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Abstract

While the unsolvability IPC sparked a multitude of plan-
ners proficient in detecting unsolvable planning tasks, there
are gaps where concise unsolvability arguments are known
but no existing planner can capture them without prohibitive
computational effort. One such example is the sliding tiles
puzzle, where solvability can be decided in polynomial time
with a parity argument. We introduce separating functions,
which can prove that one state is unreachable from another,
and show under what conditions a potential function over
any nonzero ring is a separating function. We prove that we
can compactly encode these conditions for potential functions
over features that are pairs, and show in which cases we can
efficiently synthesize functions satisfying these conditions.
We experimentally evaluate a domain-independent algorithm
that successfully synthesizes such separating functions from
PDDL representations of the sliding tiles puzzle, the Lights
Out puzzle, and Peg Solitaire.

Introduction
On January 24, 1880, dentist Dr. Charles K. Pevey offered a
set of teeth worth $25 to anyone who could solve the 14-15
puzzle (Slocum and Sonneveld 2006). To claim the prize you
had to show how 15 wooden tiles arranged as in Figure 1a
can be sorted by shifting them inside their box. Larger prizes
were offered later on but nobody ever claimed them as the
problem happens to be unsolvable (Johnson and Story 1879;
Archer 1999).

To understand why the problem is unsolvable, consider
the positions in order of the snaking path shown in Fig-
ure 1b. We say that a pair of tiles is ordered incorrectly if the
one that occurs first on this path does not occur first in the
goal position. (The blank position does not count as a tile.)
The initial position has exactly one incorrectly ordered pair,
namely the tiles 14 and 15. Moving any tile along the path
does not change the number of incorrectly ordered pairs.
Only shifting a tile along one of the gray arrows shown in
Figure 1b can change this number. A tile moving along one
of these arrows changes its position relative to exactly 2, 4,
or 6 tiles. Independent of whether the individual changes are
from correct to incorrect order vice versa, the total number
of incorrectly ordered pairs is always changed by an even
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(a) 14-15 puzzle (b) Ordering path and tran-
sitions affecting order

Figure 1: Initial configuration and (un)solvability argument
for the 14-15 puzzle.

number. Consider a function that maps every game state to
0 if the number of incorrectly ordered pairs is even, and to
1 if it is odd. Moving any tile in any game situation does
not change the value of the function, but the initial state and
goal state have different values. In this way, the function sep-
arates reachable states from unreachable ones.

We formalize the general idea underlying this argument
in the area of classical planning to detect if planning tasks
are unsolvable. After introducing planning tasks formally,
we define separating functions as functions that separate
two states in the way we saw for the 14-15 puzzle. We
then discuss a syntactic restriction of separating functions
to weighted sums analogous to potential heuristics (Pom-
merening et al. 2015). In this form, separating functions can
compactly express why some planning tasks are unsolvable
without relying on a search.

Separating functions can exist over different rings and re-
lations. We present both necessary and sufficient conditions
describing such functions and discuss their properties with
respect to certain relations and rings. Furthermore, we show
how to synthesize separating functions and so come up with
an argument for unsolvability automatically. In general, this
is intractable but we show tractable cases in particular for
functions over the field F2, which encode parity arguments
as the one for the 14-15 puzzle, and over R. Mutex informa-
tion can be used to strengthen separating functions and can
prove unsolvability in additional cases.

To evaluate this approach empirically, we implemented
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the synthesis of separating functions, specifically for parity
arguments (i.e, over F2). While there are only few domains
where this proves unsolvability, we argue that these domains
rely on parity arguments that are hard to capture efficiently
by other techniques.

Finally, we compare separating functions to related no-
tions such as traps (Lipovetzky, Muise, and Geffner 2016),
inductive sets (Eriksson, Röger, and Helmert 2017), dead-
end formulas (e. g. Junghanns and Schaeffer 1998), and in-
variants (e. g. Blum and Furst 1997).

Background
We define planning tasks Π according to the SAS+ formal-
ism (Bäckström and Nebel 1995), where Π = 〈V ,O, s0, s∗〉,
and require them to be in transition normal form (TNF;
Pommerening and Helmert 2015) 1.

The set V contains variables V that can be assigned to
values within their finite domain dom(V ). An atom is a tu-
ple 〈V, d〉 where V is a variable and d ∈ dom(V ) is its
assigned value. We refer to the variable mentioned in atom
a by var(a). A partial state is an assignment of a subset of
variables in V to a value in their respective domain. Given
a partial state s, we refer to the set of variables assigned by
s as vars(s) and to the value d that s assigns to variable V
by s[V ] = d. When convenient we treat partial state s as a
set of atoms {〈V, d〉 | V ∈ vars(s), s[V ] = d}. A state is a
partial state s with vars(s) = V .

The set O contains operators o = 〈pre(o), eff (o)〉 where
the partial states pre(o) and eff (o) denote the preconditions
and effects of o respectively. In TNF, we must have that
vars(pre(o)) = vars(eff (o)) for all o ∈ O and denote this
variable set by vars(o). An operator o is applicable in state
s iff pre(o) is consistent with s, i. e. pre(o) ⊆ s. Applying
o in s yields the transition s o−→ s′, where state s′ firstly in-
herits all atoms in eff (o), and secondly all atoms a from s
where var(a) /∈ vars(eff (o)). We write s′ = sJoK. A state
s′ is called reachable from state s iff there exists a sequence
of operators such that their successive application starting in
s yields s′.

