
Iterative Depth-First Search for FOND Planning

Ramon Fraga Pereira1, André Grahl Pereira2, Frederico Messa2, Giuseppe De Giacomo1

1Sapienza University of Rome, Rome, Italy
2Federal University of Rio Grande do Sul, Porto Alegre, Brazil

{pereira,degiacomo}@diag.uniroma1.it
{agpereira,frederico.messa}@inf.ufrgs.br

Abstract

Fully Observable Non-Deterministic (FOND) planning models
uncertainty through actions with non-deterministic effects. Ex-
isting FOND planning algorithms are effective and employ a
wide range of techniques. However, most of the existing algo-
rithms are not robust for dealing with both non-determinism
and task size. In this paper, we develop a novel iterative depth-
first search algorithm that solves FOND planning tasks and
produces strong cyclic policies. Our algorithm is explicitly
designed for FOND planning, addressing more directly the
non-deterministic aspect of FOND planning, and it also ex-
ploits the benefits of heuristic functions to make the algorithm
more effective during the iterative searching process. We com-
pare our proposed algorithm to well-known FOND planners,
and show that it has robust performance over several distinct
types of FOND domains considering different metrics.

Introduction
Fully Observable Non-Deterministic (FOND) planning is an
important planning model that aims to handle the uncertainty
of the effects of actions (Cimatti et al. 2003). In FOND plan-
ning, states are fully observable and actions may have non-
deterministic effects (i.e., an action may generate a set of
possible successor states). FOND planning is relevant for
solving other related planning models, such as stochastic
shortest path (SSP) planning (Bertsekas and Tsitsiklis 1991),
planning for temporally extended goals (Patrizi, Lipovet-
zky, and Geffner 2013; Camacho et al. 2017; Camacho and
McIlraith 2019; Camacho et al. 2018; De Giacomo and Ru-
bin 2018; Brafman and De Giacomo 2019), and generalized
planning (Hu and Giacomo 2011; Bonet et al. 2017, 2020).
Solutions for FOND planning can be characterized as strong
policies which guarantee to achieve the goal condition in
a finite number of steps, and strong cyclic policies which
guarantee to lead only to states from which a goal condition
is satisfiable in a finite number of steps (Cimatti et al. 2003).

Existing FOND planning algorithms in the literature are
based on a diverse set of techniques and effectively solve dif-
ficult tasks when the non-determinism of the actions must be
addressed. Cimatti et al. (2003) and Kissmann and Edelkamp
(2009) have introduced model-checking planners based on
binary decision diagrams. Some of the most effective FOND

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planners rely on standard Classical Planning techniques by
enumerating plans for a deterministic version of the task un-
til producing a strong cyclic policy (Kuter et al. 2008; Fu
et al. 2011; Muise, McIlraith, and Beck 2012; Muise, McIl-
raith, and Belle 2014; Muise, Belle, and McIlraith 2014).
There are also planners that efficiently employ AND/OR
heuristic search for solving FOND planning tasks, such as
MYND (Mattmüller et al. 2010) and GRENDEL (Ramı́rez and
Sardiña 2014). Recently, Geffner and Geffner (2018) have
proposed a SAT encoding for FOND planning, and an iterative
SAT-based planner that effectively handles the uncertainty of
FOND planning. Nevertheless, these FOND planners present
some limitations. Some of these planners address the non-
determinism of the actions more indirectly, whereas others
rely on algorithms with sophisticated and costly control pro-
cedures, and others do not take advantage of fundamental
characteristics of planning models. As a result, such FOND
planners are not robust for dealing with some of the non-
determinism aspects of FOND planning and task size.

In this paper, we introduce a novel iterative depth-first
search algorithm that solves FOND planning tasks and pro-
duces strong cyclic policies. Our algorithm is based on
two main concepts: (1) it is explicitly designed for solving
FOND planning tasks, so it addresses more directly the non-
deterministic aspect of FOND planning during the searching
process; and (2) it exploits the benefits of heuristic func-
tions to make the iterative searching process more effective.
We also introduce an efficient version of our algorithm that
prunes unpromising states in each iteration. To better under-
stand the behavior of our proposed iterative depth-first search
algorithm, we characterize its behavior through fundamental
properties of FOND planning policies.

We empirically evaluate our algorithm over two FOND
benchmark sets: a set from IPC (Bryce and Buffet
2008) and (Muise, McIlraith, and Beck 2012); and a set con-
taining new FOND planning domains, proposed by Geffner
and Geffner (2018). We show that our algorithm outperforms
some of the existing state-of-the-art FOND planners on plan-
ning time and coverage, especially for the new FOND do-
mains. We also show that the pruning technique makes our
algorithm competitive with existing FOND planners. Our con-
tributions open new research directions in FOND planning,
such as the design of more informed heuristic functions, and
the development of more effective search algorithms.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

90

Background
FOND Planning
A Fully Observable Non-Deterministic (FOND) planning
task (Mattmüller et al. 2010) is a tuple Π = ⟨V, s0, s∗,A⟩.
V is a set of state variables, and each variable v ∈ V has a
finite domain Dv. A partial state s maps variables v ∈ V to
values in Dv, s[v] ∈ Dv, or to a undefined value s[v] =⊥.
vars(s) is the set of variables in s with defined values. If
every variable V in s is defined, then s is a state. s0 is
a state representing the initial state, whereas s∗ is a par-
tial state representing the goal condition. A state s is a
goal state if and only if s ⊧ s∗. A is a finite set of non-
deterministic actions, in which every action a ∈ A consists of
a = ⟨pre,EFFS⟩, where pre(a) is a partial state called pre-
conditions, and EFFS(a) is a non-empty set of partial states
that represent the possible effects of a. A non-deterministic
action a ∈ A is applicable in a state s iff s ⊧ pre(a). The
application of an effect eff ∈ EFFS(a) to a state s gen-
erates a state s′ = SUCC(s, eff) with s′[v] = eff [v] if
v ∈ vars(eff), and s′[v] = s[v] if not. The application of
EFFS(a) to a state s generates a set of successor states
SUCCS(s, a) = {SUCC(s, eff) ∣ eff ∈ EFFS(a)}. We call
a ∈ A simple deterministic if ∣EFFS(a)∣ has size one.

