if α′

ij > δ.
Meanwhile, the multilayer phase solves the optimization

problem

minimize
α,π

∑
c

∑
j:tcj<T

 ∑
u:tcu<tcj
(u,j)∈ES

K∑
k=1

∆tcujπ
c
kα

k
uj

− log
∑
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(i,j)∈ES

K∑
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πc
kα

k
ij

+
∑

n:tcn>T

K∑
k=1

(T − tcj)π
c
kα

k
jn


subject to 0 ≤ πc

k ≤ 1 for all k, for all c
K∑
1

πc
k = 1 for all c

0 ≤ αk
ij ≤ 1 for all i, for all j, for all k.

Ethical Statement
From a broader perspective, our work further connects the
technical literature of multilayer diffusion network inference
to their empirical applications on real social media data.
Such empirical studies may help uncover nuanced homo-
geneity and heterogeneity in the spreading of online content,
and thus advance our understanding of information propa-
gation and opinion dynamics in online social networks. In
particular, they could reveal a richer spreading context of
misleading or harmful content, and inspire designs of more
effective regulation measures.

On the other hand, by showcasing the potential use of
the inference framework on social media data and provid-
ing an open-source implementation of it, our work poten-
tially induces a risk for people to apply the framework on
unanonymized social media data, consequently inferring the
connection between real users and how ideas spread among
them. We therefore encourage the users of the inference
framework to always apply it to spreading data with identify-
ing information removed, and interpret the revealed spread-
ing dynamics from a content-oriented perspective.
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