Lastly, s0 and s∗ refer to the initial and goal state. (In
TNF, the goal is always a fully specified state.) Task Π is
solvable if s∗ is reachable from s0 and unsolvable otherwise.

In order to emphasize the generality of the presented con-
cepts, we discuss them in terms of the least restrictive al-
gebraic structures possible. The most basic structure we
consider is the ring, a set of elements over which associa-
tive, commutative addition as well as associative, distribu-
tive multiplication is defined. For addition, the identity ele-
ment 0 and the inverse of every element in the ring exists. We
only consinder nonzero rings, where the multiplicative iden-
tity element 1 6= 0 is defined. Furthermore, we consider a
special case of rings called fields, in which multiplication is
commutative and multiplicative inverses are defined. Given
prime number p, we denote the finite field containing p ele-
ments by Fp.

1This does not incur a loss in generality; any planning task can
be transformed into TNF in linear time.

Separating Functions
The core mechanic of our approach can be understood as
defining a property that holds in all states reachable from a
state sα. If this property does not hold in a state sω we know
that sω is not reachable from sα. In particular, we define this
property based on a relation ./ over a set X and a function
ϕ that maps states to values in X .
Definition 1 (separating function). Let Π be planning task
with states S . Further, letX be a set and ./ a binary relation
overX . A function ϕ : S → X separates two states sα, sω ∈
S if it satisfies

ϕ(sα) 6./ ϕ(sω) (1)
ϕ(sα) ./ ϕ(s) for all states s reachable from sα. (2)

We call ϕ a separating function for sα and sω with ./ over
X . We omit sα, sω , ./, and X if they are clear from context.

In the 14-15 puzzle, the function ϕ# that maps every state
to the number of incorrectly ordered pairs is a separating
function over Z for the initial state shown in Figure 1a and
the goal state with the relation {(x, y) | x ≡ y (mod 2)}.
The function ϕpar that maps states s to the parity of ϕ#(s) is
a separating function over {0, 1} with the equality relation.
We can also see ϕpar = 1 as an invariant, i. e. a property that
holds in all states reachable from the initial state.

If sα and sω are separated by a function then sω cannot be
reachable from sα. In particular, if a separating function for
the initial and goal state of a task exists, the task is unsolv-
able. We can also show that separating functions are power-
ful enough to capture unsolvability on all tasks:
Theorem 1. Let Π be a planning task with initial state s0

and goal state s∗, and let X be a set with |X| ≥ 2. Then Π
is unsolvable if and only if there exists a separating function
for s0 and s∗ over X .

Proof. If Π is solvable, then s∗ is reachable from s0, so if
ϕ were a separating function then we would get ϕ(s0) ./
ϕ(s∗) from (2) but ϕ(s0) 6./ ϕ(s∗) from (1).

If Π is unsolvable, consider two distinct elements a and b
from X and define ϕ(s) = a if s is reachable from sα and
ϕ(s) = b otherwise. Then ϕ is a separating function with the
equality relation: since Π is unsolvable, s∗ is not reachable
from s0, so ϕ(s0) = a 6./ b = ϕ(s∗) and for all states s
reachable from s0, we have ϕ(s0) = a ./ a = ϕ(s).

Synthesizing such separating functions is in general in-
tractable due to the global condition in equation (2), since
deciding whether s is reachable from sα is as difficult as
deciding solvability in the first place. We thus consider suf-
ficient conditions for functions to be separating functions.
Theorem 2. Given a planning task Π with states S , a setX ,
and a reflexive transitive binary relation ./ over X , every
function ϕ : S → X with ϕ(sα) 6./ ϕ(sω) and either

ϕ(s) ./ ϕ(s′) for all transitions s→ s′

reachable from sα, (3)
or

ϕ(s) ./ ϕ(s′) for all transitions s→ s′ (3′)
is a separating function for sα and sω with ./ over X .
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Proof. It is sufficient to show that (3) implies (2) because
we require (1) explicitly and (3′) implies (3). For any state
s reachable from sα, we know that (3) holds along all tran-
sitions of a path from sα to s. Because ./ is reflexive and
transitive, we can use induction along this path to show
ϕ(sα) ./ ϕ(s).

Note that the argument for the 14-15 puzzle that we made
in the introduction used the reasoning in equation (3′): we
argued that shifting any tile to a neighboring position would
not affect the parity of incorrectly ordered pairs. This argu-
ment was independent of the position of the remaining tiles,
i.e., it applied to all transitions s → s′, even those where s
is not reachable from s0.

The local property in equation (3′) no longer argues about
reachability but it still poses one condition for every transi-
tion in the state space. The number of such transitions can
be exponential in the size of the task. In order to synthe-
size separating functions, we will thus consider cases where
these constraints can be represented compactly.