A solution to a FOND planning task Π is a policy π which
is formally defined as a partial function π ∶ S ↦ A ∪ {⊥},
which maps non-goal states of S into actions, such that an
action π(s) is applicable in the state s. A π-trajectory with
length k−1 is a non-empty sequence of states ⟨s1, s2, . . . sk⟩,
such that si+1

∈ SUCCS(si, π(si)),∀i ∈ {1,2, . . . , k − 1}.
A π-trajectory is called empty if it has a single state, and thus
length zero. A policy π is closed if any π-trajectory starting
from s0 ends either in a goal state or in a state defined in the
policy π. A policy π is a strong policy for Π if it is closed
and no π-trajectory passes through a state more than once. A
policy π is a strong cyclic policy for Π if it is closed and any
π-trajectory starting from s0 which does not end in a goal
state, ends in a state s′ such that exists another π-trajectory
starting from s′ ending in a goal state. Note that a strong
cyclic policy may re-visit states infinite times, in a cyclic way,
but the fairness assumption guarantees that it will almost
surely reach a goal state at some point along the execution.
The assumption of fairness defines that all action outcomes in
a given state will occur infinitely often (Cimatti et al. 2003).

Determinization and Heuristics for FOND Planning
A determinization of a FOND planning task Π defines a new
FOND planning task ΠDET where all actions are deterministic.
Formally, ΠDET

= ⟨V, s0, s∗,A
DET
⟩ is a task where ADET is

a set of deterministic actions with one action a′ for each
outcome eff ∈ EFFS(a) of all actions in a ∈ A. A s-plan
for ΠDET is a sequence of actions that when applied to s
reaches a goal state. A s-plan is optimal if it has minimum
cost among all s-plans. A solution for ΠDET is a s0-plan.

A heuristic function h ∶ S ↦ R ∪ {∞} maps a state s to
its h-value, an estimation of the cost of a s-plan. A perfect
heuristic h∗ maps a state s to its optimal cost plan or∞, if
no plan exists. A heuristic is admissible if h(s) ≤ h∗(s) for
all s ∈ S. Delete-relaxation heuristics (Bonet and Geffner

2001; Hoffmann and Nebel 2001) can be efficiently used
in FOND planning by applying determinization (Mattmüller
2013). Other types of heuristics for FOND planning have been
proposed in the literature, such as pattern-database heuris-
tics (Mattmüller et al. 2010), and pruning techniques (Win-
terer, Wehrle, and Katz 2016; Winterer et al. 2017).

FOND Planners
One of the first FOND planners in the literature was devel-
oped by Cimatti et al. (2003), and it is called MBP (Model-
Based Planner). MBP solves FOND planning tasks via model-
checking, and it is built upon binary decision diagrams
(BDDs). GAMER (Kissmann and Edelkamp 2009), the winner
of the FOND track at IPC (2008), is also based on BDDs, but
GAMER has shown to be much more efficient than MBP.

MYND (Mattmüller et al. 2010) is a FOND planner based
on an adapted version of LAO∗ (Hansen and Zilberstein
2001), a heuristic search algorithm that has theoretical guar-
antees to extract strong cyclic solutions for Markov decision
problems. NDP (Kuter et al. 2008) makes use of Classical
Planning algorithms to solve FOND planning tasks. FIP (Fu
et al. 2011) is similar to NDP, but the main difference is that
FIP avoids exploring already explored/solved states, being
more efficient than NDP. PRP (Muise, McIlraith, and Beck
2012) is one the most efficient FOND planners in the litera-
ture, and it is built upon some improvements over the state
relevance techniques, such as avoiding dead-ends states. The
main idea of these planners is selecting a reachable state s by
the current policy that still is undefined in the current policy.
Then, the planner finds a s-plan with ΠDET and incorporates
the s-plan into the policy. The planner repeats this process
until the policy is strong cyclic, or it finds out that it is not
possible to produce a strong cyclic policy from the current
policy, and then it backtracks. Since these planners find s-
plan for ΠDET which do not consider the non-deterministic
effects, they can take too much time to find that the current
policy can not become a strong cyclic policy, or they can
add actions to a policy that require too much search effort to
become a strong cyclic policy.

GRENDEL (Ramı́rez and Sardiña 2014) is a FOND planner
that combines regression with a symbolic fixed-point com-
putation for extracting strong cyclic policies. Most recently,
Geffner and Geffner (2018) developed FONDSAT, an iterative
SAT-based FOND planner that is capable to produce strong
and strong cyclic policies for FOND planning tasks.

Iterative Depth-First Search Algorithm
for FOND Planning

In this section, we propose a novel iterative depth-first search
algorithm called IDFS that produces strong cyclic policies
for FOND planning tasks. IDFS performs a series of bounded
depth-first searches that consider the non-determinism aspect
of FOND planning during the iterative searching process. IDFS
produces a strong cyclic policy in a bottom-up way and only
adds an action to the policy if it determines that the resulting
policy with the additional action has the potential to become
a strong cyclic policy without exceeding the current search-
depth bound.

91

Evaluation Function F
A heuristic function h(s) estimates the length of a trajectory
from the state s to any goal state. It can assess whether a
search procedure can reach a goal state without exceeding
a search-depth bound. We define the f -value of a state s
as f(s) = g(s) + h(s), with g(s) being the search depth
from s0 to s. In this paper, we assume that all actions have
a uniform action cost equal to one1. During the iterative
searching process, IDFS considers the application of an ac-
tion a ∈ A to a state s by evaluating the set of generated
successor states SUCCS(s, a) using an evaluation function
Fξ, which returns the estimate of the search depth required
to reach a goal state through SUCCS(s, a). The evaluation
function Fξ uses a parameter function ξ to aggregate the
f -values of states in SUCCS(s, a): Fmin(SUCCS(s, a))
is mins′∈SUCCS(s,a) f(s

′
), and Fmax(SUCCS(s, a)) is

maxs′∈SUCCS(s,a) f(s
′
). Note that the evaluation function

Fξ is “pessimistic” when ξ =max, whereas it is “optmistic”
when ξ =min.

The IDFS Algorithm
We now present the IDFS, and Algorithm 1 formally shows
its pseudo-code.

Main Iterative Loop (Lines 1-8) IDFS performs a series
of bounded depth-first searches, called iterations to solve a
FOND planning task Π. IDFS assumes that h is a heuristic
function for the deterministic version of the task Π. Prior
to the first iteration, IDFS initializes the bound with the esti-
mated value of heuristic function h of the initial state s0. At
each iteration, IDFS aims to produce a solution by searching
to a depth of at most bound. The main loop receives a flag
indicating if the iteration produced a solution from state s0.
If the flag is SOLVED, then π is a strong cyclic policy for
task Π, and IDFS returns it. If the flag is UNSOLVED, then
IDFSR could not produce a strong cyclic policy for task Π
with the current bound. Thus, IDFS assigns to bound the value
of the global variable nextBound . The value of nextBound
is the minimum estimate (Fξ or g-value+1) of a generated
but not expanded set of successors. If no set of successors
with a greater estimate than bound is generated, the main
loop returns UNSOLVABLE. This general strategy of depth-
first search bounded by estimates is inspired by the Iterative
Deepening A∗ algorithm by Korf (1985).

