
It Costs to Get Costs!
A Heuristic-Based Scalable Goal Assignment Algorithm for Multi-Robot Systems

Aakash and Indranil Saha
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

{aakashp, isaha}@cse.iitk.ac.in

Abstract

The goal assignment problem for a multi-robot application
involves assigning a unique goal to each robot to minimize
the total cost of movement for all the robots. A significant
step in the state-of-the-art algorithms solving this problem
is to find the cost associated with each robot-goal pair.
For a large multi-robot system with many robots and
many goals in a complex workspace, the computation
time required to find the paths for all robot-goal pairs
may become prohibitively large. We present an algorithm
that solves the optimal goal assignment problem without
computing the paths between all the robot-goal pairs. Instead,
our algorithm computes the obstacle-free optimal path for
any robot-goal pair in a demand-driven way, i.e., if it is
absolutely required to ensure the optimality of the goal
assignment. We evaluate our algorithm extensively on both
randomly generated and standard workspaces for hundreds
of robots. Our experimental results demonstrate that the
proposed algorithm achieves an order-of-magnitude speedup
over the state-of-the-art baseline algorithm. To the best
of our knowledge, our algorithm is the first one to solve
the multi-robot optimal goal assignment problem without
computing the paths for all robot-goal pairs explicitly,
guaranteeing high scalability.

1 Introduction
Several multi-robot applications such as warehouse
management (Li et al. 2021; Chen et al. 2021; Das, Nath,
and Saha 2021), disaster response (Tian et al. 2009),
precision agriculture (Gonzalez-de-Santos et al. 2017),
mail and goods delivery (Grippa et al. 2019), etc. require
the robots to visit specific locations in the workspace to
perform some designated tasks. These applications lead to
the fundamental goal assignment problem for multi-robot
systems: Given the initial locations of a set of robots and a
set of goal locations, assign each robot to a goal so that the
total cost of movements by the robots to their designated
goal locations is minimized. The assignment problem with
the above-mentioned objective is known as linear sum
assignment problem (Burkard and Cela 1999).

A major challenge in solving the goal assignment problem
in a centralized manner is that the cost of reaching each

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

goal location by each robot needs to be known a priori.
Once these costs are known, the well-known primal-dual
Hungarian algorithm (Kuhn 1955; Munkres 1957) can be
applied to find the optimal assignment minimizing the total
cost. Several multi-robot goal assignment and path planning
algorithms (Turpin et al. 2013; Madridano et al. 2019;
Turpin, Michael, and Kumar 2013; Turpin et al. 2014;
Hönig et al. 2018) do compute the costs for all robot-goal
pairs as an integral part of the algorithm. An efficient
way of computing these costs is to employ Dijkstra’s
shortest path algorithm (Dijkstra 1959) for each robot to
find the shortest paths from its initial location to all the
goal locations. However, this method scales poorly with the
size of the workspace and the number of robots and goals.
Thus, this step acts as a hindrance against solving the goal
assignment problem for a large-scale multi-robot system
having hundreds of robots and goals in a centralized manner.

To circumvent the computational challenge of the
centralized approach, several researchers have developed
decentralized solutions to the multi-robot goal assignment
problem (Choi, Brunet, and How 2009; Giordani, Lujak, and
Martinelli 2010, 2013; Liu and Shell 2012; Chopra et al.
2017). In the decentralized setting, each robot is aware of
the cost of reaching a subset of goals. With their available
information, they participate in a consensus algorithm that
involves communication with other robots. These algorithms
are computationally efficient but may involve a large number
of message passing leading to significant communication
overhead, which may render the practical implementation
of such algorithms infeasible. Thus, a major outstanding
question is whether it is possible to design a centralized
solution to the multi-robot goal assignment problem that
is computationally efficient and thus can be deployed
successfully for hundreds of robots and goals.

In this paper, we propose a scalable centralized algorithm
for solving the multi-robot optimal goal assignment
problem. Our algorithm is based on the bipartite graph-based
implementation of the primal-dual Hungarian algorithm that
is widely used to solve the assignment problem. However,
unlike this algorithm, we do not assume that the costs for all
the edges are available a priori. Rather, we initialize those
costs with a heuristic cost which is guaranteed to be a lower
bound of the cost associated with the shortest obstacle-free
path for a robot-goal pair. We compute the obstacle-free

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

2

optimal path for any robot-goal pair in a demand-driven way,
i.e., if it is absolutely required to ensure the optimality of the
goal assignment. This strategy enables us to find the optimal
goal assignment without computing the obstacle-free path
for a significant number of robot-goal pairs, leading to a high
degree of scalability.

The problem addressed in this paper is different
from the conventional Multi-Agent Path Finding (MAPF)
problem (Stern et al. 2019) which assumes that the goal
for each robot is given and the objective is to find
the collision-free paths for the robots. Recently proposed
CBS-TA (Hönig et al. 2018) attempts to solve the task
assignment problem together with optimal collision-free
path finding, but such an algorithm scales poorly with the
number of robots. The objective of our work is to have a
solution to the optimal goal assignment problem for a large
multi-robot system with hundreds of robots within a short
duration such that the robots can embark on their individual
optimal paths towards their respective goals as early as
possible. Eliminating collisions statically for such large
multi-robot systems is computationally infeasible. Rather,
we assume that the robots have a local collision avoidance
mechanism using which they can avoid collisions with other
robots and any dynamic obstacles they come across during
their movement (Alonso-Mora et al. 2010; Snape et al. 2010;
van den Berg et al. 2011; Hennes et al. 2012; Chen et al.
2017; Long et al. 2018).