Separating Potential Functions
Potential functions (Pommerening et al. 2015) are a general
tool to express functions over states. They depend on a no-
tion of features, which are conjunctions of atoms. A feature
f = a1 ∧ · · · ∧ an is true in state s, formally s |= f , iff
ai ∈ s for all atoms 1 ≤ i ≤ n. The dimension of f is given
by the number of its conjuncts. The dimension of a potential
function is its largest feature dimension. A weight function
w maps features F to values, and the potential function then
adds the weights of all true features. Using Iverson brack-
ets (Knuth 1992) for indicator functions, we can define the
potential function as

ϕ(s) =
∑
f∈F

w(f)[s |= f ].

So far, potential functions have used values from R (e. g.,
Pommerening et al. 2015) or Z (e. g., Seipp et al. 2016a), but
we adopt a more general view here. Potential functions only
use addition and multiplication of the form a · b where a is a
value of w and b is a boolean expression. As such, potential
functions can be evaluated over any ring and we consider
weight functions w : F → R for arbitrary (nonzero) rings
R. The definition of potential functions remains the same,
but addition, multiplication, and the values 0 and 1 returned
by the indicator function are interpreted as the respective op-
erations and neutral elements of R.

As an example for a potential function over a ring other
than R or Z, consider the 14-15 puzzle again. We can intro-
duce a feature for each pair of tiles that is true if those tiles
are incorrectly ordered. With the weight function w14-15 :
F → Z/2Z that maps all features to 1, the potential function
computes the parity of incorrectly ordered pairs. A compu-
tation over the quotient ring Z/2Z, and in particular the iso-
morphic field F2, generally makes a parity argument and we
will consider this special case in more detail later.

Potential functions over sufficiently high-dimensional
features can represent any mapping from states to values and

therefore do not incur inherent restrictions compared to gen-
eral functions. In other words, for all nonzero rings R the
statement of Theorem 1 also holds when only considering
potential functions of arbitrary dimension over R, instead
of general functions. Given a ring and an unsolvable task,
we can thus always find a set of features and a weight func-
tion over the ring to certify that the task is unsolvable. This
may however require an exponential number of features and
synthesizing the potential function is PSPACE-hard in gen-
eral, as it decides the plan existence problem. We therefore
consider computationally tractable cases, focusing on lower-
dimensional potential functions and cases where weights of
separating potential functions can be synthesized efficiently.

Our goal is to develop a system of linear constraints of
the form

∑
i aixi ./ b or

∑
i aixi 6./ b where the solutions

correspond to weight functions of separating potential func-
tions. We make one further restriction to the relation used
in the argument that allows us to reformulate conditions (3′)
and (1). We say the relation is translation-invariant if

x ./ y implies (x+ z) ./ (y + z) for all x, y, z ∈ R.
Note that this also implies that 6./ is translation-invariant,
otherwise there would exist x, y, z ∈ R such that x 6./ y and
(x+ z) ./ (y + z). But since ./ is translation-invariant, this
implies ((x + z) − z) ./ ((y + z) − z) which contradicts
x 6./ y.

Since 6./ and ./ are translation-invariant, we can rewrite
conditions (3′) and (1) so that all occurrences of ϕ are on
the left-hand side, by adding the additive inverse of the right-
hand side. Plugging in the definition of a potential function
and rearranging the terms (using associativity, distributivity
and additive commutativity), brings the condition into the
desired form. We summarize this in the following theorem.
Theorem 3. Let R be a nonzero ring and ./ a reflexive,
transitive, and translation-invariant relation on R. Let F be
a set of features for a planning task Π. If there exists a weight
function w : F → R that satisfies∑

f∈F

w(f)([sα |= f ]− [sω |= f ]) 6./ 0 (4)

∑
f∈F

w(f)([s |= f ]− [s′ |= f ]) ./ 0

for all transitions s→ s′, (5)
then the potential function forF andw separates sα and sω .

To make the method tractable, we need a polynomial
method of solving such a system of constraints for the spe-
cific ring R and relation ./, and the number of constraints
and decision variables has to be polynomial in the size of
the task. We will first show that for one-dimensional fea-
tures there is a compact set of constraints that is equivalent
to conditions (4)–(5). For two-dimensional features we can
in general only derive a compact set of constraints which
implies these conditions. However, for the special cases of
the relation = on any nonzero ring and the relations ≤ on
ordered rings, we can show that our compact representa-
tion completely classifies potential separating function for
these features, i.e., that the reverse implication holds as well.
Lastly, we will present efficient solution techniques for dif-
ferent combinations of ./ and R.
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One-Dimensional Features
The key to attaining a compact system of equations is to
express condition (5) in terms of operators instead of tran-
sitions. Considering operator o, we ultimately want to find
an expression for the change in value of features f ∈ F
across transitions s o−→ s′, formally ([s |= f ]− [sJoK |= f ]),
independent of state s. For tasks in TNF and the feature
set containing all one-dimensional features, Pommerening
et al. (2015) observe that this change is fully defined by
o. To see this, consider an arbitrary operator o and atom
a = 〈V, d〉. If V 6∈ vars(o), then o does not change a and
thus the truth of a does not change between s and sJoK. Oth-
erwise, we know that V appears both in the precondition and
effect of o. Since we have pre(o) ⊆ s and eff (o) ⊆ sJoK, we
can thus directly infer whether s |= f and sJoK |= f holds.