Recursion (Lines 9-36) IDFS iteratively tries to produce
a strong cyclic policy for task Π in a bottom-up way, using
a recursive procedure called IDFSR. Definition 1 formally
defines the concept of partial strong cyclic policy, which we
use to explain the behavior of IDFS.

Definition 1. A policy π is a partial strong cyclic policy from
a state s of a FOND task Π for a setA of primary target states
and a set B of secondary target states, iff A is reachable
from s in π, and π is sinking to B. (We omit A and B, when
the context is clear.)

1All FOND planning domains in the available benchmarks have
actions with unitary cost.

Algorithm 1: IDFS

// Main Iterative Loop.
1 IDFS(s0):
2 bound ∶= h(s0),nextBound ∶=∞
3 while bound ≤ ∣S ∣ do
4 flag , π ∶= IDFSR(s0,∅,∅,∅)
5 if flag = SOLVED then
6 return π
7 bound ∶= nextBound ,nextBound ∶=∞

8 return UNSOLVABLE

// Recursion.
9 IDFSR(s,Z,Z∗, π):

// Base Cases.
10 if s ⊧ s∗ or π(s) ≠ � or s ∈ Z∗ then
11 return SOLVED, π

12 if s ∈ (Z ∖ Z∗) then
13 return UNSOLVED, π

// Evaluate Actions.
14 for a ∈ APPLICABLEACTIONS(s) do
15 if Fξ(SUCCS(s, a)) > bound and Z∗ = ∅ then
16 if Fξ(SUCCS(s, a)) < nextBound then
17 nextBound ∶= Fξ(SUCCS(s, a))

18 continue // Next action.

19 if g(s) + 1 > bound then
20 if g(s) + 1 < nextBound then
21 nextBound ∶= g(s) + 1

22 continue // Next action.

// Fixed Point.
23 Z′

∗
∶= Z∗, π

′ ∶= π,M ∶= SUCCS(s, a),M∗ ∶= ∅
24 repeat
25 REACHEDFIXEDPOINT ∶= TRUE
26 for s′ ∈ (M ∖M∗) do
27 flag , π′ ∶= IDFSR(s

′,Z ∪ {s},Z′
∗
, π′)

28 if flag = SOLVED then
29 M∗ ∶=M∗ ∪ {s

′}

30 Z′
∗
∶= Z ∪ {s}

31 REACHEDFIXEDPOINT ∶= FALSE

32 until REACHEDFIXEDPOINT
33 if M∗ =M then
34 π′(s) ∶= a
35 return SOLVED, π′

36 return UNSOLVED, π

• A is reachable from s in π iff s ∈ A or there is a π-
trajectory starting from s ending in a state of A that does
not includes a state of B ∖A.

• π is sinking to B iff any π-trajectory either goes through
a state of B or ends in a state s′, such that exists another
π-trajectory starting from s′ ending in a state of B.

IDFSR aims to produce a partial strong cyclic policy from
state s of a FOND task Π by searching to a depth of at most
the current bound . IDFSR takes as input four arguments: the
state s, the set Z, the set Z∗, and a policy π. These arguments
are set to empty in each iteration of the main iterative loop.
The set Z contains the ancestors of state s. The policy π is
the policy that IDFS has built up to the moment of the current
call of IDFSR. The set Z∗ ⊆ Z contains all ancestors of state s

92

that: are not in π and are ancestors of states in π. Note that
IDFS has found a trajectory to a goal state for all states in Z∗.
If IDFSR returns SOLVED, then the returned policy is a partial
strong cyclic policy from state s. The sets A and B of the
partial strong cyclic policy are A = S∗ ∪ Sπ ∪ Z∗ (primary
target states) and the set B = A ∪Z (secondary target states).
Sπ is the set {s ∣ π(s) ≠ �}, and S∗ the set {s ∣ s ⊧ s∗}
of goal states. Since A = B = S∗ in the call of IDFSR in
the main loop, the returned partial strong cyclic policy from
state s0 is a strong cyclic policy for task Π.

Consider the FOND planning task example of Figure 1, in
which, s0 is the initial state, s5 is the only goal state, and there
are three non-deterministic actions, applied in states s1, s3

and s10. In the example, the current call of IDFSR is eval-
uating the state s10 (with the current recursion path is in
bold). In this call, the received policy π contains the states
s2, s3, s4, s6 and s8 (in purple), i.e., Sπ = {s2, s3, s4, s6, s8}.
The ancestors of state s10 are the states s0, s1 and s9, i.e.,
Z = {s0, s1, s9}. The former two are in Z∗ = {s0, s1} (in
green). Thus, the set B of secondary target states includes
states of A and the state s9.

IDFSR Base Cases (Lines 10-13) IDFSR first checks
whether the current state s of the recursion is either a primary
target state (s ⊧ s∗ or s ∈ Z∗ or π(s) ≠ �), or a state s ∈ Z
which is not primary target state. If the first case occurs,
IDFSR returns SOLVED. If the second case occurs, it returns
UNSOLVED. Both cases return policy unmodified.

IDFSR Evaluate Actions (Lines 14-22) If the base cases
do not address the state s, IDFSR proceeds to attempt to solve
it (Line 14). To optimize the search, IDFSR evaluates first
the applicable actions with least Fmax(SUCCS(s, a)) and
discards actions with Fmax(SUCCS(s, a)) =∞. If the esti-
mated solution depth of the successor states SUCCS(s, a)
is greater than the current bound (i.e., Fξ(SUCCS(s, a)) >
bound) and Z∗ = ∅ (Line 15), then the set of successor
states is discarded, and Fξ(SUCCS(s, a)) is assigned to
nextBound (Line 17) if nextBound was greater than it.

IDFSR verifies whether Z∗ = ∅ because it aims to find
at least one trajectory from s to a primary target state in
A = S∗∪Sπ∪Z∗. Note thatFξ(SUCCS(s, a)) aggregates f -
values that only estimate the solution depth from s0 through
SUCCS(s, a) to goal states. Thus, Fξ(SUCCS(s, a)) can
only be used to estimate the solution depth to a primary target
state when Z∗ = ∅, since it implies A = S∗.

If Z∗ ≠ ∅ the g-value the successor states SUCCS(s, a)
can be used to estimate the solution depth to a primary target
state. In this case, if g(n) + 1 is greater than the current
bound , the set of successor states is discarded, and g(n) + 1
is assigned to nextBound if nextBound was greater than it.
If neither Fξ(SUCCS(s, a)) nor g(s) prevent the search to
proceed, IDFSR evaluates the successor states SUCCS(s, a).

