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Abstract

Image privacy issues have become an important challenge
as millions of images are being shared on social networking
sites every day. Often due to users’ lack of privacy aware-
ness and social pressure, users’ posted images reveal sensi-
tive information and may be easily used to their detriment.
To address these issues, several recent studies have proposed
machine learning models to automatically identify whether
an image contains private information. However, progress on
this important task has been hampered by the absence of re-
liable, publicly available, up-to-date datasets. To this end, we
introduce PrivacyAlert, a dataset developed from recent im-
ages extracted from Flickr and annotated with privacy labels
(private or public). Our data collection process is based on
state-of-the-art privacy taxonomy and captures a comprehen-
sive set of image types of various sensitivity. We perform a
comprehensive analysis of our dataset and report image pri-
vacy prediction results using classic and deep learning mod-
els to set the ground for future studies. Our dataset is publicly
available at: https://doi.org/10.5281/zenodo.6406870.

Introduction
With the convenience brought by mobile Internet and mobile
devices, the number of active users in online social network-
ing sites is growing rapidly. People share personal aspects of
their lives without much hesitation. With hundreds of mil-
lions of images being uploaded to various social networking
sites every day (Yang et al. 2020), images have become one
of the most prevalent forms among online social network-
ing users (Tonge and Caragea 2019) for content sharing, but
also a potentially risky one. For example, a seemingly com-
mon photo of a birthday party may unintentionally reveal
sensitive information about a person’s location, social rela-
tionships, and personal habits (Tonge and Caragea 2020).
The address of an actress can be quickly located from im-
ages shared on her social networking site. This process can
be done within 40 minutes with only Google Earth and basic
geographical knowledge (Yang et al. 2020). In a TV show,
the host learned the name and images of a little girl from
the posts of her parents on their social networking sites. The
host successfully identified the girl and gained her trust and
took her away (Yang et al. 2020).
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Although most social networking sites provide users with
choices to set their privacy preferences, proper privacy set-
ting is still a challenging and underperformed task for the
vast majority of online users (Orekondy, Schiele, and Fritz
2017). Firstly, users find it troublesome to manually assign
and manage privacy settings for each image they upload on-
line (Zerr, Siersdorfer, and Hare 2012; Lipford, Besmer, and
Watson 2008). Secondly, users often fail to follow through
their own privacy preferences and disregard even simple pri-
vacy protection mechanisms (Orekondy, Schiele, and Fritz
2017). Therefore, it is unreliable and risky to solely rely on
users for identifying sensitive content within their images.

The risk brought by online images has led to several stud-
ies proposing machine learning models for image privacy
detection (Zerr et al. 2012; Squicciarini, Caragea, and Bal-
akavi 2017; Tonge and Caragea 2020; Tran et al. 2016; Yang
et al. 2020). In all these studies, images’ content (and some-
times their tags) have been used as one of the discriminatory
factors for learning images’ sensitivity and related privacy
designation. However, the absence of a publicly available,
up-to-date dataset has limited the progress on this task. Zerr,
Siersdorfer, and Hare (2012) developed a first gold-standard
dataset in 2010, referred to as PicAlert. PicAlert includes
images annotated with a private or public label by exter-
nal annotators (private images are defined as ones that are
on the private sphere and cannot be shared with everyone
on the Internet. The rest are public). While pivotal to many
of the recent studies in the space of online image privacy,
PicAlert is no longer a representative repository for online
image privacy research. In particular, images in PicAlert are
at least 12 years old. The content that people are sharing
online, peoples’ awareness of privacy, and the underlying
danger of privacy leakage has changed drastically over the
years. In addition, data at the time was collected based on
older studies on image privacy awareness, that dated even
before the mass adoption of social networking and content
sharing sites (Ahern et al. 2007). Other works investigating
the problem of image privacy prediction (Yu et al. 2016;
Tonge and Caragea 2019; Yang et al. 2020), have not yet
provided publicly available datasets. For example, Yu et al.
(2016) use CNNs to extract semantic image segmentation
and learn the object-privacy relationship to identify privacy-
sensitive objects. However, their dataset is not publicly avail-
able, nor is an in-depth discussion of the authors’ approach
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(a) children, face, joy (b) Curtis, Passport (c) food, kitchen table, eat, dishes (d) Horse Teeth, Smile

Figure 1: Examples of private/public images from our dataset. (a) and (b) are private examples that reveal users’ sensitive
information. (c) and (d) are public examples that are safe to be shared online. We manually blur private images.

to data collection and labeling. Tonge and Caragea (2019)
focus on developing a multi-modal privacy prediction model
instead of proposing a new dataset. Orekondy, Schiele, and
Fritz (2017) develop a dataset to predict privacy attributes
that exist in each image, but it cannot be utilized to train
binary privacy prediction models.

The aforementioned issues motivated us to develop a pub-
licly available dataset that can represent the most up-to-
date privacy patterns on social networking sites. We pro-
pose PrivacyAlert for image privacy prediction research. Al-
though the definition of image privacy is subjective and of-
ten varies depending on peoples’ personal traits and pri-
vacy awareness, some general privacy patterns that are com-
monly accepted exist, and are yet to be thoroughly under-
stood through a current image dataset.