Theorem 4. If F is the set of all one-dimensional features,
then constraints (4)–(5) over a nonzero ring R and a re-
flexive, transitive, and translation-invariant relation ./ are
equivalent to the following constraints over the decision
variables w(f):∑

f∈F

w(f)([sα |= f ]− [sω |= f ]) 6./ 0 (6)

∑
f∈pre(o)∪eff (o)

w(f)([pre(o) |= f ]− [eff (o) |= f ]) ./ 0

for all operators o ∈ O. (7)

Proof. Since conditions (4) and (6) are identical, we only
need to show that conditions (5) and (7) are equivalent for
any transition s o−→ s′, which we do in two steps:∑

f∈F

w(f)([s |= f ]− [s′ |= f ])

(1)
=

∑
f∈{〈V,d〉|V ∈vars(o)}

w(f)([s |= f ]− [s′ |= f ])

(2)
=

∑
f∈pre(o)∪eff (o)

w(f)([pre(o) |= f ]− [eff (o) |= f ]).

Step (1) is justified by the fact that for all f ∈ {〈V, d〉 |
V 6∈ vars(o)} we have s′ |= f iff s |= f , which means
w(f)([s |= f ]− [s′ |= f ]) = 0 and can thus be omitted from
the sum.

For step (2) we similarly first observe that, if f 6∈ pre(o)
and f 6∈ eff (o), then s′ |= f iff s |= f and thus all f 6∈
pre(o) ∪ eff (o) can be omitted in the sum. What is left to
show is that we can replace s |= f with pre(o) |= f and
s′ |= f with eff (o) |= f . If f ∈ pre(o) then we obviously
have s |= f iff pre(o) |= f , and due to the task being in TNF
we also know that 〈V, d′〉 ∈ eff (o), from which follows that
s′ |= f iff eff (o) |= f . The argument for f ∈ eff (o) is
analogous.

Since the equation holds, we know that for every condi-
tion (5) for s o−→ s′ there is a corresponding condition (7)
for o, and in the other direction every condition (7) for o is
covered by at least one condition (5) for s o−→ s′.

Two-Dimensional Features
For two-dimensional potential heuristics, Pommerening,
Helmert, and Bonet (2017) show a way to represent admis-
sibility constraints closely resembling constraints (4)–(5) as
a compact system of inequalities. We adapt their result to
separating function constraints and show that it generalizes
to both potential functions over rings and more general rela-
tions.

Unlike the one-dimensional case, the change in value of
two-dimensional features f ∈ F across transitions s o−→ s′ is
not obviously independent of state s anymore. We thus par-
tition the set of features F into three subsets based on their
overlap with o: irrelevant features Firr that share no vari-
able with vars(o), context-independent features Find that
share both2 variables with vars(o), and context-dependent
features Fctx that share one of two variables with vars(o).
Using these notions, we can define a compact system of
equations describing separating functions.

Theorem 5. Constraints (4)–(5) over a nonzero ring R and
a reflexive, transitive, and translation-invariant relation ./
are implied by the following constraints over the decision
variables w(f) and Xo

V∑
f∈F

w(f)([sα |= f ]− [sω |= f ]) 6./ 0 (8)

∑
f∈Find

w(f)∆(o, f) +
∑
V ∈V ō

Xo
V ./ 0

for all operators o ∈ O (9)∑
f∈Fctx

f=a∧〈V,d〉

w(f)∆(o, a) ./ Xo
V

for o ∈ O, V ∈ Vō, d ∈ dom(V ), (10)

where ∆(o, f) = ([pre(o) |= f ] − [eff (o) |= f ]), Vō =
V \ vars(o) and a is an atom such that var(a) ∈ vars(o).

Proof. This proof generalizes the one by Pommerening,
Helmert, and Bonet.

Constraint (8) is the same as (4), so we must only show
that constraints (9)–(10) imply (5) for a state s and operator
o. We independently consider the contributions of irrelevant,
context-independent, and context-dependent features.

The value of irrelevant features never changes across op-
erator o, therefore ∆(o, f) = 0 for all f ∈ Firr , meaning
such features do not contribute to the total change. Context-
independent features on the other hand are affected, but also
completely determined by o. Both variables mentioned in
features f ∈ Find are assigned in pre(o) and eff (o), thus
the change in value of f across o is given by ∆(o, f).

This leaves the contribution of context-dependent features
f ∈ Fctx . As the name suggests, their value does not solely
depend on o, but also on the context, i. e. the state s. We thus
use constraint (10) specifically for the value s[V ] to show
that the second part of constraint (9) covers the contribution

2We can consider all features to be two-dimensional by replac-
ing one-dimensional features a with a ∧ a.
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of context-dependent features:∑
f∈Fctx

w(f)([s |= f ]− [s′ |= f ])

=
∑
V ∈V ō

∑
f∈Fctx

f=a∧〈V,d〉

w(f)([s |= f ]− [s′ |= f ])

=
∑
V ∈V ō

∑
f∈Fctx

f=a∧〈V,s[V ]〉

w(f)∆(o, a)
(10)
./

∑
V ∈V ō

Xo
V

Together with the first two results and constraint (9), this
shows that constraint (5) is satisfied.