We implement our algorithm in Python and evaluate
it through thorough experimentation. We evaluate our
algorithm on randomly generated 2D workspaces and
benchmark 2D and 3D workspaces available in the literature.
As the baseline, we consider a Hungarian method-based goal
assignment algorithm where the costs for all robot-goal pairs
are computed, as is done in several prior work (e.g. (Turpin
et al. 2013, 2014)). Our experimental results show that the
proposed algorithm outperforms the baseline algorithm by
an order of magnitude for most problem instances.

The rest of the paper is organized as follows. In Section 2,
we introduce the problem formally and illustrate it with an
example. In Section 3, we present our algorithm and its
complexity and soundness. We present the results of the
evaluation of our algorithm in detail in Section 4. Finally,
we conclude in Section 5 with a brief outline of a potential
future research direction.

2 Problem
Notations: We denote the set of natural numbers by N and
the set of real numbers by R. For a natural number X ∈ N,
let [X] denote the set {1, 2, 3, . . . , X}.

A workspace is a 2D or a 3D space which is
divided by grid lines into square-shaped or cube-shaped
cells, respectively. Each cell can be addressed using its
coordinates. Some cells may be occupied by obstacles. A
typical multi-robot application would require the robots to
complete several tasks in a workspace. To complete those
tasks, the robots need to reach the locations where the
tasks can be completed. These locations are called the goal
locations. Each goal (i.e., task) can be assigned to at most
one robot, while each robot can also be assigned to at most

one goal. We assume that an assignment is feasible for each
robot and goal, i.e., no robot (goal) is trapped within some
obstacles in a way that it cannot be connected with any goal
(robot). Our aim is to find which goal should be assigned
to which robot so that the total cost of movement of all the
robots due to the resultant assignment is minimized.

2.1 Problem Definition
We define the problem formally in this subsection.

Problem 1. Consider a multi-robot application in a
grid-based workspace, where the set S of start locations of
robots and the set F of goal locations are given as inputs.
Let R = |S| and G = |F | denote the number of robots and
goals, respectively.

Let the Boolean variable xij represent the assignment of
robot i ∈ [R] to goal j ∈ [G]. The variable xij takes the
value 1 if robot i is assigned to goal j, otherwise it is 0. Each
robot can be assigned to at most one goal, and each goal
can be served by at most one robot. Let cij denote the cost
of movement between si ∈ S and fj ∈ F , where i ∈ [R] and
j ∈ [G]. Find the robot-goal assignments for the multi-robot
application such that the total cost of movements of all the
robots due to the resultant assignment (without considering
the overhead for collision avoidance) is minimized.

Mathematically, the problem can be written as:

minimize

R∑
i=1

G∑
j=1

cijxij ,

subject to

R < G : ∀ i ∈ [R],
G∑

j=1

xij = 1; ∀j ∈ [G],
R∑
i=1

xij ≤ 1;

R > G : ∀ i ∈ [R],
G∑

j=1

xij ≤ 1; ∀j ∈ [G],
R∑
i=1

xij = 1;

R = G : ∀ i ∈ [R],
G∑

j=1

xij = 1; ∀j ∈ [G],
R∑
i=1

xij = 1;

xij ∈ {0, 1}. (1)

The cost information needs to be known to solve the
above problem. Finding such information incurs a cost
too in terms of the computation time. It is because, in
order to discover the cost of movement between two cells
in a workspace, the shortest obstacle-free path between
them has to be computed. Let us denote such cost by the
phrase actual movement cost. Computing such costs for
all the robot-goal pairs requires solving several complex
path planning problems, which chokes the scalability. Our
goal is to design an algorithm that computes these costs
judiciously for only the necessary robot-goal pairs while
finding a solution to the goal assignment problem.

2.2 Example
Consider the 9 × 9 workspace shown in Figure 1(a). The
black-colored cells denote the obstacles. It has four robots

3

R4 G4

G1 R3
G2

R1 G3

R2
0 1 2 3 4 5

3
4
5
6
7
8

6 7 8
0
1
2

(a) (b) (c)

Figure 1: An example problem

(R1, R2, R3, and R4) and four goals (G1, G2, G3, and
G4). In such a 2D workspace, we consider that a robot can
move in 8 directions (North, South, East, West, North-East,
North-West, South-East, and South-West) from its current
location while respecting the workspace boundaries. It can
move diagonally only if the cells on the sideways are
obstacle-free. The cost of a diagonal movement is 1.5 units,
while the same for a non-diagonal movement is 1 unit.

Figure 1(b) shows the cost matrix having the actual
movement cost for each robot-goal pair. The optimal goal
assignment is depicted by the green cells. Now, can we have
the same optimal goal assignment, without computing all the
actual movement costs? Figure 1(c) shows the transformed
cost matrix, which is an outcome of our approach. Here, only
the colored cells (blue and green) have the actual movement
costs. Note that we obtain the same optimal assignment
(shown in green) without computing all the actual movement
costs. In the next section, we present our algorithm to
achieve this goal.

3 Algorithm
In this section, we present the details of our algorithmic
solution. Its distinguishing feature is that it avoids
computing the actual movement cost for many robot-goal
pairs. It frames a strategy that judiciously computes only
the necessary costs without compromising the optimality.
We use the primal-dual method (Ford and Fulkerson
1956) to solve Problem 1, since it has been shown in
(Carpaneto, Martello, and Toth 1984) and (McGinnis 1983)
that such methods are comparatively more efficient than
the primal ones. For this, we first translate Problem 1 into
its graph-theoretic form (Lawler 1976) which we call the
primal problem. We then consider the corresponding dual
problem. Our algorithm solves both the primal and the
dual problems simultaneously. It maintains a feasible dual
solution while trying to construct a primal solution that
satisfies complementary slackness (with the dual solution)
(Papadimitriou and Steiglitz 1982).