Our contributions can be summarized as follows: (1) We
develop a publicly available labeled dataset for the task of
image privacy prediction; (2) Our dataset includes a bal-
anced selection of carefully selected images with sensitive
content. Informed by recent work in the space (Orekondy,
Schiele, and Fritz 2017; Li et al. 2018, 2020), we organize
existing taxonomies of private images into 10 categories
(e.g., nudity, personal information, facial expression, etc.).
We present examples that are annotated as private and public
in Figure 1. Figure 1a and 1b reveal a baby and a person’s
passport information, respectively, which are annotated as
private. As examples of public content, we show photos of
food (Figure 1c) and animals (Figure 1d); (3) We use the
labeled dataset to obtain benchmark results using various
types of deep learning models (CNN and transformer-based
models). We perform experiments of not only image privacy
prediction using single modalities (visual modality or textual
modality), but also various types of multi-modal image pri-
vacy prediction (combination of visual and textual modali-
ties); (4) We use Area Under the Margin (AUM) (Pleiss et al.
2020) based on deep learning models to automatically iden-
tify potentially mislabeled or ambiguous examples in the
dataset. Interestingly, after removing these examples from
the training set, we observe improvement in privacy predic-
tion performance in deep learning models.

Related Work
Image privacy prediction is an important topic for online
social networking sites (Zerr et al. 2012; Wu et al. 2018;

Chandra et al. 2018; Kurtan and Yolum 2018; De Choudhury
et al. 2009; Song et al. 2018). Ahern et al. (2007) study the
problem of content and context-based image privacy. The
authors claim that the research of image privacy prediction
still requires more effort. This motivates the researchers to
develop models that can automatically identify privacy pat-
terns from images (Zerr et al. 2012; Squicciarini, Caragea,
and Balakavi 2017; Zhong et al. 2017; Yu et al. 2016; Tran
et al. 2016). Cruz et al. (2015) studies the correlation be-
tween image privacy and metadata (e.g., locations, time, shot
details). Zerr, Siersdorfer, and Hare (2012) develop PicAlert
dataset. The dataset consists of Flickr images posted from
January to April in 2010. The images are then annotated by
external users as private or public. However, the PicAlert
dataset is no longer publicly available. And their random
crawling data collection method cannot ensure a comprehen-
sive dataset for private images. More recently, image privacy
prediction is explored in many works (Yu et al. 2016; Yang
et al. 2020; Tonge and Caragea 2019), but still a publicly
available dataset that can represent general privacy patterns
on up-to-date social networking sites is not available.

Zerr et al. (2012) use traditional visual features to train
machine learning models to detect image privacy. Squiccia-
rini, Caragea, and Balakavi (2017) utilize SIFT and tags to
develop privacy classification models. With the development
of deep learning, deep visual features can be extracted to re-
flect image privacy. Tonge and Caragea (2020) propose to
use deep CNN networks pre-trained on ImageNet to extract
visual features and use SVM as the privacy classifier. They
also fine-tune the pre-trained CNN networks and yield better
performance. Zhao and Caragea (2021) use BERT to learn
deep features based on image tags and achieve a state-of-the-
art performance of image tag-based image privacy predic-
tion. Yang et al. (2020) propose to learn the object-privacy
correlation using graph neural network for privacy predic-
tion. As complementary information exists between images
and tags, multi-modal privacy prediction networks are found
to be able to further improve the performance of image pri-
vacy prediction. Tran et al. (2016) propose to use multi-
ple visual modalities to predict image privacy. Tonge and
Caragea (2019) assign competence scores for each modality
to perform the weighted fusion. Our dataset can be used for
the aforementioned complex explorations of deep learning
models. We use our dataset to train and evaluate the afore-
mentioned vision, language, and multi-modal models, then
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compare the performance of these approaches.
Another line of research on image privacy prediction

focuses on personalized privacy predictions which take
the subjectivity in privacy definition into consideration.
Spyromitros-Xioufis et al. (2016) propose a personalized
image privacy prediction approach using deep neural net-
works. Zhong et al. (2017) argue that the bottleneck of re-
liable personalized image privacy prediction models is the
limited user-specified data, and the time and space consum-
ing to train and save models for each user. Moreover, users’
deviations of sharing and privacy preferences can also influ-
ence the personalized model. Orekondy, Schiele, and Fritz
(2017) define a set of privacy attributes as the taxonomy of
private images based on social network rules. Then they use
these attributes together with user preference to estimate pri-
vacy risk. However, Li et al. (2018) argue that the taxonomy
based on public policies may not meet users’ real needs. The
authors propose another taxonomy of online private images
based on online users (Li et al. 2020). In contrast to this
direction, we focus on developing a dataset that can reveal
the generalized privacy patterns. We utilize the privacy tax-
onomies (Orekondy, Schiele, and Fritz 2017; Li et al. 2020)
in our data collection process.

Dataset
We collect our data using images with creative open com-
mon licence from Flickr, a popular social networking site
for photo sharing. Flickr provides a public rich image repos-
itory. Each image is associated with tags (both user and
system-generated) to describe and index the image. Flickr
has been widely used by researchers for image data collec-
tion for various image processing tasks (Young et al. 2014;
Lin et al. 2014). We use the API provided by Flickr that
enables us to filter our crawling targets with dates and key-
words. We then use the Amazon Mechanical Turk (AMT)
crowd-sourcing platform for annotation.