Note that the number of constraints and decision variables
in (8)–(10) is polynomial in the size of Π. In particular, there
are O(|O||V|d) constraints and O((|V|d)2 + |O||V|) deci-
sion variables where d is an upper bound for the size of vari-
able domains.

We now show that for two important choices of relation ./
constraints (4)–(5) also imply the constraints in Theorem 5
and thus completely classify the separating potential func-
tions described in Theorem 3.

Equality Relation Case
For any ring R the equality relation is reflexive, transitive,
and translation-invariant. It can thus always be used as the
relation ./. In that case we can subtract two constraints from
each other (e.g., a = b and c = d implies a − c = b − d).
Consider constraint (5) for two states s1 and s2 that differ
only in one variable V ∈ Vō. The contribution of all irrel-
evant features is 0 and the contribution of features that do
not depend on V is the same in both constraints and cancels
out. Likewise, context-dependent features containing 〈V, d〉
for s1[V ] 6= d 6= s2[V ] contribute nothing. The remaining
constraint is∑

f∈Fctx

f=a∧〈V,s1[V ]〉

w(f)∆(o, a) =
∑
f∈Fctx

f=a∧〈V,s2[V ]〉

w(f)∆(o, a)

and shows that the total contribution of context-dependent
features is the same independent of the value of V . Choosing
this value asXo

V then shows that constraints (9) and (10) are
implied by (5).

Inequality Relation Case
For ordered rings like Z, Q, or R, there exist a translation-
invariant total order ≤ that satisfies our properties. For each
operator o and variable V ∈ Vō there then is a value d for
which ∑

f∈Fctx

f=a∧〈V,d〉

w(f)∆(o, a)

is maximal according to this order. Choosing this value as
Xo
V then shows that constraint (10) is satisfied. To see that

constraint (9) is also satisfied, consider constraint (5) for the
state smax where o is applicable and all variables V ∈ Vō
take their maximal value.

Solving the Constraints
Now that we have a way to construct compact separating
function constraints of desirable form, namely

∑
i aixi ./ b

and
∑
i aixi 6./ b, we discuss possible choices of rings and

relations such that the resulting constraints can be solved
efficiently. Without loss of generality, we focus on poten-
tial functions that separate the initial and goal state in this
section, as this allows us to show unsolvability directly. We
will denote particular cases as a pair consisting of the chosen
ring R and relation ./, written as 〈R, ./〉. In each case, we
do not necessarily need a way to compute a solution to the
constraints, just a way to check whether a solution exists.

Gaussian Elimination If we restrict R to be a field, we
can divide a constraint by a constant (due to multiplicative
inverses existing in fields) and thus can use Gaussian elimi-
nation (e. g. Strang 2016) to find solutions. If we can express∑
i aixi 6= b as an equality, this gives us a method to solve

our constraints for 〈F,=〉 with a field F.
This is particularly useful for the finite fields Fp over

prime number p, for which the equality relation is the only
reflexive, transitive, and translation-invariant relation. We
cannot directly express the inequality

∑
i aixi 6= b as an

equality, but in a finite field with p elements, there are only
p− 1 choices for a value to be different from b. We can thus
construct one system of equations for each value b′ 6= b,
where we replace the inequality with

∑
i aixi = b′. If one

of the systems is solvable, a weight function defining a po-
tential function that separates s0 and s∗ exists and the task
is unsolvable. Note that, in general, this procedure leads to
a number of systems that is exponential in the number of
inequalities, but the constraints we construct always contain
exactly one inequality, making the procedure tractable.

Of particular interest is the case F2, where only one value
b′ 6= b exists and thus only a single system of equations has
to be considered. Gaussian elimination in this field requires
no division or multiplication (all entries are 0 or 1), but only
addition of two rows. Rows

∑
i aixi ./ b can be efficiently

represented as a bit vector where the i-th bit is set iff ai = 1.
Adding two such rows corresponds to computing the bitwise
XOR of these vectors, which is an efficient operation.

A further notable property of F2 is that the resulting
weight function w essentially defines a set of relevant fea-
tures that contains every feature f for which w(f) = 1
holds. In this view, the unsolvability argument is that the
parity of this set’s cardinality remains constant along transi-
tions, but differs between initial and goal state.

Linear Programming On ordered rings, a total order ≤
exists that satisfies our requirements for ./. For 〈Z,≤〉,
〈Q,≤〉, and 〈R,≤〉, linear programming can be used to solve
systems of equations efficiently. However, the relation 6≤ is
> and cannot be expressed in a linear program. To solve
this, we observe that any separating potential function on
〈Z,≤〉, 〈Q,≤〉, or 〈R,≤〉 remains a separating function if
all weights are scaled up by a positive constant, since the
scaling factor cancels out in the constraints of Theorem 3.
We can thus rewrite the inequality ϕ(s0) − ϕ(s∗) > 0 as
ϕ(s0) − ϕ(s∗) ≥ 1. This is because, if a function ϕ exists,
we can scale it up by the factor 1/(ϕ(s0)− ϕ(s∗)).
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Mutex Relaxation
In Definition 1 we have seen the necessary and sufficient
conditions for a separating function. Realizing that the
global nature of condition (3) makes it unsuitable for gener-
ating arguments automatically, we replaced it by the stronger
condition (3′) which encodes a sufficient but not necessary
argument. In terms of the set of transitions considered, these
conditions represent two extremes: condition (3) considers
only the necessary and therefore minimal set of reachable
transitions, while condition (3′) considers the set of all and
therefore the maximal set of transitions. Between these two
cases, there lies a range of separating arguments that disre-
gard some, but not all, unreachable transitions.