3.1 Graph Theoretic Formulation
Problem 1 can be formally expressed in graph theoretic form
as follows.

Problem 2. Given a bipartite graph G = ([R], [G], E) with
bipartition ([R], [G]) and a cost function cost : E → R,
find a maximum cardinality matching M of minimum cost,
where cost of M is given by:

cost(M) =
∑

(u,v)∈M

cost(u, v).

Problem 2 is also known as the Minimum cost bipartite
matching problem. Its dual uses the notion of feasible vertex
labeling, which is presented below.
Feasible vertex labeling: Given a bipartite graph
G = ([R], [G], E) with bipartition ([R], [G]), a cost
function cost : E → R, and vertex labeling functions
ZR : [R] → R and ZG : [G] → R, a feasible vertex labeling
refers to the labeling of the vertices such that:

cost(u, v) ≥ ZR(u) + ZG(v) ∀(u, v) ∈ E.

We now define the dual of Problem 2.

Problem 3. Given a bipartite graph G = ([R], [G], E) with
bipartition ([R], [G]), a cost function cost : E → R,
and the vertex labeling functions ZR : [R] → R and
ZG : [G] → R, find a feasible vertex labeling of maximum
cost, where the cost of labeling is given by:

cost(ZR, ZG) =
∑

u∈[R]

ZR(u) +
∑

v∈[G]

ZG(v).

We describe the algorithm in the next subsection. Note
that we use the particular case wherein R ≤ G for the ease
of exposition. However, with minor changes, the proposed
solution also holds for the case where G < R.

3.2 Algorithm Description
We present our goal assignment algorithm formally in
Algorithm 1. It uses the Euclidean distance (i.e., the aerial
distance disregarding any obstacles) between a robot’s start
location and a goal location as the heuristic cost, or H-cost
for short. In the rest of the paper, we shall refer to the
actual optimal movement cost (after taking the obstacles into
account) between the same locations as the actual cost, or
A-cost for short. Note that between any two locations, an
H-cost is never greater than the corresponding A-cost.

For an efficient computation of optimal obstacle-free
path and the corresponding A-cost, we implement Forward
Resumable A∗ (FRA∗) after drawing inspiration from
Reverse Resumable A∗ (RRA∗) (Silver 2005). RRA∗ is
designed for the scenario where multiple robots have a
common goal. It commences by searching the path in the
reverse direction, i.e., from the common goal to a particular
robot. While it does so, it uses the conventional open-list
(OL) and closed-list (CL) to keep track of nodes processed
during the graph search, just as in the A∗ search algorithm
(Hart, Nilsson, and Raphael 1968). For the exploration of
subsequent paths from the same goal, RRA∗ reuses the
nodes already present in OL and CL to resume the search
instead of starting from scratch. However, our algorithm, for
a particular robot, may explore optimal obstacle-free paths
(and corresponding A-costs) to more than one goals. Thus,
we adapt the concept of RRA∗ and develop FRA∗ in which
the search executes in forward direction from a common
robot (rather than a common goal). Once the goal (to which
the path needs to be computed) changes for a particular
robot, the heuristic cost for all nodes in OL is evaluated for
the new goal. The search then resumes from the node having

4

Algorithm 1: Goal Assignment for Multi-Robot Systems

Global: C, T , P , nexp, OL, CL

1 procedure solve goal assignment (WS, S, F)
2 R = |S|, G = |F |
3 for i = 1 to R do
4 for j = 1 to G do
5 C(i)(j) = get Euclidean distance(S(i), F (j))
6 T (i)(j) = ‘h’, P (i)(j) = []
7 end
8 end
9 acostmin = explore min actual cost(WS,S, F)

10 ∀ i ∈ [R] : ZR(i) = acostmin(i)
11 ∀ j ∈ [G] : ZG(j) = 0
12 Geq = get equality subgraph(ZR, ZG)
13 M = get initial match(Geq)
14 M = maximize match(Geq,M)
15 while M is not a total matching do
16 ⟨Rc, Gc⟩ = get min vertex cover(Geq,M)
17 ∆ = collect slacks(R,G,Rc, Gc, ZR, ZG)
18 δmin = get min slack(WS,S, F, ZR, ZG,∆)
19 uncover actual cost(WS,S, F,Rc, Gc, ZR, ZG,

δmin)

20 ∀ i ∈ Rc : ZR(i) = ZR(i)− δmin

21 ∀ j ∈ [G] \ Gc : ZG(j) = ZG(j) + δmin

22 Geq = get equality subgraph(ZR, ZG)
23 M = maximize match(Geq,M)
24 end
25 return M
26 end
27 procedure explore min actual cost (WS,S, F)
28 R = |S|, G = |F |
29 for i = 1 to R do
30 acostmin(i) = ∞
31 OL(i) = [], CL(i) = []
32 ⟨hcostmin, hindex⟩ = find min cost(i, G, ‘h’)
33 while ((hindex ̸= −1) & (hcostmin ≤ acostmin(i)))

do
34 ⟨c, p, OL(i), CL(i)⟩ =

FRAStar(WS,S(i), F (hindex), OL(i), CL(i))

35 C(i)(hindex) = c, P (i)(hindex) = p
36 T (i)(hindex) = ‘a’
37 nexp = nexp+ 1

38 ⟨hcostmin, hindex⟩ = find min cost(i, G, ‘h’)
39 ⟨acostmin(i), –⟩ = find min cost(i, G, ‘a’)
40 end
41 end
42 return acostmin

43 end

44 procedure collect slacks (R, G, Rc, Gc, ZR, ZG)
45 for each uncovered robot i ∈ [R] \ Rc do
46 for each uncovered goal j ∈ [G] \ Gc do
47 δ = C(i)(j)− (ZR(i) + ZG(j))
48 ∆.add(⟨i, j, δ, T (i)(j)⟩)
49 end
50 end
51 return ∆
52 end