Sampling Strategy
We collect images using an informed strategy. We begin with
a targeted search addressing private images, per the taxon-
omy provided by (Orekondy, Schiele, and Fritz 2017). Here,
authors identified 68 privacy attributes based on govern-
ment policies and social networking sites rules on prohibit-
ing sharing personal information. Privacy attributes indicate
content that commonly exist in private images (e.g., credit
card, race, etc.). Li et al. (2020) propose taxonomies of on-
line private images as well as of sensitive content that may
exist in each category. We combine the privacy attributes
and the privacy categories from these two studies, and de-
fine a privacy taxonomy of 10 categories. Our categories
are shown in Table 1. We use keywords for each category
by way of image tags. For example, tags such as “bare”,
“body”, and “naked”, are most frequently used to describe
images of the “nudity/sexual” category. We use these tags
to define searching queries in Flickr API to crawl relevant
images. Moreover, to develop a fresh and recent dataset, we
focus on images posted in the recent 6 years: 83% of our
dataset are images uploaded to Flickr from 2015 to 2021.

The remaining 17% consists of images that are uploaded
to Flickr from 2011 to 2015. Our crawling targets are re-
stricted within the public domain. Specifically, we use the
“Public Domain Dedication” and the “Public Domain Mark”
licenses in Flickr API to do the crawling. We crawl 190,000
images and corresponding image tags (tags that attached by
the users to describe image contents) using keywords of the
10 privacy categories. We then randomly select 20,000 im-
ages from the crawled images to perform annotation. We
achieve a balanced number of samples for the 10 categories.
This also enables us to analyze how image privacy is related
to each category (i.e., what categories are more/less likely to
be private).

Annotation
To annotate our data, we use the Amazon Mechanical Turk
(AMT) crowd-sourcing platform. Each annotator is asked
to read the following guideline upon accepting a task. The
guideline is given as “Assume you have taken these pho-
tos, and you are about to upload them on your favorite so-
cial network or content sharing site (e.g. Flickr, Facebook,
Google+, Instagram). Please tell us whether these images
are either private or public in nature. Assume that the peo-
ple in the photos are those that you know”. The annota-
tors are then asked to classify each image into one of the
four classes: clearly private, private, public, clearly public.
Clearly private images are defined as images that should not
be uploaded online at all. Private images are images that
should be kept confidential for me and selected trusted peo-
ple only. Public images are ones that anyone in my social
network would be OK to see. Clearly public images are ones
that anyone online would be OK to see. To complete the task,
annotators are be able to see each image and assign one of
the above labels.

To monitor the quality of annotation for each annotator,
we create an attention checker set, as follows. We extract a
sample of 50 private images and 50 public images annotated
by 2 graduate students with the background of image privacy
prediction. These images are selected from the most well-
recognized types of private/public images (e.g., nudity for
private, natural scenery for public). We randomly sample 1
private and 1 public image from the attention checker set and
insert them into each annotation batch. If the annotator does
not provide the expected answer on attention checkers, then
the annotator’s responses are dropped. 8% of annotators are
dropped for failing to pass the attention checkers.

We first annotated 10,000 images using 3 annotators for
each image as the training set. Then we annotate another
10,000 images as the validation/test set using 5 annotators
for each image. The reason to use more annotators for vali-
dation and test is to increase annotations’ reliability. Anno-
tators are paid fairly for their work as per the standard local
pay rate. Each annotator is paid 0.33 cents to label 22 im-
ages.

Inter-annotator Agreement
Traditional inter-annotator agreement measure such as Krip-
pendorff’s alpha would penalize fine-grained privacy classes
equally, which is potentially problematic - as it would weigh
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Category Example Keywords
Nudity/Sexual People with full nudity or semi-nudity bare, body, breasts, butt, erotic, naked,

nudity, sexual, shirtless, kissing
Other people Photos of or with people one knows/ grandparent, children, spectator, boy, family, husband

the owner/bystanders/events kids, parents, partner, people, wife, family
Unorganized home Messy/unorganized home messy room, toilet, uncleaned pool, bathroom,

disorganized, restroom, unclean, indoor, bedroom,
kitchen, living room, desk, sofa,trash, closet

Violence Photos of violent scene damage, guns, violence, war, military, shooting, firearms
weapons, corps, battlefield, tourisms, theater, legal, license

Medical Photos of medical condition/visible eye, abscess, peeling skin, bad teeth, acne, bloody
blood/medical treatment injury, wound, surgery, peel, pharmacy, emergency,

tongue, gummy, throat, lip, infection, pain
Drinking/Party Photos of a party/drinking/smoking drinking, body shot, drunk, hang out, smoking, alcohol

party, cigarette, music, event, concert, night, vodka
Appearance/Facial Photos of appearance/facial expression/ tattoo, ungroomed, messy hair, overweight,piercing,
expression pose/clothing that reflect negatively unflattering appearance, unsatisfying body, unfashionable

on personal character funny looking, strange hair, wig, scary looking, silly
forced smile, unamused face, tight clothing