IDFSR Fixed Point (Lines 23-35) IDFSR recursively de-
scends into the successor states SUCCS(s, a) of s to deter-
mine whether it should or not add the mapping s ↦ a to
the police π. Namely, it adds the mapping s ↦ a to π only
if all the recursive calls on states of SUCCS(s, a) returned
SOLVED (Line 34). If not, it discards the possibility of using

Figure 1: Current path of analysis is in bold. Goal state in
yellow. π is in purple. Z∗ is in green.

the action a on s, and proceeds to the next action.
Consider again the FOND planning task example of

Figure 1. Assume that IDFSR reaches the point to eval-
uate the successor states s11 and s12 of s10. Note
that for s10 the set of A primary target states is
{s0, s1, s2, s3, s4, s5, s6, s8}, and the set B of secondary tar-
get states is {s0, s1, s2, s3, s4, s5, s6, s8, s9}. IDFSR aims to
produce a policy π′ such that A is reachable from s10 in π′,
and π′ is sinking to B. To ensure that, IDFSR must find a tra-
jectory from s10 to a state in A that does not include a state
of B ∖A. Thus, IDFSR analyzes all successors of s10 to find
such a trajectory. Before finding this trajectory, the arguments
π′ ∶= π, Z′ ∶= Z ∪ {s} and Z′∗ ∶= Z∗ passed to IDFSR when
evaluating states s11 and s12 remaining unchanged.

Suppose the first recursive call evaluates s12, thus the pri-
mary targets states for s12 are A. Since s9 is an ancestor of
s12 and s9 ∉ A, there is no trajectory from s12 to a state of A
that does not includes a state ofB∖A. Thus, the recursive call
will fail and return UNSOLVED. Next, IDFSR will proceed to
the other successor state of s10, namely s11. If the recursive
call on s11 fails because of the bound, the algorithm will have
analyzed all successors of s10 without having any progress,
as the set of successors states “already solved” M∗ would
not have changed, and thus a fixed-point would be reached,
resulting in the action being discarded.

Suppose the recursive call on state s11 does not fail, and it
returns SOLVED. Then, the returned policy is a partial strong
cyclic policy from s11 for the set of primary states A′ and the
set of secondary states B′. Since A′ = A and B′ = B ∪ {s}.
IDFSR now evaluates s12 again, but now with a modified A′.
Since we already have a trajectory from s10 to A, now A′

includes also s9, s10 and s11, and B′ = A′. The recursive call
on s12 returns SOLVED because there is a trajectory to A′.
The new policy extended with s10 ↦ a is a partial strong
cyclic policy from s10 for A and B, and can be returned with
the flag SOLVED.

IDFSR End (Line 36) In case none of the actions a ∈
APPLICABLEACTIONS(s) are able to generate a partial
strong cyclic from s to A and B, IDFSR returns UNSOLVED.

IDFS Pruning We now present an extended version of
IDFS called IDFS Pruning (IDFSP). Algorithm 2 presents
the pseudo-code of IDFSP. In essence, IDFSP is similar to

93

Algorithm 2: IDFS Pruning (IDFSP)
1 IDFSP(s0):
2 bound ∶= h(s0),nextBound ∶=∞,X ∶= ∅
3 while bound ≤ ∣S ∣ do
4 flag , π ∶= IDFSPR(s0,∅,∅,∅)
5 if flag = SOLVED then
6 return π
7 bound ∶= nextBound ,nextBound ∶=∞,X ∶= ∅

8 return UNSOLVED

9 IDFSPR(s,Z,Z∗, π):
←Lines 11-14 of Algorithm 1.

10 if s ∈ X then
11 return UNSOLVED, π

12 PROMISING ∶= FALSE
13 for a ∈ APPLICABLEACTIONS(s) do

←Lines 16-23 of Algorithm 1.
// Fixed Point.

14 Z′
∗
∶= Z∗, π

′ ∶= π,M ∶= SUCCS(s, a),M∗ ∶= ∅
15 repeat
16 REACHEDFIXEDPOINT ∶= TRUE
17 for s′ ∈ (M ∖M∗) do
18 flag , π′ ∶= IDFSPR(s

′,Z ∪ {s},Z′
∗
, π′)

19 if M ∩X ≠ ∅ then
20 break
21 if flag = SOLVED then
22 M∗ ∶=M∗ ∪ {s

′}

23 Z′
∗
∶= Z ∪ {s}

24 REACHEDFIXEDPOINT ∶= FALSE

25 if M ∩X ≠ ∅ then
26 break
27 if REACHEDFIXEDPOINT then
28 PROMISING ∶= TRUE

29 until REACHEDFIXEDPOINT
←Lines 34-36 of Algorithm 1.

30 if PROMISING = FALSE then
31 X ∶= X ∪ {s}

32 return UNSOLVED, π

IDFS, and the main difference is that it prunes states dur-
ing the searching process. IDFSPR considers that a state s is
promising if s ∈ A or at least one of its applicable actions a
reaches the fixed point when evaluating the set of successor
states M ∶= SUCCS(s, a). If the state s is not promising,
IDFSPR adds the state s into the global set X. IDFSP sets X to
empty before each iteration. IDFSPR has one additional base
case that returns UNSOLVED if state s ∈ X (Lines 10–11). Dur-
ing the fixed-point computation, IDFSPR verifies if at least
one of the states in M ∶= SUCCS(s, a) is in X and stops the
fixed-point computation if it is. This pruning method helps
the search because it avoids repeated evaluation of states that
generate successors that can not be part of the policy with the
current bound.

Minimal Critical-Value in FOND Planning
We now introduce key properties about the set of strong
cyclic policies of a FOND task Π that are important to char-
acterize the behavior of IDFS. A FOND planning task Π has

(a)

(b) (c)

Figure 2: Minimal Critical-Value example.

a set of strong cyclic policies P(Π) – if Π is unsolvable,
then P(Π) = ∅. Figure 2a shows the state-space of a FOND
planning task Π, with eight states, three deterministic ac-
tions, and two non-deterministic actions – namely {a, b}.
This task has only two strong cyclic policies, π0 = {s0 ↦ c,
s4 ↦ b, s5 ↦ d, s6 ↦ c, s7 ↦ e} and π1 = {s0 ↦ a, s2 ↦ c,
s3 ↦ d}. Figures 2b and 2c, show respectively the part of
the state-space reachable from s0 using each policy. We use
these state-spaces to present the concept of critical-values of
policies (Definition 2).