53 procedure get min slack (WS, S, F , ZR, ZG, ∆)
54 while True do
55 ⟨∆min, index⟩ = find min delta(∆)
56 if ∆min.t == ‘a’ then
57 return ∆min.δ
58 else
59 ⟨c, p, OL(∆min.i), CL(∆min.i)⟩ =

FRAStar(WS,S(∆min.i), F (∆min.j]),
OL(∆min.i), CL(∆min.i))

60 C(∆min.i)(∆min.j) = c
61 P (∆min.i)(∆min.j) = p
62 T (∆min.i)(∆min.j) = ‘a’
63 nexp = nexp+ 1

64 δnew = C(∆min.i)(∆min.j)− (ZR(i)+ZG(j))
65 Update: ∆(index) = ⟨i, j, δnew, ‘a’⟩
66 end
67 end
68 end

69 procedure uncover actual cost (WS, S, F , Rc, Gc, ZR,
70 ZG, δmin)
71 R = |S|, G = |F |
72 for each uncovered robot i ∈ [R] \ Rc do
73 for each uncovered goal j ∈ [G] \ Gc do
74 δ = C(i)(j)− (ZR(i) + ZG(j))
75 if T (i)(j) == ‘h’ and δ == δmin then
76 ⟨c, p, OL(i), CL(i)⟩ =

FRAStar(WS,S(i), F (j), OL(i), CL(i))
77 C(i)(j) = c, P (i)(j) = p
78 T (i)(j) = ‘a’
79 nexp = nexp+ 1
80 end
81 end
82 end
83 end

the least f-value in OL, thereby helping greatly in expediting
the search process. In Algorithm 1, we use FRAStar as a
library function implementing the FRA∗ algorithm, which
takes the workspace, robot’s start location, goal location,
OL and CL (for a robot) as inputs. It provides the optimal
obstacle-free path, corresponding A-cost, and updated OL
and CL as outputs. The updated OL and CL are reused in
subsequent path searches.

We now describe Algorithm 1 in detail. The first

procedure solve goal assignment captures the main
module that invokes other procedures to solve the
multi-robot goal assignment problem. It takes the workspace
WS, the set S having the start locations of the robots, and
the set F having the goals locations as inputs. It begins by
computing H-cost for each robot-goal pair and stores it in
the 2D matrix C (line 5). We keep a record of the cost-type
attribute (i.e., whether a cost is heuristic or actual) in the
2D matrix T , and it is initialized with ‘h’ (symbolizing

5

‘heuristic’) for all the robot-goal pairs (line 6). The paths
are initialized in the 2D matrix P (line 6).

The procedure explore min actual cost discovers the
minimum A-cost acostmin(i) for each robot i ∈ [R] without
computing all its A-costs naively. It does so in the following
way: At the outset, a particular robot i has an H-cost for each
of the goals. So, the procedure searches for its minimum
H-cost hcostmin and replaces it with the corresponding
A-cost. This step is repeated until robot i’s current minimum
H-cost exceeds its current minimum A-cost (line 33). It is
because in that case, there is no need to explore the H-costs
further since they are under-approximation of A-costs, and
if at all explored, will they emerge into higher A-costs only.
FRAStar function is used to compute the A-cost (line 34).
Whenever an H-cost is replaced by its corresponding A-cost,
we also do the following: (i) save the path information
(line 35), (ii) update the cost-type in matrix T (line 36) and
(iii) keep track of the number of path explorations in the
variable nexp (line 37). For a robot, an auxiliary procedure
find min cost fetches the minimum cost of a particular
cost-type (heuristic or actual).

Once the minimum A-cost is available for each robot,
the process to formulate an equality subgraph Geq begins.
Usually, an equality subgraph Geq = ([R], [G], EZR,ZG

) is
a subgraph of a bipartite graph G = ([R], [G], E), such that
its edge set EZR,ZG

is given by:

EZR,ZG
= {(u, v) | ZR(u) + ZG(v) = cost(u, v)}.

As Algorithm 1 computes the A-costs between the
robot-goal pairs in a demand-driven way, it does not have
the bipartite graph consisting of edges with A-costs for all
the robot-goal pairs, from which it can derive an equality
subgraph. Instead, the algorithm leaps to directly construct
the equality subgraph Geq . Symbolically, the robots and
the goals form the bipartition of the vertex set of Geq (see
Figure 2(c) for an example). An initial dual solution in
the form of an initial feasible labeling of the vertices is
obtained wherein the initial label for the robots is their
corresponding minimum A-cost, while the labels for the
goals are set as zero (lines 10-11). Edges of Geq are obtained
using the labels (line 12). Now, as the construction of Geq

is complete, a primal solution in the form of maximum
cardinality matching M is obtained in it (lines 13-14). A
vertex is said to be saturated by a matching if it is an
endpoint of a matched edge. We define a matching as ‘total
matching’ if it completely saturates the set of robots [R]
(when R ≤ G) or the set of goals [G] (when G ≤ R).
Thus, if M is a total matching (i.e., if the primal solution
is feasible), the process terminates, and the following are
reported as output: (i) M : the final robot-goal assignments,
(ii) C(i)(j) where (i, j) ∈ M : cost of final robot-goal
assignments, (iii) P (i)(j) where (i, j) ∈ M : path for final
robot-goal assignments, and (iv) nexp: the number of path
explorations. However, in case the current M leaves one
or more robots unassigned, additional steps are required to
update M until it has an assignment for each robot.

The additional steps begin by finding the minimum vertex
cover ⟨Rc, Gc⟩ corresponding to M (line 16), which enables
the identification of covered robots and covered goals. The

procedure collect slacks is invoked to collect the slack δ
of edge between each pair of uncovered robot and uncovered
goal (line 17). δ for an edge (u, v) is computed as:

δ = cost(u, v)− (ZR(u) + ZG(v)).