Bad character/ Crime scene/unlawful behaviours infidelity, cheating, dangerous, illegal, drugs, abused
Unlawful criminal arrest, children in danger, mugshot, marijuana, drug,

kills, thief, stealing, bomber, smuggler, gang, prisons, robbery
Religion/Culture Photos that reveal people’s religion culture, religion, spiritual, bible, catholic

belief christian, christianity, church, faith, hinduism, holy
indian, islam, judaism, religious, sacred, sikhism, traditional

Personal information Personally identifiable information bank account, home address, license plate, automobile,
credit card, email, passport, password, sign, ticket, laptop

browser, computer, internet, railway, flight, username

Table 1: Privacy taxonomy and keywords table.

the distance between a “private” and “public” annotation and
a “clearly private” and “private” annotation equally. We ex-
pect an image with a private and a public annotation to have
larger disagreement scores compared with a private and a
clearly private annotation. Inspired from (Desai, Caragea,
and Li 2020), we incorporate the distance between the fine-
grained privacy annotations into the agreement score and
define the pairwise agreement (PA) between workers as fol-
lows:

PAavg =
1

N

N∑
n=1

PAn (1)

PAn =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

d(wi, wj) (2)

d(wi, wj) = 1− |f(ei)− f(ej)| (3)

where N is the total number of images. PAn is the average
of all pair-wise distances. m is the number of annotators.
f maps the worker wi’s annotation (ei) and wj’s annota-
tion (ej) to numbers: clearly private: 0, private: 0.25, public:
0.75, clearly public: 1.00. This mapping reflects the differ-
ence between annotations: private is “more different” from
public (|0.25− 0.75|) than clearly private (|0.25− 0|). Dis-
tance is inversely proportional to the agreement score (as
shown in (3) ). The correctness of this pairwise agreement
metric is verified from a user study performed in a similar
approach (Desai, Caragea, and Li 2020). Here, we observe
a similar PA score obtained using 3 and 5 annotators. When
using 3 annotators, we obtain an average value of 0.81 on

all classes, which shows high agreement.1 We also study
the per-class inter-agreement score, and observe lower inter-
annotator agreement on the private-sphere classes (clearly
private: 0.66, private: 0.56) than the public-sphere classes
(public:0.80, clearly public: 0.89). This result implies that
annotators agree more on the public images, but tend to
be more subjective when annotating private images. Among
10 privacy categories, we observe that “Nudity/Sexual” and
“Appearance/Facial Expression” show high PA scores for
the private classes: 0.82 and 0.71, 0.71 and 0.74 for clearly
private and private, respectively. In contrast, “Bad Char-
acteristics/Unlawful/Criminal”, “Personal Info”, and “Re-
ligion/Culture” show high agreement scores for the public
classes: 0.81 and 0.91, 0.80 and 0.92, and 0.81 and 0.91 for
public and clearly public, respectively. We also transform
the 4-class annotations into binary labels and compute the
inter-annotator agreement using Fleiss’ kappa, and obtain an
average value of 0.37 on all privacy classes.

Analysis
Privacy Distribution We explore both the overall privacy
distribution and category-wise privacy distribution in order
to gain a better understanding of which specific categories
are identified and perceived as private. Results are shown in
Figure 2.

From Figure 2, we observe that public and clearly public

1A reasonable interpretation of PA scores may be as follows:
0—0.25 (no agreement), 0.25—0.50 (poor agreement), 0.50—0.75
(moderate agreement), 0.75—1.00 (high agreement).
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Figure 2: Label distribution.

categories take the majority of all annotated images. Over-
all, 3% and 9% are annotated as clearly private and pri-
vate, respectively. 30.3% and 57.6% of images are annotated
as public and clearly public. The prevalence of public im-
ages is not surprising, as our data collection targets publicly
available images. With respect to category-wise distribu-
tion, we observe that “Nudity/Sexual”, “Appearance/Facial
Expression” show a higher percentage of images anno-
tated with a private label (including clearly private and
private). Particularly for the “Nudity/Sexual” category, the
breakdown is: 23.00%, 22.36%, 22.49%, and 32.15%, for
clearly private, private, public, and clearly public, respec-
tively. In contrast, images belonging to the “Bad Character-
istics/Unlawful/Criminal”, “Personal Info”, and the “Reli-
gion/Culture” categories show a very low percentage of im-
ages on the private side (less than 4%).

(a) Private (b) Public

Figure 3: Examples of images with same tags (“redeploy-
ment”, “welcome home”, “ceremony”) and annotated with
different privacy labels

Annotators’ Consistency Images uploaded with a same
set of tags (e.g. in an album) are typically semantically re-
lated (e.g. a party, an event, a trip). Therefore, we expect
these to be annotated with a same privacy rating. However,
in our dataset we identify many cases where the images la-
beled under the same tags have been annotated differently.
Our dataset has 4000 images that share the same tags with
other images. Among them there are 1853 unique tags. Out
of those, 19.10% (354) unique tags have images with differ-
ent annotations. An example can be found in Figure 3, where
Figure 3a and 3b are uploaded together and share same im-
age tags but they are annotated with different privacy anno-
tations.

Train Validation Test
Private 788 466 450
Public 2348 1398 1350
Overall 3136 1864 1800

Table 2: Train, validation, and test splits for PrivacyAlert.