Definition 2. The critical-value cv(π) of a policy π is the
value of the length of the longest π-trajectory ⟨s1, s2, . . . , sk⟩
with s1

= s0 and no i < j ≤ k − 1 with si = sj .

The cv of π0 is generated by ⟨s0, s4, s5, s6, s7, s4⟩, there-
fore cv(π0) = 5. The cv of π1 is generated by ⟨s0, s2, s3, s0⟩,
therefore cv(π1) = 3. Definition 3 introduces the concept of
minimal critical-value cv∗ of a FOND planning task Π.

Definition 3. The minimal critical-value cv∗ of a FOND
planning task Π is equal to minπ∈P(Π) cv(π).

Thus, the cv∗ of the FOND planning task Π in the Fig-
ure 2a is cv∗(Π) =min{cv(π0),cv(π1)} =min{5,3} = 3.
Definition 3 considers all strong cyclic policies of the task Π,
which are, in general, unavailable. Therefore, we usually do
not know the value of cv∗(Π). Nevertheless, we prove that
if IDFS uses Fmin and an admissible heuristic function for
the deterministic version of the task Π, IDFS will search to a
depth of at most cv∗. Therefore, if Π is solvable, IDFS will re-
turn a strong cyclic policy before the search starts evaluating
states at a depth greater than cv∗.

Theoretical Properties
In this section, we present a proof idea that shows that if
a FOND planning task Π is solvable, IDFS returns a strong
cyclic policy by searching to a depth of at most cv∗(Π), and
if Π is unsolvable, IDFS identifies it correctly. Theorem 1

94

IDFS (Fmin, hBLIND) IDFS (Fmin, hMAX)
Domain (#) C T ∣π∣ bI /bF i C T ∣π∣ bI /bF i

DOORS (#15) 11 30.1 1486.7 0.0/8.0 8.0 11 10.9 1486.7 7.0/8.0 2.0
ISLANDS (#60) 29 18.7 4.9 0.0/4.9 4.9 60 0.1 4.9 4.9/4.9 1.0

MINER (#51) 0 - - -/- - 40 - - -/- -
TW-SPIKY (#11) 4 18.5 26.0 0.0/22.0 22.0 9 3.7 25.0 8.0/22.0 15.0

TW-TRUCK (#74) 13 23.4 13.8 0.0/10.8 10.8 26 0.6 13.2 4.2/10.8 7.7
Sub-Total (#211) 57 22.6 382.5 0.0/11.4 11.4 146 3.8 382.4 6.1/11.4 6.4
ACROBATICS (#8) 4 2.3 14.0 0.0/14.0 14.0 8 0.1 14.0 3.8/14.0 11.3

BEAM-WALK (#11) 8 29.2 254.0 0.0/254.0 254.0 8 9.5 254.0 127.5/254.0 127.5
BW-ORIG (#30) 10 17.4 13.5 0.0/7.5 7.5 10 4.2 12.4 2.8/7.5 5.7

BW-2 (#15) 5 38.0 14.4 0.0/9.4 9.4 5 4.9 14.2 2.8/9.4 7.6
BW-NEW (#40) 6 26.8 8.0 0.0/5.5 5.5 6 2.5 8.0 2.2/5.5 4.2

CHAIN (#10) 2 62.8 42.0 0.0/28.0 28.0 10 0.1 42.0 28.0/28.0 1.0
EARTH-OBS (#40) 8 3.9 19.3 0.0/9.6 9.6 9 0.4 18.3 4.4/9.6 6.0
ELEVATORS (#15) 4 44.0 12.0 0.0/11.3 11.3 5 1.5 11.3 4.8/11.3 7.5

FAULTS (#55) 18 14.8 28.4 0.0/7.3 7.3 19 7.7 21.6 2.0/7.3 6.3
FIRST-RESP (#100) 20 22.5 5.7 0.0/5.7 5.7 23 3.7 6.3 2.6/5.7 4.0

TRI-TW (#40) 3 23.2 22.0 0.0/15.0 15.0 3 13.4 22.0 4.0/15.0 12.0
ZENO (#15) 0 - - -/- - 3 - - -/- -

Total (#590) 145 25.0 131.0 0.0/27.5 27.5 255 3.7 130.3 13.9/27.5 14.6

Table 1: IDFS comparison with Fmin: hBLIND vs hMAX.

bounds the behavior of the IDFS algorithm by the structure of
the FOND planning task Π. The complete proofs are available
in (Pereira et al. 2022).

Theorem 1. Given a FOND planning task Π, an admissible
heuristic function h for a deterministic version of Π, and
IDFS using Fmin. If Π is solvable, then IDFS returns a strong
cyclic policy π by searching to a depth of at most cv∗(Π). If
Π is unsolvable, then IDFS returns UNSOLVABLE.

Proof Idea. If Π is solvable, then there is a strong cyclic
policy π which has cv(π) = cv∗(Π). Suppose state s is part
of the policy π, IDFSR analyzes all actions applicable on s,
including the action that is part of the policy π(s), with incre-
mental search depths and using Fmin and heuristic h when
possible. Since s is in the policy π, IDFSR can, by the con-
struction of the algorithm, find a policy that includes s search-
ing to a depth of at most cv∗. Because task Π is solvable and
s0 is in any policy including policy π, IDFS returns a strong
cyclic policy by searching to a depth of at most cv∗. IDFSR
only returns SOLVED for a state s using action a if all its
successors in SUCCS(s, a) return SOLVED. Thus, if a FOND
planning task Π is unsolvable, IDFS returns UNSOLVABLE.
IDFS always terminates because the state-space size limits
the number of iterations of the main loop.

Experiments and Evaluation
We now present the set of experiments we have conducted
to evaluate the efficiency of our IDFS algorithm for solving
FOND planning tasks. We compare our algorithm to state-of-
the-art FOND planners, such as PRP (Muise, McIlraith, and
Beck 2012), MYND (Mattmüller et al. 2010), and FOND-
SAT (Geffner and Geffner 2018). We have implemented our
algorithm using part of the source code of MYND. We use the
delete relaxation heuristic functions for the deterministic ver-
sion of the planning task as proposed by Mattmüller (2013).

As a result, we have a FOND planner called PALADINUS2.
We empirically evaluate IDFS using two distinct bench-

mark sets: IPC-FOND and NEW-FOND. IPC-FOND contains
379 planning tasks over 12 FOND domains from the IPC
(2008) and (Muise, McIlraith, and Beck 2012). The NEW-
FOND benchmark set (Geffner and Geffner 2018) introduces
FOND planning tasks that contain several trajectories to goal
states that are not part of any strong cyclic policy. NEW-
FOND contains 211 tasks over five FOND domains, namely
DOORS, ISLANDS, MINER, TW-SPIKY, and TW-TRUCK. Note
that 25 out of 590 tasks are unsolvable, namely, 25 FOND
planning tasks of FIRST-RESP– a domain of IPC-FOND.