A collection data structure ∆ is used to store the slack along
with other information. It consists of tuples, where each
tuple has the following information: (i) robot ID i ∈ [R],
(ii) goal ID j ∈ [G], (iii) δ between i and j, and (iv) cost-type
T (i)(j) of the cost that was used to calculate δ. Individual
elements in a tuple are accessed using the dot operator.

Procedure get min slack finds the minimum slack δmin

(from ∆) that is computed on A-cost (line 18). The equality
subgraph should not have edges with H-cost (as matching
should be computed on A-cost edges only). So only when
the update of labels (lines 20-21) happens with δmin

computed on A-cost, a new edge with A-cost is certain
to appear in the subsequently revised equality subgraph
(line 22). So, if δmin was computed on A-cost, then it is
used to update the labels. However, if δmin was computed
on H-cost, then the corresponding A-cost is explored for
the concerned robot-goal pair (lines 58-66) and the slack is
updated using this A-cost. Furthermore, ∆ is updated with
the revised slack before the process is repeated to search
for δmin. Note that this procedure invokes find min delta
procedure (line 55), which searches for minimum δ and
picks the one that is computed on A-cost over the one
computed on H-cost in case there is a tie.

For the uncovered robot - uncovered goal pairs whose
δ are computed on H-costs and are equal to δmin, the
uncover actual cost procedure replaces their H-costs by
corresponding A-costs (line 19). This is done to ensure that
the explored A-costs whose δ are still equal to δmin can
participate in the subsequently revised Geq (line 22).

The dual solution is modified as follows. The labels of
covered robots are decreased by δmin (line 20) whereas the
labels of uncovered goals are increased by δmin (line 21).
This label-update rule ensures that a new edge in Geq would
appear only between an uncovered robot and an uncovered
goal. Geq is revised using the updated labels (line 22) and an
attempt is made to maximize the current M in Geq (line 23).
The process loops until M becomes a total matching.

3.3 Example
Figure 2 presents an illustration of the step-by-step
execution of Algorithm 1 on the multi-robot goal assignment
problem introduced in Figure 1(a). Figure 2(a) shows the
cost matrix having the H-costs for each robot-goal pair.
Figure 2(b) shows the transformed cost matrix after the
exploration of minimum A-cost for each robot. Blue-colored
cells have A-costs, while the uncolored cells have H-costs.

Note the presence of two blue cells for robot R1. Initially,
hcostmin for R1 is 3 (for G1). With an aim to discover
acostmin for R1, we use the FRA∗ search algorithm to
explore the A-cost corresponding to hcostmin, which yields
7 (see R1-G1 cell in Figure 2(b)). The new hcostmin is
3.61 (for G2), which is less than the current acostmin (7).
So, there is a possibility that the A-cost corresponding to
this new hcostmin can be less than the current acostmin.

6

(a) (b)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(0)

(0)

(0)

4.5

3

4

(c) (d)

(e)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3

4

(1)

(f)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3

4

(1)

5.5

(g)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3

4

(1)

5.5

(h) (i)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3

4

(2)

5.5

(j)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3
4

(2)

5.5

6

(k)

1

[R] [G]

4.5(4.5)

2

3

4

(4.5)

(3)

(4)

1

2

3

4

(0)

(1)

(0)

4.5

3
4

(2)

5.5

6

(l) (m) (n)

Figure 2: Step-by-step illustration of Algorithm 1 on the problem introduced in Figure 1

Therefore, the A-cost for the R1-G2 pair is explored, which
yields 4.5. Now, the new hcostmin is 6 (for G3), which is
greater than the current acostmin (4.5). So, there is no need
to explore A-cost corresponding to new hcostmin as that
would result in a cost greater than or equal to 6 (thus, leaving
the current acostmin unchanged to 4.5). This is the reason
for the presence of two blue cells for R1.

Figure 2(c) shows the equality subgraph. The vertices on
the left denote the robots, whereas the ones on the right
denote the goals. The initial feasible labeling, using the
minimum A-costs, is provided in parentheses. Edges in the
maximum cardinality matching M are shown in red. We
see that robots R2 and R4 are unmatched. As the current
matching is not a total matching, we proceed according to
line 15 and line 16 of Algorithm 1 and find the minimum
vertex cover. The goals G2 and G4 are in the minimum
vertex cover and are shown as red-colored vertices. At this
stage, R1, R2, R3, and R4 are the uncovered robots, while
G1 and G3 are the uncovered goals as they do not belong
to minimum vertex cover. In Figure 2(d), we illustrate the
search procedure for minimum slack δmin that is computed
on A-cost. At first, 0.89 is retrieved as the minimum slack,
but it is computed on H-cost. So, this H-cost is replaced
by exploring the A-cost, and the slack is updated to 2.5.
On searching the minimum slack again, we get 1, which is
computed on A-cost. So, δmin is 1. Once, δmin is available,
those H-costs for which δ equals δmin are replaced by
corresponding A-costs (see Figure 2(e)). Here, the green
row corresponds to δmin, while the blue row represents the

case for which δ, when computed on H-cost, equals δmin,
and due to which the corresponding A-cost is explored. The
labels of vertices are updated using the rule in lines 20 and
21 of Algorithm 1. In Figure 2(f), as there are no covered
robots in the minimum vertex cover, there is no change in the
labels of robots. However, for the uncovered goals G1 and
G3, the labels are increased by δmin (shown in blue color).
The updated equality subgraph, having a new green-colored
edge between R2-G3, is shown in Figure 2(g).

In Figure 2(h), the maximum cardinality matching is
found on the updated equality subgraph, and here we see that
R4 is still unassigned. Thus, one more iteration is required,
which is shown in Figure 2(i)-(l). We find in Figure 2(l)
that all the robots are assigned. Figure 2(m) reflects the
A-costs explored till now in blue color. Figure 2(n) depicts
the resultant goal-assignment in green-colored cells.