To better understand the reasons for this inconsistency, we
consider two potential explanations: either the annotators are
inattentive or inaccurate, or the images, despite their labels,
are not visually or contextually similar. To confirm the first
hypothesis (i.e. annotators’ quality is low), we first checked
the annotation tasks. Images were randomly assigned to the
workers. Every image grouped under the same tag was an-
notated by different workers. This means that each worker
can have their privacy preference of an image. Moreover, of
the workers who had annotated multiple images under same
tags, 65.22% of them were consistent with their annotations.
For example, if a worker had annotated 2 or more images
with same tags, then 65.22% of the time he had annotated
the images as either private or public. To confirm the second
hypothesis, we first use the output of the last fully-connected
layer of ResNet101 pre-trained on ImageNet to extract vi-
sual features for each image. We then calculate the 10 closest
neighbors for each image using the cosine similarities of ex-
tracted features. We found that there are only 99/354 unique
tags with images visually similar to each other. This result
suggests that sharing tags does not imply visual similarity -
and therefore explains the privacy annotation disagreement.

We also investigate whether visually similar images tend
to have similar privacy annotations. For each image, we ex-
tract visual features using pre-trained ResNet and calculate
its 5 closest neighbors. We observe that 62.5% of the images
have more than 3 out of 5 visually similar images annotated
with the same privacy label.

Benchmark Dataset We focus on the task of binary im-
age privacy prediction, consistent with prior works. Accord-
ingly, we transform the 4-class annotations into binary la-
bels.2 We first integrate votes to the private, public sphere,
respectively. i.e., we combine votes for clearly private and
private as votes for the private class, and combine votes for
public and clearly public as votes for the public class. The
final annotation of the image is the class (private or public)
with the highest votes. We first split our dataset into training,
validation, and test sets with the size of 10000, 5000, 5000,
respectively. We remove samples with the same image tags
as they cannot be used to train image tag-based models. Pub-
lic images take the majority part of the online images (the
number of public and private images are in the ratio of 9:1).
To balance the dataset, we downsample the public set. The
balanced ratio of public and private is 3:1. The final dataset
split is shown in Table 2.

Baseline Modeling
We model PrivacyAlert dataset using the following schemes:
(1) single-modal privacy prediction, where we use one

2Note that our PrivacyAlert dataset offers fine-grained privacy
classification capability that we plan to explore in the future.
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Private Public Overall

Model Prec Rec F1 Prec Rec F1 Acc % Prec Rec F1

Object ResNet101+SVM 0.583 0.680 0.628 0.887 0.838 0.862 79.83 0.811 0.798 0.803
ResNet101+FT 0.726 0.667 0.694 0.892 0.916 0.904 85.39 0.850 0.854 0.852

Scene ResNet50+SVM 0.639 0.644 0.642 0.881 0.879 0.880 82.00 0.821 0.820 0.820
ResNet50+FT 0.699 0.613 0.653 0.876 0.912 0.894 83.70 0.832 0.837 0.834

Tags

TagCNN (UT) 0.671 0.703 0.688 0.900 0.884 0.892 83.94 0.843 0.839 0.841
BERT+SVM (UT) 0.569 0.649 0.606 0.877 0.836 0.856 78.94 0.800 0.789 0.794

BERT+FT (UT) 0.700 0.684 0.692 0.896 0.902 0.899 84.78 0.847 0.848 0.847
BERT+FT (DT) 0.728 0.638 0.680 0.884 0.921 0.902 85.00 0.845 0.850 0.847

BERT+FT (UT+DT) 0.746 0.704 0.725 0.903 0.920 0.912 86.61 0.864 0.866 0.865

Table 3: Comparisons of single-modal image privacy prediction models. FT means fine-tuning. UT, DT, and UT+DT represent
user tags, deep tags, and the combination of user tags and deep tags, respectively.

modality (visual-only or textual-only) to predict image pri-
vacy; (2) multi-modal privacy prediction, where privacy pre-
diction is made based on multiple modalities (visual and tex-
tual modalities); (3) Area Under the Margin (AUM) with
deep learning models to identify mislabeled samples from
our dataset.

Single-modal Models
Object-based single-modal privacy prediction models.
Object information is found to be a fundamental modality
to access the privacy nature of an image. For example, a sin-
gle element such as underwear, license plate, and credit card
can be a strong indicator of a private image. Recently, pre-
trained deep learning models have risen in popularity. The
knowledge learned from the pre-trained task can be utilized
for downstream tasks. In our work, we adopt ResNet101
pre-trained on ImageNet for object identification into the
task of image privacy prediction. We experiment with two
approaches: (1) pre-trained model is adopted only to ex-
tract features from input images. The extracted features are
then used to train an SVM for image privacy classification;
(2) pre-trained model is fine-tuned for privacy prediction:
we change the output units from 1000 (object categories in
ImageNet) to 2 (binary privacy classes). We initialize the
weights of the modified model with its pre-trained counter-
part and fine-tune the model using PrivacyAlert for privacy
prediction.