We have run all experiments using a single core of a 12
core Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz with
16GB of RAM, with a memory limit of 4GB, and set a 5
minute (300 seconds) time-out per planning task. We evaluate
the planners, when applicable, using the following metrics:
number of solved tasks, i.e., coverage (C), time to solve
(T) in seconds, average policy size (∣π∣), initial bound and
the final bound (respectively, bI and bF), and the number
iterations (i). Apart from the coverage (C), all results shown
in Tables 1, 2, 3, and 5 are calculated over the intersection of
the tasks solved by all planners in the respective table.

IDFS with Admissible Heuristic Functions We start our
evaluation by presenting a comparison of IDFS using hBLIND

and hMAX with the evaluation functionFmin. This comparison
evaluates how useful the information of the heuristic function
is for IDFS concerning search efficiency. We evaluate this with
the following metrics: the number of solved tasks, the time to
solve, and the number of iterations required to solve the task
– fewer iterations mean that IDFS reaches faster the depth
where it finds a strong cyclic policy. Table 1 summarizes
the results for all 17 FOND domains of the used benchmark

2PALADINUS code: https://github.com/ramonpereira/paladinus

95

IDFS (Fmin, hADD) IDFS (Fmax, hADD)
Domain (#) C T ∣π∣ bI /bF i C T ∣π∣ bI /bF i

DOORS (#15) 11 14.1 1486.7 26.7/35.7 1.9 11 10.7 1486.7 26.7/120.5 2.8
ISLANDS (#60) 60 0.5 7.0 7.0/7.0 1.0 60 0.6 7.0 7.0/7.0 1.0

MINER (#51) 51 1.1 23.2 39.6/39.9 1.2 51 1.8 23.2 39.6/39.9 1.2
TW-SPIKY (#11) 9 14.9 25.0 8.0/22.0 15.0 6 39.8 25.0 8.0/24.0 17.0

TW-TRUCK (#74) 26 19.3 14.3 3.9/11.1 8.2 21 30.0 14.4 3.9/12.1 9.2
Sub-Total (#211) 157 9.9 311.2 17.1/23.1 5.4 149 16.6 311.2 17.1/40.7 6.2
ACROBATICS (#8) 8 1.6 126.5 63.8/126.5 63.8 8 0.6 126.5 63.8/748.1 73.9

BEAM-WALK (#11) 11 0.5 453.2 453.2/453.2 1.0 9 12.0 453.2 453.2/39176.7 113.6
BW-ORIG (#30) 15 10.5 23.2 14.6/15.2 1.6 25 0.6 17.3 14.6/22.4 2.0

BW-2 (#15) 7 1.6 21.6 15.4/17.0 2.1 14 0.8 21.3 15.4/22.6 2.0
BW-NEW (#40) 10 3.3 20.0 12.3/12.8 1.4 19 0.6 17.4 12.3/19.3 2.0

CHAIN (#10) 10 0.3 162.0 161.0/161.8 1.8 10 0.3 162.0 161.0/161.8 1.8
EARTH-OBS (#40) 18 0.2 47.4 22.9/23.9 1.7 19 0.5 38.8 22.9/25.8 2.5
ELEVATORS (#15) 10 0.1 19.6 21.1/21.7 1.6 8 0.2 19.6 21.1/21.9 1.7

FAULTS (#55) 22 19.5 26.8 5.9/7.9 3.0 23 16.2 26.8 5.9/9.1 2.6
FIRST-RESP (#100) 57 0.3 13.7 12.6/12.6 1.0 31 28.7 14.3 12.6/13.8 2.2

TRI-TW (#40) 3 13.2 22.0 4.0/15.0 12.0 3 9.8 22.0 4.0/15.0 8.0
ZENO (#15) 7 13.4 29.5 30.0/31.2 2.2 6 17.8 29.5 30.0/31.2 2.2

Total (#590) 335 6.7 148.3 53.1/59.7 7.1 324 10.1 147.4 53.1/2380.7 14.5

Table 2: IDFS algorithm using hADD with Fmin and Fmax, without pruning.

IDFSP (Fmin, hADD) IDFSP (Fmax, hADD)
Domain (#) C T ∣π∣ bI /bF i C T ∣π∣ bI /bF i

DOORS (#15) 13 2.3 1486.7 26.7/35.7 1.9 13 1.7 1486.7 26.7/120.5 2.8
ISLANDS (#60) 60 0.3 7.0 7.0/7.0 1.0 60 0.5 7.0 7.0/7.0 1.0

MINER (#51) 51 0.8 23.2 39.6/39.9 1.2 51 0.9 23.2 39.6/39.9 1.2
TW-SPIKY (#11) 10 2.5 1409.3 8.0/20.0 13.0 10 3.4 1409.3 8.0/22.0 15.0

TW-TRUCK (#74) 55 0.2 17.4 3.9/12.8 9.9 44 2.1 19.8 3.9/17.3 14.4
Sub-Total (#211) 189 1.2 588.7 17.1/23.1 5.4 178 1.7 589.2 17.1/41.3 6.8
ACROBATICS (#8) 8 0.1 126.5 63.8/63.8 1.0 8 0.6 126.5 63.8/749.8 75.5

BEAM-WALK (#11) 11 0.4 453.2 453.2/453.2 1.0 11 0.5 453.2 453.2/39176.7 113.6
BW-ORIG (#30) 16 7.5 23.8 14.6/17.6 3.9 29 0.3 16.9 14.6/22.6 2.2

BW-2 (#15) 10 1.0 17.4 15.4/18.6 3.4 15 0.3 19.1 15.4/22.9 2.3
BW-NEW (#40) 12 1.6 14.4 12.3/14.9 3.5 21 0.2 17.4 12.3/19.3 2.0

CHAIN (#10) 10 0.3 162.0 161.0/161.8 1.8 10 0.3 162.0 161.0/161.8 1.8
EARTH-OBS (#40) 19 1.4 40.9 22.9/28.1 4.3 25 0.1 35.6 22.9/27.9 3.9
ELEVATORS (#15) 9 0.1 19.4 21.1/21.7 1.6 8 0.1 19.4 21.1/21.9 1.7

FAULTS (#55) 55 0.1 47.5 5.9/7.5 1.8 55 0.1 43.1 5.9/8.9 2.3
FIRST-RESP (#100) 60 0.3 19.7 12.6/12.6 1.1 46 5.9 109.5 12.6/13.8 2.3

TRI-TW (#40) 36 0.1 26.0 4.0/13.3 10.3 8 0.1 22.0 4.0/15.0 8.0
ZENO (#15) 6 12.8 29.7 30.0/31.2 2.2 8 12.9 29.7 30.0/31.2 2.2

Total (#590) 411 1.9 230.8 53.1/56.4 3.7 422 1.8 235.3 53.1/2381.1 14.8

Table 3: IDFS algorithm using hADD with Fmin and Fmax, with pruning.

sets, showing the performance of IDFS when using Fmin with
hMAX and hBLIND, denoted as IDFS (Fmin, hMAX) and IDFS
(Fmin, hBLIND), respectively.