We describe one such argument by taking the compact
representation from Theorem 5 and relaxing condition (10)
by introducing reachability information in the form of mu-
texes. A mutex is a set of two atoms {a, a′} such that no state
reachable from the initial state contains both atoms, and we
say a is mutex with a′.

The decision variable Xo
V for a given operator o and

variable V /∈ vars(o) induces an equation for every value
d ∈ dom(V ). Considering one such equation E, its right-
hand side consists of a sum over all context-dependent fea-
tures f = a ∧ 〈V, d〉 where a is an atom whose variable is
mentioned in o. We can see that, within equationE, only fea-
tures containing the atom 〈V, d〉 are considered. This means
that E only puts restrictions on those transitions s o−→ s′

where 〈V, d〉 ∈ s, s′. Additionally, the operator o provides
the knowledge that s ⊇ pre(o) and s′ ⊇ eff (o). We can ex-
ploit this knowledge to prune equations that only constrain
unreachable transitions. If 〈V, d〉 is mutex with an atom in
pre(o) ∪ eff (o), we can conclude that there is no reachable
transition over o where the atom 〈V, d〉 holds and conse-
quently that equation E only constrains unreachable tran-
sitions. Therefore, we can safely ignore E as all reachable
transitions are still sufficiently constrained and condition (3)
holds.

The idea of relaxing constraints over potential func-
tions using mutexes has previously been explored by Fišer,
Horčı́k, and Komenda (2020), who applied this idea to ad-
missibility constraints over one-dimensional features. They
identify disambiguations (Alcázar et al. 2013) to reduce am-
biguity in constraints stemming from both a partial goal
state and operators o where vars(pre(o)) 6= vars(eff (o)).
Clearly, these optimizations do not immediately apply to our
case, as tasks in TNF do not contain these ambiguities by
definition. In our case, ambiguity is instead introduced by
two-dimensional, context-dependent features, as seen in the
previous paragraph. Despite this difference, our application
can also be expressed in terms of disambiguations: for a
given decision variable Xo

V , we identify the disambiguation
Do
V over variable V which contains only those atoms 〈V, d〉

such that 〈V, d〉 is not mutex with any atom in the precondi-
tions or effects of o.

We can now relax condition (10) and rewrite it as∑
f∈Fctx

f=a∧〈V,d〉

w(f)∆(o, a) ./ Xo
V

for o ∈ O, V ∈ Vō, 〈V, d〉 ∈ Do
V .

Evaluation
We implemented two variants for synthesizing potential
functions over 〈F2,=〉 separating the initial and goal state:
• sp(1,F2) uses features of dimension 1, and
• sp(2,F2) uses features of dimension 2 and relaxes the

operator constraints with the help of mutexes computed
through h2 (Bonet and Geffner 2001).

Our implementation is built on top of Fast Downward 20.06
(Helmert 2006) and contains our own straightforward ver-
sion of Gaussian elimination restricted to F2. The experi-
ments were run on an Intel Xeon Silver 4114 processor run-
ning at 2.2 GHz with a 30 minute timeout and a 3.5 GiB
memory limit. The evaluation of the experiments was per-
formed with Downward Lab (Seipp et al. 2017).

We tested our implementation on the benchmark set of
the unsolvability IPC 2016 and additionally on the puz-
zle Lights Out, which we encoded in PDDL. We compared
our approach against Aidos (Seipp et al. 2016b), the win-
ner of the unsolvability IPC 2016, as well as sp(2,R), a
component of Aidos which can be interpreted as synthesiz-
ing two-dimensional potential functions over 〈R,≤〉 sepa-
rating the initial and goal state, and sp(1,R), which is the
same component but only considers one-dimensional po-
tential functions. We ran these configurations with CPLEX
v12.10 as the LP solver. Since most domains are not in
TNF, our approach first translates the task into TNF as de-
scribed by Pommerening and Helmert (2015) with addition-
ally disambiguating the goal state (Alcázar et al. 2013). The
code, benchmarks, and experiment data are available online
(Christen et al. 2022).

While all domains contain some solvable tasks, we only
present results for unsolvable tasks, noting that no configura-
tion incorrectly reported a solvable problem as unsolvable.
Table 1 shows how many unsolvable tasks each approach
identified as unsolvable. For sp(2,F2) we report two num-
bers: due to sp(2,F2) computing h2 for the mutex relax-
ation step, there are cases where h2 alone already detects
unsolvability, which is denoted by the number in parenthe-
ses. The first number is the amount of problems where we
find a separating function but h2 alone cannot show unsolv-
ability, and is the number we will focus on in what follows.