Scene-based single-modal privacy prediction models.
As consistently shown in previous works (Ahern et al. 2007;
Tonge, Caragea, and Squicciarini 2018), the scene context of
an online image can also imply privacy. For example, images
about public places and home environments may be linked
with different privacy preferences. We adopt ResNet50 pre-
trained on Place365 dataset (Zhou et al. 2017) which con-
tains images annotated as 365 scene classes (e.g., dressing
room, airport, etc). Similarly, we experiment with (1) using
the pre-trained ResNet50 to extract scene descriptors of in-
put images from the last fully-connected layer and train an
SVM for privacy classification; (2) replacing the unit of the
last fully connected layer from 365 (scene categories) to 2
(privacy categories). Then we fine-tune the model.

Image tag-based single-modal privacy prediction mod-
els. Image tags are words attached by online users to de-

scribe the image content, which is found to be another
good indicator of image privacy (Zerr et al. 2012; Squic-
ciarini, Caragea, and Balakavi 2017). For example, an im-
age with tags “bra, dressing room” and another image with
tags “mountain, nature” may have different privacy orienta-
tions. Previous works use CNN for image tag-based privacy
classification (Tonge and Caragea 2020). Recently, Zhao
and Caragea (2021) propose to use BERT for this task and
achieve state-of-the-art performance. In our work, we ex-
periment with CNN and BERT for image tag-based privacy
prediction. We use user tags which are user-attached tags
that are directly crawled from the web. As the set of user
tags may be very sparse and often contain noisy words (Sun-
daram et al. 2012), we extract deep tags (Tonge and Caragea
2020) from images. We use the top 10 object categories as
deep tags from the probability distribution extracted from
pre-trained CNN.

Multi-modal Models
PCNH. PCNH (Tran et al. 2016) consists of two joint ar-
chitectures: an AlexNet which extracts object features from
input images, and a CNN model which extracts convolu-
tional features. The two types of features are combined for
privacy classification.

Concat. This approach (Tonge, Caragea, and Squicciarini
2018) uses AlexNet models pre-trained on ImageNet and
Place365 to extract object and scene tags, respectively. Par-
ticularly, top k object category names with the highest proba-
bilities for each input image are selected as object and scene
tags. The combination of object tags, scene tags, and user
tags is used to train an SVM classifier for image privacy pre-
diction.

DMFP. DMFP (Tonge and Caragea 2019) fuses single-
modal predictions using a weighted majority vote. Fusion
is weighed by competence scores for every single modality,
which is generated by competence classifiers learned from
neighborhood information of each input example. The pre-
dictions made by basic classifiers are fused for privacy clas-
sification.

VilBERT. VilBERT (Lu et al. 2019) is a pre-trained model
for vision-language tasks. VilBERT is based on the trans-
former model, that shares the same two-stream BERT with
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Private Public Overall

Prec Rec F1 Prec Rec F1 Acc % Prec Rec F1
PCNH 0.706 0.511 0.593 0.851 0.929 0.888 83.17 0.831 0.832 0.831
Concat 0.626 0.716 0.668 0.900 0.858 0.879 82.22 0.832 0.822 0.826
DMFP 0.666 0.656 0.661 0.886 0.890 0.888 83.17 0.831 0.832 0.831

VilBERT 0.658 0.697 0.677 0.897 0.879 0.888 83.37 0.837 0.834 0.835
Gated 0.779 0.722 0.750 0.910 0.932 0.921 87.94 0.877 0.879 0.878

Table 4: Multi-modal image privacy prediction results.

Private Public Overall

Prec Rec F1 Prec Rec F1 Acc % Prec Rec F1
Gated 0.565 0.622 0.592 0.870 0.840 0.855 78.56 0.793 0.786 0.789
Object 0.510 0.707 0.592 0.888 0.773 0.827 75.67 0.793 0.757 0.768
Scene 0.535 0.624 0.576 0.867 0.819 0.843 77.06 0.784 0.771 0.776
Tag 0.526 0.668 0.587 0.879 0.800 0.837 76.68 0.791 0.767 0.775

Table 5: Prediction performance of models that are trained on PicAlert and test on the test set of PrivacyAlert.

a co-attention scheme to fuse the visual and textual infor-
mation. VilBERT has achieved state-of-the-art performance
on many vision-language tasks. We fine-tune VilBERT us-
ing images and tags as a strong baseline for image privacy
prediction.

Gated Fusion. Gated fusion is a decision-level multi-
modal fusion technique. Privacy predictions generated by
the trained single-modal models are fed into the Gated
fusion network. Gated network dynamically learns fusion
weights from single-modal predictions representing the re-
liability of each single modalities. The fusion weights are
then used to regularize the weighted average fusion so
that more reliable modalities are strengthened with higher
weights, and less reliable modalities are restrained with
lower weights.

AUM
In many real-world scenarios, datasets may contain samples
that are mislabeled. Even in the most celebrated datasets
such as MNIST and ImageNet, some harmful examples also
exist. This is because human annotators are prone to make
mistakes. Mislabeled training data introduces noise to deep
neural networks: the model may achieve zero training error
for those mislabeled data or generate random predictions. In
our case, a private image that is mislabeled as public may
confuse the model and limit the performance for the private
image prediction, which further leads to privacy leakage.
To tackle this issue, we use AUM (Area Under the Margin)
(Pleiss et al. 2020) based on deep learning models to iden-
tify mislabeled examples from the training set. Specifically,
when an input example is fed into a deep learning model,
AUM measures the average distance between the logits val-
ues for the example’s predicted class and its non-assigned
class.