IDFS (Fmin, hMAX) solves in total 255 tasks, whereas IDFS
(Fmin, hBLIND) solves 145 tasks. Both IDFS (Fmin, hMAX) and
IDFS (Fmin, hBLIND) identified the 25 tasks of FIRST-RESP
as unsolvable. IDFS (Fmin, hBLIND) exceeded the time limit
to solve all tasks of MINER and ZENO. Table 1 shows that
IDFS (Fmin, hMAX) always uses fewer iterations to solve the
same tasks when compared to IDFS (Fmin, hBLIND), and it
also shows that, in general, IDFS (Fmin, hMAX) is much faster
even considering the cost of computing the heuristic function.

Figure 3a shows the planning time comparison between
IDFS (Fmin, hMAX) and IDFS (Fmin, hBLIND). Overall, IDFS
(Fmin, hMAX) outperforms IDFS (Fmin, hBLIND) with respect
to planning time among most planning tasks, especially over
the NEW-FOND benchmarks (blue diamond in Figure 3a).
Thus, we conclude that, in general, IDFS benefits from using
the information of the heuristic function.

IDFS vs. IDFS Pruning We now evaluate our IDFS algo-
rithm using hADD with Fmax and Fmin. We also compare the
versions of IDFS with and without pruning. Tables 2 and 3
show the results the four variations of IDFS with hADD. Note

96

10-2

10-1

100

101

102

10-2 10-1 100 101 102

ID
FS

 (
F m

in
,h
M
A
X
)

IDFS (hBLIND)
Unsolved

Unsolved

(a)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

ID
FS

P
 (
F

m
ax

,h
A
D
D

)

PRP (hFF)
Unsolved

Unsolved

(b)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

ID
FS

P
 (
F

m
a

x,
hA

D
D

)

myND (hADD)
Unsolved

Unsolved

(c)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

ID
FS

P
 (F

m
a
x,
hA

D
D
)

FONDSAT
Unsolved

Unsolved

(d)

Figure 3: Planning time (in seconds) per planning task. Blue diamonds: results for the NEW-FOND benchmark set; Dark-pink
asterisks: results for the IPC-FOND benchmark set.

Planner Solved Tasks (#590)
PALADINUS IDFSP (Fmin, hMAX) 337
PALADINUS IDFSP (Fmin, h FF) 406
PALADINUS IDFSP (Fmin, hADD) 411
PALADINUS IDFSP (Fmax, hMAX) 334
PALADINUS IDFSP (Fmax, h FF) 380
PALADINUS IDFSP (Fmax, hADD) 422
FONDSAT 276
PRP (hMAX) 292
PRP (h FF) 412
PRP (hADD) 389
MYND (hMAX) 180
MYND (h FF) 265
MYND (hADD) 289

Table 4: Overall coverage results.

that all four variations of IDFS with hADD solved more tasks
than both IDFS (Fmin, hMAX) and IDFS (Fmin, hBLIND). Such
empirical results show that using a more informative heuris-
tic has a significant impact on the results. IDFS (Fmin, hADD)
solved 80 tasks more than IDFS (Fmin, hMAX). IDFSP (Fmax,
hADD) outperforms the other variants in terms of coverage
and planning time. However, the average final bound bF , and
the average number of iterations i for the intersection of the
solved tasks are higher for variations with Fmax compared to
the variations with Fmin. Also, the pruning variants (IDFSP)
are far superior to the variants without pruning.

Comparison with other FOND Planners Finally, we con-
clude our evaluation by comparing the best variation of our
algorithm (IDFSP (Fmax, hADD)) with the state-of-the-art in
FOND planning, i.e., the PRP, MYND, and FONDSAT planners.
Table 4 shows the coverage results of IDFSP with both Fmin

andFmax using using different heuristic functions (hMAX, h FF,
and hADD) against the other FOND planners over both bench-
mark sets. Note that IDFSP solved more tasks than the other
planners. Namely, by comparing IDFSP with PRP and MYND,
note that IDFSP with hADD outperforms PRP and MYND (in
terms of solved tasks) with any of the three used heuristics.

Table 5 shows a detailed comparison between the best-
evaluated variation of our algorithm against the best-
evaluated variations of PRP, MYND, and FONDSAT. IDFSP
(Fmax, hADD) outperforms all the other FOND planners in
terms of solved tasks and planning time. Our best algorithm
performed better than PRP and MYND over the NEW-FOND
benchmarks. FONDSAT also performed well for solving FOND
planning tasks over the NEW-FOND benchmarks, as Geffner
and Geffner (2018) have shown. When comparing the FOND
planners in terms of policy size (∣π∣), on average, FONDSAT
is the planner that returns more compact policies. However,
we note that our algorithm and MYND do not compact the
policies using partial states, whereas PRP and FONDSAT do.
Apart from some tasks for DOORS, FAULTS, and FIRST-RESP,
IDFSP (Fmax, hADD) has returned policies that are as compact
as the ones returned by PRP and FONDSAT, see ∣π∣ in Table 5.