3.4 Theoretical Guarantees
Algorithm 1 provides the following guarantees.

Theorem 1 (Correctness). Algorithm 1 provides an optimal
solution to the multi-robot goal assignment problem
(Problem 1). That is, either the robots or the goals,
whichever is less in number, get assigned completely by the
algorithm, and the total cost of the resultant assignment is
minimum.

Theorem 2 (Time complexity). The worst-case time
complexity of Algorithm 1 is O((min(R,G))2 × (RGΨ)),
where Ψ denotes the number of cells in the workspace.

7

For ease of comparison, consider the case when R
and G are equal. The time complexity of Algorithm 1,
which incorporates path planning into the solution of the
goal assignment problem, boils down to O(R4Ψ). The
algorithm that solves the path planning problem for all
robot-goal pairs before employing the Hungarian method
for goal assignment has the worst-case time complexity
of O(RΨ log(Ψ) + R3). Despite the poor worst-case
complexity, our algorithm performs well in practice, which
we show empirically in Section 4.3.

4 Evaluation
4.1 Experimental Setup
We evaluate our algorithm by comparing it with a
baseline algorithm that computes the optimal path for each
robot-goal pair and then finds an optimal assignment using
the Hungarian method. We have implemented both the
baseline algorithm and the proposed algorithm in Python1.

We evaluate our algorithm on randomly generated 2D
workspaces and benchmark 2D and 3D workspaces. We use
two evaluation metrics: (a) the number of robot-goal pairs
for which the actual movement cost is explored and (b) the
total execution time. We also report the speedup (SU) that
our algorithm achieves over the baseline algorithm.

We run all the experiments in a desktop machine with
Intel® CoreTM i7-8700 CPU @ 3.20GHz processor, 32GB
RAM and Ubuntu 20.04. We run each experiment for 20
times and report the mean and standard deviation for the
evaluation metrics. In Table 1 and Table 2, all the reported
results except the speedup are rounded to nearest integers.

4.2 Baseline
As the baseline, we consider an algorithm which first
computes the optimal obstacle-free path for each robot-goal
pair and then uses the Hungarian method to find the
optimal goal assignment. For the first step, we consider
two algorithms: (a) FRA∗ and (b) Dijkstra’s shortest path
algorithm. To compare our algorithm with the best possible
baseline, we perform a study to find which among the
two possibilities is better. Figure 3 shows the result of this
comparative study. We note that the baseline implementation
using Dijkstra’s algorithm wins consistently over the one
using FRA∗ in all the cases. This happens due to the reason
that when we deal with a large number of robots and goals,
and the number of FRA∗ calls is high, the overheads that
come along with FRA∗, such as calculating and updating
H-costs for the nodes in OL, outweigh its quality of being
an informed search. Thus, we compare our algorithm with
the baseline implemented using Dijkstra’s algorithm in all
our experiments presented in the following subsection.

4.3 Experimental Results
Randomly Generated Workspaces Table 1 shows the
experimental results on randomly generated 2D workspaces
having an equal number of robots and goals. We vary

1The source code of implementation is available at
https://github.com/iitkcpslab/H-Scalable-MRGA-TC.git

WS:100^2
R:100, OD:20

WS:100^2
R:200, OD:20

WS:200^2
R:200, OD:20

Boston
R:100

Warehouse
R:200

Mansion
R:200

0

20

40

60

80

100

120

R
un

ti
m

e
(i

n
se

co
nd

s) Baseline using FRA*
Baseline using Dijkstra

Figure 3: A Comparative Study of Two Baseline
Possibilities

three paramaters to thoroughly examine the efficacy of our
algorithm: a) workspace size, b) the number of robots, and
c) the obstacle density (OD) which is the percentage of cells
of a workspace that are occupied by obstacles.

The workspace size varies in the first two blocks of
the table. We observe that owing to the demand-driven
computation of A-costs in our algorithm, the number of
robot-goal pairs for which the A-costs are computed are
significantly less as compared to that in the baseline.
The baseline is bounded to explore A-costs between each
robot-goal pair, which becomes prohibitive as the workspace
size increases. This advantage that our algorithm has over
the baseline grows with the increase in the workspace size
and is reflected by the increasing speedup.

The number of robots R varies in the next two blocks of
Table 1. For different values of R, Algorithm 1 consistently
records better runtime than the baseline. But we observe
a decline in the speedup with an increase in R (and G),
for which the reason is as follows. In general, as R and G
increase, the rate of increase in runtime is more for the goal
assignment than the path computation due to the inherent
time complexities. But for the given values of workspace
size and R (and G), in the case of baseline, the increment
in the time required to solve goal assignment is meager in
front of the increment in the time required to compute paths
(since the baseline computes the paths for all robot-goal
pairs). While in Algorithm 1’s case, the increment in the
time needed to solve goal assignment is considerable when
compared to the increment in the time required to compute
paths (since our approach computes quite a few paths).