AUM for a training sample x is calculated as:

AUM(x, y) =
1

T

T∑
t=1

(z(t)y (x)− z
(t)
i (x)) (4)

Category F1-overall F1-private F1-public
Overall 0.878 0.750 0.921
Nudity/Sexual 0.813 0.853 0.752
Other People 0.827 0.683 0.892
Unorganized Home 0.950 0.640 0.974
Violence 0.854 0.623 0.913
Medical Cond/Blood 0.909 0.727 0.945
Drinking/Party 0.846 0.468 0.921
Appear/Facial Express 0.842 0.757 0.883
Bad Character/criminal 0.972 0.500 0.989
Religion/Culture 0.950 0.444 0.977
Personal Info 0.950 0.250 0.974

Table 6: Per-category privacy prediction performance using
the Gated fusion model.

where y is the class label. T is the total number of train-
ing epochs. z(t)y (x) and z

(t)
i (x) represent the logits of the

predicted class and the non-predicted class, respectively.
For correctly labeled examples, which are generalized from
similarly-labeled data, the difference between the two logits
should be large, because the class label can be clearly dis-
tinguished by the model. Examples with low difference be-
tween the predicted class and the non-predicted class could
be examples that are difficult to be identified by the deep
learning model or ones that are mislabelled. To split the
“mislabeled” and the “difficult” examples, we randomly se-
lect a subset of the training set as the threshold set (Pleiss
et al. 2020) and assign them an extra non-exist class label
and train the model. Samples that have lower AUM scores
than the majority of the threshold set are mislabeled data and
are removed from the training set.

Experiments and Results
In this section, we describe the details of our image privacy
prediction experiments and results.

Experimental Settings
We report both the overall and class-wise (private and pub-
lic) performance. The metrics we adopt include overall pre-
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Private Public Overall

Mode Prec Rec F1 Prec Rec F1 Acc % Prec Rec F1

Gated Ori 0.779 0.722 0.749 0.910 0.932 0.921 87.94 0.877 0.879 0.878
AUM 0.796 0.711 0.751 0.907 0.939 0.923 88.22 0.879 0.882 0.880

Object Ori 0.726 0.667 0.694 0.892 0.916 0.904 85.39 0.850 0.854 0.852
AUM 0.744 0.711 0.727 0.905 0.919 0.912 86.67 0.865 0.867 0.866

Scene Ori 0.699 0.613 0.653 0.876 0.912 0.894 83.70 0.832 0.837 0.834
AUM 0.682 0.662 0.672 0.888 0.897 0.893 83.80 0.837 0.838 0.838

Tag Ori 0.746 0.704 0.725 0.903 0.920 0.912 86.61 0.864 0.866 0.865
AUM 0.759 0.716 0.737 0.907 0.924 0.916 87.22 0.870 0.872 0.871

Table 7: Comparisons of single-modal classifiers (i.e., fine-tune ResNet101, ResNet50, and BERT) and Gated fusion model
with AUM. Ori means AUM is not applied.

diction accuracy, and F1-score, precision, and recall for
overall, private class, and public class, respectively. All
hyper-parameters are selected on the validation set. We use
Linear SVM with squared hinge loss.

Results
Single-modal Approaches. We experiment with single-
modal image privacy prediction models: object, scene, and
image tags. The results are shown in Table 3. We observe
following patterns. Firstly, directly fine-tuning (FT) deep
learning models consistently show better performance for
single-modal image privacy prediction than SVM classi-
fiers. Secondly, the combination of user tags and deep tags
(UT+DT) outperform either of them individually. We use the
combination of user tags and deep tags based on BERT for
the rest experiments. Thirdly, the best performing tag-based
classifier (BERT+FT(UT+DT)) shows the best performance
among three modalities, illustrating that in our dataset, im-
age tag is the most effective type of information source that
reveals image privacy.

Multi-modal Approaches. Results of multi-modal im-
age privacy prediction approaches are shown in Table 4,
where we observe that the Gated fusion model consistently
achieves the best performance on all compared metrics. The
improvement of Gated over PCNH shows the importance of
scene and image tags for multi-modal privacy prediction.
The improvement of Gated over Concat illustrates the ad-
vantage of weighted average fusion. The improvements from
Gated to DMFP illustrates that fusion weight can be learned
in a more efficient yet effective way from single-modal pre-
dictions. Gated also outperforms VilBERT. Our inspection
discloses that VilBERT needs more data to learn the image-
tag correlation.

Privacy prediction models trained on PicAlert and eval-
uated on PrivacyAlert. PicAlert captures images posted
over 12 years ago, which may not represent the image
privacy patterns of the current social networking sites.
To investigate this problem, we train deep learning mod-
els using PicAlert dataset and evaluate them using test
images of PrivacyAlert dataset. We experiment with our
best-performing single-modal and multi-modal approaches:
fine-tuning ResNet101, ResNet50, and BERT as single-
modalities for the object, scene, and image tags, respec-
tively, as well as the Gated fusion network for multi-modal

fusion. Results are shown in Table 5. We observe that when
trained with PicAlert and tested with PrivacyAlert, the per-
formance of all models drop significantly compared with
models that are trained with PrivacyAlert. This result sug-
gest that PicAlert cannot reflect privacy patterns of current
online social networking sites.