We first compare separating functions over F2. We see
that sp(1,F2) is already sufficient for showing unsolv-
ability in all problems in lights-out and all but two prob-
lems in pegsol. An investigation of the found separating
functions shows that for Lights Out they correspond to a
polynomial time computable argument from Anderson and
Feil (1998) that fully decides unsolvability, while for Peg
Solitaire they correspond to a parity argument described
in Beasley (1985), which is also polynomial time com-
putable but only a sufficient argument for unsolvability.
While sp(2,F2) runs out of time in larger lights-out prob-
lems since it builds significantly larger constraint systems,
it is the only approach to prove unsolvability for all sliding-
tiles tasks, suggesting that it can fully capture the parity ar-
gument introduced earlier. To show the importance of mutex
relaxation we tested a version of sp(2,F2) without it, which
could not find any separating functions for sliding-tiles. This
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domain s
p
(1
,F

2
)

s
p
(2
,F

2
)

s
p
(1
,R

)

s
p
(2
,R

)

A
id

os

bag-barman (20) 0 0 0 0 12
bag-gripper (25) 0 0 15 15 15
bag-transport (29) 0 0 (+15) 9 25 26
bottleneck (25) 0 0 (+10) 0 25 25
cave-diving (25) 0 0 (+1) 1 2 8
chessboard-pebbling (23) 0 0 23 23 23
document-transfer (20) 0 0 (+3) 0 10 13
lights-out (74) 74 55 0 0 36
over-nomystery (24) 0 0 (+2) 0 5 14
over-rovers (20) 0 0 (+3) 0 5 13
over-tpp (33) 0 0 (+1) 1 12 26
pegsol (24) 22 22 0 4 24
pegsol-row5 (15) 1 0 (+2) 12 15 15
sliding-tiles (20) 0 20 0 0 10
tetris (20) 0 0 15 20 20

Table 1: Problems shown unsolvable by domain. For
sp(2,F2), the number in parentheses denotes the amount
of tasks which h2 shows unsolvable.

is due to the fact that the parity argument only works for con-
sistent sliding-tiles configurations, i. e. states where each tile
is in exactly one location, while the state space considered
by Fast Downward’s FDR representation allows for a tile to
be in several locations. The mutex relaxation lets sp(2,F2)
disregard constraints over such inconsistent states.

Looking at sp(2,R) we see that separating potential func-
tions over R are successful in more domains, but cannot find
separating functions for any lights-out or sliding-tiles prob-
lem, and only for a few pegsol problems. This result con-
firms that separating potential functions over different fields
complement each other. The same is not true when vary-
ing dimensionality, as sp(1,R) is dominated by sp(2,R)
with respect to expressive power. Additionally, the tasks
shown unsolvable by sp(1,R) are a subset of those shown
by sp(2,R), which suggests that, over R, expressiveness is
more limiting than resource consumption.

Finally, Aidos proves unsolvability in the most problems
overall, which is not surprising since it is a portfolio of
different approaches which resorts to a breadth-first search
once the other approaches fail. But while Aidos can confirm
all pegsol problems to be unsolvable, it only achieves this in
roughly half the cases for lights-out and sliding-tiles, which
sp(2,F2), and in the case of lights-out even sp(1,F2), fully
proves to be unsolvable.

One important property of separating functions is that
they are not complete, i. e. if they terminate without finding a
separating function we do not know if the task is unsolvable
or not. However, they are guaranteed to run polynomial in
the amount of features they consider. Figure 2 confirms this,
since a linear relation between termination and number of
decision variables on a log-log plot implies a polynomial re-
lation. This means we can roughly estimate the time required
to terminate in advance, which together with their comple-
mentary nature makes them interesting to use in portfolios.
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Figure 2: Termination time as a function of decision vari-
ables for all problems where the algorithm terminated.

For example, a simple complete algorithm could first try to
find a separating function, and in the case of failure, fall back
on a breadth-first search, similarly to Aidos.

Finally we tested sp(2,F2) on 50 unsolvable instances
of the 24 puzzle with a more generous time limit. The in-
stances were generated from the (solvable) instances from
Korf and Felner (2002) by switching two neighboring tiles in
the shared goal state. All problems could be detected as un-
solvable with an average termination time of 5862 seconds
(roughly 1 hour and 38 minutes) and almost no variance
(from 5580 to 6136 seconds), showing that the approach
scales well and yields consistent termination times.

Related Work
Unsolvability and more generally unreachability in planning
has been studied extensively and many different concepts
were introduced for it. One such example is the invariant,
which is a formula ν over state variables that is true in all
states reachable from the initial state. Sometimes invariants
are defined in a stronger way, requiring that for any state s
satisfying ν, all states reachable from s must satisfy ν as
well. We denote this meaning with strong invariant. Invari-
ants have been studied extensively with regards to both gen-
eration (Fox and Long 1998; Gerevini and Schubert 1998;
Rintanen 2000; Helmert 2009) and application (Blum and
Furst 1997; Chen, Zhao, and Zhang 2007; Alcázar and Tor-
ralba 2015). Mutexes are a prominent example of invariants.

When we are interested in whether or not the goal is
reachable, we can turn our attention to dead-end formulas δ
(Junghanns and Schaeffer 1998; Cserna et al. 2018). These
formulas are true only in states from which no goal can be
reached. Marking such states has been a byproduct of ad-
missible heuristics for a long time as they assign an infi-
nite heuristic value to states that are found to be dead-ends,
but there are more recent approaches specifically tailored to
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detecting unsolvable states (Steinmetz and Hoffmann 2017;
Ståhlberg, Francès, and Seipp 2021).