The obstacle density varies in the last two blocks of
Table 1. The speedup declines with an increase in OD
and this is because of the following. The runtime of
baseline decreases since with more obstacles in a fixed-size
workspace, Dijkstra’s shortest path algorithm has fewer cells
to process. On the other hand, our algorithm shows nearly
consistent runtime, and the intuition behind it is that with
the increase in obstacles, the benefit gained by the decrease
in the number of cells to process is negated by the increase
in the number of computations of A-cost by our algorithm.
Note that with an increase in OD, the difference between
H-cost and corresponding A-cost tends to increase which
leads to an increase in the number of A-cost computations.
Overall, from the experimental results in Table 1, we infer

8

WS
Size OD R # Exp Runtime (s) SU

Algo 1 Baseline Algo 1

1002 20 100 798±137 10±0 1±0 10.0
2002 20 100 812±232 40±1 3±1 13.3
3002 20 100 732±124 94±1 5±1 18.8
4002 20 100 642±115 175±2 7±2 25.0

1002 20 200 2388±686 23±1 5± 1 4.6
2002 20 200 1764±439 85±1 8± 2 10.6
3002 20 200 1853±487 197±2 14± 4 14.1
4002 20 200 1901±365 355±4 22± 4 16.1

1002 20 100 758±173 10±0 1±0 10.0
1002 20 200 2169±461 23±1 5±1 4.6
1002 20 300 4027±987 38±1 11±2 3.5
1002 20 400 5238±1237 55±2 18±3 3.1

2002 20 100 733±159 40±0 3±1 13.3
2002 20 200 2141±452 86±1 10±2 8.6
2002 20 300 3336±767 137±2 20±4 6.9
2002 20 400 5054±783 193±3 35±6 5.5

1002 10 100 581±80 12±0 1±0 12.0
1002 15 100 677±122 11±0 1±0 11.0
1002 20 100 966±187 10±0 1±0 10.0
1002 25 100 900±129 9±0 1±0 9.0

2002 10 200 1427±294 104±1 8±2 13.0
2002 15 200 1661±286 95±1 9±1 10.6
2002 20 200 1911±451 84±1 9±2 9.3
2002 25 200 2312±609 81±2 10±2 8.1

Table 1: Experimental Results on Random Workspace

that the speedup of our algorithm is inversely proportional
to the congestion in the workspace.

Standard Benchmark Workspaces In Table 2, we
compare the performance of Algorithm 1 with that of the
baseline algorithm for standard workspaces available in the
literature (Stern et al. 2019; Sturtevant 2012). We consider
four real-world city workspaces (Boston, Paris, Sydney and
Shanghai) in 2D and observe that Algorithm 1 outperforms
the baseline significantly for each of them. Algorithm 1
also proves it versatility by outperforming the baseline on
other different types of 2D workspaces such as warehouse,
mansion and den. Mansion and den are taken from the
Dragon Age video games.

The last workspace in Table 2 is a 3D workspace
resembling an environment in Warframe game (Brewer and
Sturtevant 2018). In a 3D workspace, we consider that a
robot can move in 26 directions. We take the cost of a
diagonal movement which causes displacement in all the
three axes as 2 units, the same of a diagonal movement
on a plane as 1.5 units, while the same for a non-diagonal
movement as 1 unit.

Different Number of Robots and Goals Table 3 presents
the results for cases having unequal number of robots
and goals in random workspaces. The speedup shows the
scalability that Algorithm 1 offers to multi-robot systems.

WS
Size R # Exp Runtime (s) SU

Algo 1 Baseline Algo 1

Boston
256×256

100 1193±291 67±1 9±3 7.4
200 4010±1234 139±2 26±6 5.4

Paris
256×256

100 1184±282 65±0 11±5 5.9
200 3527±895 138±2 27±9 5.1

Sydney
256×256

100 751±228 70±1 5±2 14.0
200 1850±493 147±1 13±4 11.3

Shanghai
256×256

100 782±204 70±1 5±2 14.0
200 1905±320 145±1 14±3 10.4

Warehouse
123×321

100 735±223 28±0 2±1 14.0
200 2303±658 62±1 10±2 6.2

Mansion
270×133

100 2224±485 12±0 5±1 2.4
200 7264±1787 28±1 15±3 1.9

Den
257×256

100 1765±675 39±1 12±5 3.3
200 5580±1904 83±1 30±9 2.8

Warframe
146×54×105

100 492±39 7333±71 58±13 126.4
200 1394±197 14613±557 152±55 96.1

Table 2: Experimental Results on Benchmark Workspace

WS
Size OD R G # Exp Runtime (s) SU

Algo 1 Baseline Algo 1

1002 20

50 100 168±18 5.2±0.1 0.1±0.0 52.0
100 150 432±61 10.8±0.4 0.5±0.2 21.6
100 200 374±37 12.6±0.6 0.5±0.1 25.2
200 300 930±111 28.2±1.7 1.8±0.3 15.7

1002 20

100 50 127±22 10.6±0.3 0.1±0.0 106.0
150 100 326±46 17.2±0.5 0.4±0.1 43.0
200 100 271±21 27.1±0.7 0.4±0.1 67.8
300 200 690±103 47.9±2.6 1.7±0.4 28.2

Table 3: Results for R ̸= G cases in Random Workspace

Note that the speedup achieved when R = 100 and G = 150
is much greater than the case when R = 100 and G = 100.
This is because in the former case, the scope of conflict
among the robots reduces and it takes fewer iterations to
obtain the matching.

5 Conclusion
We have presented a scalable centralized algorithm to
solve the optimal goal assignment problem for multi-robot
systems. Experimental results show that our method can
outperform the state-of-the-art method by an order of
magnitude both in 2D and 3D environments irrespective
of whether the number of robots is equal to the number
of goals or not. Our algorithm thus paves the way for the
deployment of large-size multi-robot systems with hundreds
of robots for time-critical applications, which to the best of
our knowledge, was not possible before. In the future, we
would like to address the variant of the goal assignment
problem where a robot is allowed to be assigned with
multiple goals (Chen et al. 2021).