Per-category Performance We calculate the privacy pre-
diction performance of the Gated fusion model for each
privacy category in the test set. The results are shown
in Table 6. From the results, we observe the following
patterns. Firstly, “Nudity/Sexual” and “Appearance/Facial
Expressions” show high F1-private. These two cate-
gories also have the highest percentage of private ex-
amples. Comparatively, “Personal Information”, “Drink-
ing/Party”, “Religion/Culture” and the “Bad Characteris-
tics/Unlawful/Criminal” show the lowest F1-private, which
are the categories that have the lowest percentage of pri-
vate examples. This suggests that the privacy categories with
high percentage of private examples can help the privacy
prediction model to learn better patterns of private images
and make better predictions, whereas the privacy prediction
model can not predict well for private class on categories
with low percentage of private examples, although they may
achieve good performance on the public class.

AUM In our experiment, we randomly select and assign a
subset ( 13 of the training set) with an artificial privacy class
that does not exist. This subset is referred to as the thresh-
old sample set (Pleiss et al. 2020) and used to mimic the
mislabeled data. The 99th percentile of AUM scores of the
threshold sample set are treated as the threshold between
correctly and mislabeled data (Pleiss et al. 2020). Training
data that yields lower AUM than this threshold are misla-
beled samples. We identify around 100 mislabeled training
samples. We then remove those mislabeled samples from the
training set. Then we use the updated training set to train
single-modal classifiers. Experimental results are shown in
Table 7. We observe that, after identified mislabeled sam-
ples are removed from the training set, all single-modal clas-
sifies achieve better performance, especially in the private
class (e.g., F1). We then use the updated single-modal pre-
dictions to train the Gated fusion network. The results show
that improved single-modalities further contribute to the im-
provements on the multi-modal network: Gated with AUM
on single-modalities improves its original counterpart.
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Easy-to-
label

(a) Private (b) Private (c) Public (d) Public

Hard-to-
label

(e) Private (f) Private (g) Private (h) Private

Mislabeled
(i) Private (j) Private (k) Public (l) Private

Table 8: Examples of easy-to-label, hard-to-label, and mislabeled training samples identified by AUM based on ResNet101.

Examples Detected by AUM

To better understand the effectiveness of AUM, we analyze
training samples that are assigned with high AUM scores
(easy-to-label). These refer to training samples that are easy
to be identified by deep learning models. We also study
training samples with low AUM scores which can be either
hard-to-label or mislabeled samples. Hard-to-label samples
are ones that are annotated correctly, but their privacy pattern
are hard to be identified by deep learning models. Misla-
beled samples are ones that have wrong annotations caused
by inaccurate annotators. We gather samples for each type
in Table 8. We observe that for easy-to-label private samples
((a) and (b)), private information is mostly revealed from
the visual information (e.g., underwear), which can be eas-
ily identified by ResNet101. Public images with high AUM
scores ((d) and (e)) are mostly about public places or objects
(i.e., stadium and food). Hard-to-label examples are shown
in the image (e)-(h). We observe that the privacy informa-
tion of this type of images is not directly reflected by visual
features. Some require additional background knowledge or
common sense. For example, the license plate number of
the car (image (e)), the tax document (image (f)), the body
height and weight information (image (g)), as well as the
patients’ information on the monitor (image (h)) make the
images to be private. Such privacy information is hard to
be captured by ResNet101. As for mislabeled images, we
observe that images of sculptures and paintings with body
exposure that are visually similar to real human beings are
often mislabeled as private images (image (i) and (j)). More-
over, images whose private information is visually hard to be
observed by the annotators are often mislabeled. For exam-
ple, the license plate number of the car on the corner (image
(k)). Another type of mislabeled image is the image whose

privacy is decided by multiple types of modalities. For ex-
ample, image (l) is a model on the stage. Although the ob-
ject itself may be considered as private, we can still decide
the image as public by considering the scene context of the
image (a public activity). AUM identifies such challenging
image and helps us better utilize the training samples.

Conclusion

Privacy leakage from images that people shared on so-
cial networking sites has become an important challenge,
acknowledged by both researchers and practitioners. Con-
sumers’ lack of privacy awareness and of privacy mecha-
nisms to support their preferences has led to several ma-
chine learning and deep learning tools to learn privacy pat-
terns from user-owned images. However, research progress
in this space has been hampered by the absence of a pub-
licly available, up-to-date image dataset. Our study focuses
on creating a dataset that is representative of recent privacy
patterns on social networking sites, and can be used to train
image privacy classifiers based on various types of machine
learning and deep learning models. We use state-of-the-art
privacy taxonomies as the guideline for our data collection
process. As a result, our dataset includes several types of po-
tentially private images. We report classification benchmark
results on various types of deep learning models trained with
single-modal and multi-modal strategies. Our results can be
compared in future studies. We also use AUM to identify
mislabeled data to improve the quality of the training set.
To this end, PrivacyAlert is the most up-to-date dataset for
the task of general image privacy prediction for the research
community. Our dataset also has the potential to be utilized
for domain adaptation between privacy categories.
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have a large collection of images from an individual user.
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