Traps (Lipovetzky, Muise, and Geffner 2016) generalize
the notion of strong invariants by not focusing on the initial
state. A formula τ is a trap iff for all states s which satisfy
τ , all states reachable from s satisfy τ as well. A closely
related concept introduced for creating unsolvability proofs
for planning tasks are inductive sets (Eriksson, Röger, and
Helmert 2017). A set of states S is an inductive set iff for
s ∈ S we have s′ ∈ S for all successor states s′ of s.

All these concepts as well as the separating functions we
introduce here essentially partition the search space into two
parts, one containing the states that have a certain property
P and one containing all other states. For traps, invariants
and dead-end formulas this property is satisfying a formula,
for inductive sets S it is being contained in S, and for sep-
arating functions it is being related to ϕ(sα). Furthermore,
we can classify them on whether they require 1) some sα to
have P , 2) some sω to not have P and 3) a form of (partial)
inductivity.

While only invariants and separating functions require 1),
and only dead-end functions and separating functions re-
quire 2), all concepts require inductivity in some sense. In-
ductive sets and traps (and thus by extension strong invari-
ants) use an identical form of forward inductivity: if a state
has property P , its successors have it as well. This form of
inductivity ensures that all states not satisfying P are un-
reachable from any state satisfying it. Separating functions
and (normal) invariants on the other hand require forward
inductivity only on the subset of states reachable from sα,
which means we can only conclude that any state not hav-
ing P is unreachable from sα

3. Finally, dead-end formulas
use partial backwards inductivitiy, i. e. for all states s from
which we can reach sω and which do not have P , their pre-
decessors must also not have it. From this follows that sω is
unreachable from any state having P . Note however that in
practice dead-end formulas derived from consistent heuris-
tics are also forward inductive, amounting to forward induc-
tivity on dead-ends.

Since traps and inductive sets use the same type of induc-
tivity and have no restrictions on which states have P or not,
they are equally expressive, i. e. the set of states satisfying
a trap is an inductive set and a formula that is satisfied by
all states contained in an inductive set is a trap. In what fol-
lows we will thus only consider traps, noting that all results
related to traps also apply to inductive sets.

Separating functions differ from traps by using only par-
tial inductivity, and requiring sα to have P and sω to not
have P . From this follows that for any trap τ that is neither
unsatisfiable nor valid, we can define a separating function
over 〈F2,=〉 for some sα |= τ and sω 6|= τ by assigning
0 to all states that satisfy τ and 1 to all states s′ that do
not satisfy τ . However, there are non-trivial separating func-
tions ϕ which do not describe a trap, since we might have

3Note that if the separating function satisfies condition (3′) it
effectively requires full forward inductivity, meaning we can con-
clude that all states not having P are unreachable from any state
having P .

ϕ(sα) ./ ϕ(s) and ϕ(sα) 6./ ϕ(s′) for a state s and its suc-
cessor s′ if s is not reachable from sα.

Due to strong invariants being a special case of traps, the
above results apply to them as well. Looking at weak invari-
ants however we can see that a separating function ϕ with
sα = s0 always induces a weak invariant which is true in all
states s with ϕ(sα) ./ ϕ(s). This is due to the fact that both
concepts use partial forward inductivity.

Finally, dead-end formulas and separating functions are in
general incomparable. There are dead-end formulas δ which
do not induce a separating function with sω = s∗, because
there might be states s and s′ reachable from any state (and
thus from any sα) such that s |= δ but s′ 6|= δ, as long
as s cannot reach s∗. Similarly, a separating function might
have ϕ(sα) ./ ϕ(s′) for some s′ from which a goal can be
reached, as long as s′ is unreachable from sα. A formula that
is true for all s with ϕ(sα) ./ ϕ(s) is thus not necessarily a
dead-end formula.

Conclusion
While many different concepts for showing unsolvability in
planning tasks exist, they cannot yet capture certain types of
unsolvability arguments. Inspired from parity arguments for
the sliding tiles puzzle we introduce separating functions,
which offer a fresh and principled way of arguing why a state
is unreachable from another. Starting out from a general def-
inition based on an arbitrary relation ./ and with an arbitrary
codomain X , we show step by step how we need to restrict
the relation and codomain in order to make the computation
of separating functions practically feasible. Our theoretical
analysis shows that we can derive polynomial time algo-
rithms for synthesizing separating potential functions over
〈R,≤〉, 〈Q,≤〉, 〈Z,≤〉 and 〈Fp,=〉, where Fp is a finite field
for prime number p.

We empirically show that synthesizing separating func-
tions over 〈F2,=〉 is successful in several domains, and cov-
ers parity arguments for the sliding tiles puzzle, the Lights
Out puzzle, and Peg Solitaire. Furthermore, a comparison
against a configuration that can be seen as synthesizing sep-
arating functions over 〈R,≤〉 suggests that different types of
separating functions complement each other.

We believe that separating functions over finite fields
other than F2 are able to find arguments which our cur-
rently evaluated configurations cannot find, and are thus a
promising venue for future research. Additionally, investi-
gating which other types of functions are suitable to express
separating functions might yield an even wider array of com-
plementary techniques.
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