9

References
Alonso-Mora, J.; Breitenmoser, A.; Rufli, M.; Beardsley, P. A.;
and Siegwart, R. 2010. Optimal Reciprocal Collision Avoidance
for Multiple Non-Holonomic Robots. In DARS 2010, Lausanne,
Switzerland, 203–216.
Brewer, D.; and Sturtevant, N. R. 2018. Benchmarks for
Pathfinding in 3D Voxel Space. SoCS.
Burkard, R. E.; and Cela, E. 1999. Linear Assignment Problems
and Extensions. In Handbook of combinatorial optimization,
75–149. Springer.
Carpaneto, G.; Martello, S.; and Toth, P. 1984. The Problem of
Assignment : methods and algorithms. IAC.
Chen, Y. F.; Liu, M.; Everett, M.; and How, J. P. 2017.
Decentralized non-communicating multiagent collision avoidance
with deep reinforcement learning. In ICRA, 285–292.
Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D. D.; and Stuckey,
P. J. 2021. Integrated Task Assignment and Path Planning for
Capacitated Multi-Agent Pickup and Delivery. IEEE Robotics and
Automation Letters, 6(3): 5816–5823.
Choi, H.-L.; Brunet, L.; and How, J. P. 2009. Consensus-Based
Decentralized Auctions for Robust Task Allocation. IEEE Trans.
Robotics, 25(4): 912–926.
Chopra, S.; Notarstefano, G.; Rice, M.; and Egerstedt, M. 2017.
A Distributed Version of the Hungarian Method for Multirobot
Assignment. IEEE Trans. Robotics, 33(4): 932–947.
Das, S. N.; Nath, S.; and Saha, I. 2021. OMCoRP: An Online
Mechanism for Competitive Robot Prioritization. In ICAPS,
112–121.
Dijkstra, E. W. 1959. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1): 269–271.
Ford, L. R.; and Fulkerson, D. R. 1956. A primal-dual algorithm for
linear programs. Linear Inequalities and Related Systems, Annals
of Mathematics Study, 38: 171–181.
Giordani, S.; Lujak, M.; and Martinelli, F. 2010. A Distributed
Algorithm for the Multi-Robot Task Allocation Problem. In Trends
in Applied Intelligent Systems, 721–730.
Giordani, S.; Lujak, M.; and Martinelli, F. 2013. A distributed
multi-agent production planning and scheduling framework for
mobile robots. Computers and Industrial Engineering, 64(1):
19–30.
Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.;
Lopez-Granados, F.; Brandstoetter, M.; Tomic, S.; Pedrazzi, S.;
Peruzzi, A.; Pajares, G.; Kaplanis, G.; Perez-Ruiz, M.; Valero, C.;
del Cerro, J.; Vieri, M.; Rabatel, G.; and Debilde, B. 2017. Fleets
of robots for environmentally-safe pest control in agriculture.
Precision Agriculture, 18: 574–614.
Grippa, P.; Behrens, D. A.; Wall, F.; and Bettstetter, C. 2019.
Drone delivery systems: job assignment and dimensioning. Auton.
Robots, 43(2): 261–274.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
transactions on Systems Science and Cybernetics, 4(2): 100–107.
Hennes, D.; Claes, D.; Meeussen, W.; and Tuyls, K. 2012.
Multi-robot collision avoidance with localization uncertainty. In
AAMAS, 147–154.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.; and Ayanian, N. 2018.
Conflict-based search with optimal task assignment. In AAMAS,
757–765.
Kuhn, H. W. 1955. The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2): 83–97.

Lawler, E. 1976. Combinatorial Optimization: Networks and
Matroids, Holt, Reinhart, and Winston, N. New York.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In AAAI, 11272–11281.
Liu, L.; and Shell, D. 2012. A Distributable and
Computation-flexible Assignment Algorithm: From Local
Task Swapping to Global Optimality. In RSS.
Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; and Pan, J.
2018. Towards Optimally Decentralized Multi-Robot Collision
Avoidance via Deep Reinforcement Learning. In ICRA,
6252–6259.
Madridano, Á.; Al-Kaff, A.; Gómez, D. M.; and de la Escalera, A.
2019. Multi-Path Planning Method for UAVs Swarm Purposes. In
ICVES, 1–6.
McGinnis, L. F. 1983. Implementation and testing of a primal-dual
algorithm for the assignment problem. Operations Research, 31(2):
277–291.
Munkres, J. 1957. Algorithms for the assignment and
transportation problems. Journal of the society for industrial and
applied mathematics, 5(1): 32–38.
Papadimitriou, C. H.; and Steiglitz, K. 1982. Combinatorial
Optimization: Algorithms and Complexity. Prentice-Hall, Inc.
Silver, D. 2005. Cooperative Pathfinding. Aiide, 1: 117–122.
Snape, J.; Van Den Berg, J.; Guy, S. J.; and Manocha, D. 2010.
Smooth and collision-free navigation for multiple robots under
differential-drive constraints. In IROS, 4584–4589.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker,
T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Boyarski,
E.; and Bartak, R. 2019. Multi-Agent Pathfinding: Definitions,
Variants, and Benchmarks. SoCS, 151–158.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfinding.
Transactions on Computational Intelligence and AI in Games, 4(2):
144 – 148.
Tian, Y.-T.; Yang, M.; Qi, X.-Y.; and Yang, Y.-M. 2009.
Multi-robot task allocation for fire-disaster response based on
reinforcement learning. In 2009 International Conference on
Machine Learning and Cybernetics, volume 4, 2312–2317.
Turpin, M.; Michael, N.; and Kumar, V. 2013. Concurrent
assignment and planning of trajectories for large teams of
interchangeable robots. In ICRA, 842–848.
Turpin, M.; Mohta, K.; Michael, N.; and Kumar, V. 2013. Goal
Assignment and Trajectory Planning for Large Teams of Aerial
Robots. In RSS. Berlin, Germany.
Turpin, M.; Mohta, K.; Michael, N.; and Kumar, V. 2014.
Goal assignment and trajectory planning for large teams of
interchangeable robots. Auton. Robots, 37(4): 401–415.
van den Berg, J. P.; Snape, J.; Guy, S. J.; and Manocha, D.
2011. Reciprocal collision avoidance with acceleration-velocity
obstacles. In ICRA, 3475–3482.

10