Figures 3b, 3c, and 3d show a comparison among the FOND

97

IDFSP (Fmax, hADD) PRP (h FF) MYND (hADD) FONDSAT

Domain (#) C T ∣π∣ C T ∣π∣ C T ∣π∣ C T ∣π∣
DOORS (#15) 13 0.34 670.0 12 0.13 16.0 9 6.77 670.0 10 23.48 16.0

ISLANDS (#60) 60 0.10 6.5 27 0.08 7.5 12 11.06 6.83 46 4.38 7.5
MINER (#51) 51 - - 9 - - 0 - - 28 - -

TW-SPIKY (#11) 10 0.13 25.0 1 17.4 23.0 1 0.33 25.0 3 97.07 23.0
TW-TRUCK (#74) 44 2.97 21.27 17 20.34 19.36 12 12.94 13.82 67 4.51 12.18
Sub-Total (#211) 178 0.88 180.69 66 9.49 16.47 36 7.77 178.91 154 32.36 14.67
ACROBATICS (#8) 8 0.05 8.33 8 9.43 9.33 8 0.02 8.33 3 3.04 9.33

BEAM-WALK (#11) 11 0.02 11.0 11 0.86 12.0 10 0.02 11.0 2 1.37 12.0
BW-ORIG (#30) 29 0.10 12.2 30 0.06 11.7 15 0.10 11.6 10 15.02 11.1

BW-2 (#15) 15 0.12 13.2 15 0.08 14.4 6 0.23 17.6 5 24.71 12.2
BW-NEW (#40) 21 0.08 8.33 40 0.05 7.83 9 0.08 8.5 6 14.85 7.5

CHAIN (#10) 10 0.05 27.0 10 0.1 28.0 10 0.07 27.0 1 218.39 28.0
EARTH-OBS (#40) 25 - - 40 - - 25 - - 0 - -
ELEVATORS (#15) 8 0.07 19.43 15 0.05 17.71 10 1.11 18.57 7 19.01 15.86

FAULTS (#55) 55 0.14 120.66 55 0.06 11.48 53 0.95 67.55 29 38.05 11.48
FIRST-RESP (#100) 46 34.68 103.16 75 0.62 10.22 58 8.65 10.95 44 27.86 9.57

TRI-TW (#40) 8 0.08 22.0 32 0.1 23.0 40 0.04 34.0 3 51.42 16.0
ZENO (#15) 8 1.01 27.0 15 0.13 23.67 5 0.44 22.67 3 137.64 16.33

Total (#590) 422 2.38 93.12 412 2.91 13.84 289 4.77 90.17 276 45.22 13.03

Table 5: Comparison with PRP, MYND, and FONDSAT.

planners with respect to planning time over all planning tasks
for both benchmark sets. Planning tasks that timed out are
at the limit of x-axis and y-axis (300 seconds). Figure 3b
shows that our algorithm is slower than PRP for a substantial
number of tasks, but PRP timed out for more tasks (most
for the NEW-FOND benchmark set shown as blue diamond).
When comparing our algorithm with MYND (Figure 3c), it
is overall faster than MYND and timed out for fewer tasks.
Figure 3d shows the planning time comparison between our
algorithm and FONDSAT. Our algorithm is faster and solves
more tasks than FONDSAT.

Figure 4 shows the number of solved tasks throughout the
range of run-time for our algorithm (IDFSP (Fmax, hADD))
against PRP, MYND, and FONDSAT. When comparing the
FOND planners over all benchmark sets (Figure 4a), IDFSP
(Fmax, hADD) has more solved tasks than MYND and FOND-
SAT throughout all the range of run-time and is competitive
with PRP. Our algorithm (light-blue line) surpasses PRP (red
line) in terms of solved tasks after ≈ 200 seconds of planning
time. Over the NEW-FOND benchmark set, Figure 4a shows
that our algorithm IDFSP (Fmax, hADD) outperforms all the
other FOND planners throughout all the range of run-time.

Conclusions
We have developed a novel iterative depth-first search algo-
rithm that efficiently solves FOND planning tasks. It considers
more explicitly the non-determinism aspect of FOND plan-
ning, and uses heuristic functions to guide the searching pro-
cess. We empirically show that our algorithm can outperform
existing planners concerning planning time and coverage.

As future work, we intend to investigate how to use the
information gathered during previous iterations to make the
following iterations of the searching more efficient. We also
aim to investigate how to design more informed heuristic
functions for FOND planning. We aim to study the problem of

0

50

100

150

200

250

300

350

400

450

10

So
lv
ed
Ta
sk
s

Time (in seconds)
IDFSP (Fmax, h

ADD)
PRP (hFF)

myND (hADD)
FONDSAT

0
10
1

10
2

10
3

(a) All benchmarks.

0

20

40

60

80

100

120

140

160

180

So
lv
ed
Ta
sk
s

Time (in seconds)

PRP (hFF)
myND (hADD)
FONDSAT

IDFSP (Fmax, h
ADD)

10
0

10
1

10
2

10
3

(b) NEW-FOND benchmarks.

Figure 4: Solved tasks throughout the range of run-time.

designing algorithms to extract dual policy solutions, when
fairness is not a valid assumption (Camacho and McIlraith
2016; Geffner and Geffner 2018; Rodriguez et al. 2021). We
also aim to investigate how to design domains and FOND
planning tasks that better capture the most significant charac-
teristics of FOND planning. These domains and tasks can be
used to evaluate new planners.

98

Acknowledgments
André acknowledges support from FAPERGS with
projects 17/2551-0000867-7 and 21/2551-0000741-9, and
Coordenação de Aperfeiçoamento de Pessoal de Nivel Supe-
rior (CAPES), Brazil, Finance Code 001. Frederico acknowl-
edges UFRGS, CNPq and FAPERGS for partially funding his
research. Ramon and Giuseppe acknowledge support from
the ERC Advanced Grant WhiteMech (No. 834228) and the
EU ICT-48 2020 project TAILOR (No. 952215). Giuseppe
also acknowledges the JPMorgan AI Research Award 2021.

References
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An Analysis of
Stochastic Shortest Path Problems. Mathematics of Opera-
tions Research, 16(3).
Bonet, B.; De Giacomo, G.; Geffner, H.; Patrizi, F.; and
Rubin, S. 2020. High-level Programming via Generalized
Planning and LTL Synthesis. In KR.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search.
Artificial Intelligence, 129: 5–33.
Bonet, B.; Giacomo, G. D.; Geffner, H.; and Rubin, S. 2017.
Generalized Planning: Non-Deterministic Abstractions and
Trajectory Constraints. In IJCAI.
Brafman, R.; and De Giacomo, G. 2019. Planning for
LTLf/LDLf goals in non-markovian fully observable non-
deterministic domains. In IJCAI.
Bryce, D.; and Buffet, O. 2008. 6th International Planning
Competition: Uncertainty Part. International Planning Com-
petition (IPC).
Camacho, A.; Baier, J.; Muise, C.; and McIlraith, S. 2018.
Finite LTL Synthesis as Planning. In ICAPS.
Camacho, A.; and McIlraith, S. A. 2016. Strong-Cyclic Plan-
ning when Fairness is Not a Valid Assumption. In IJCAI
Workshop on Knowledge-Based techniques for Problem Solv-
ing.
Camacho, A.; and McIlraith, S. A. 2019. Strong Fully Ob-
servable Non-Deterministic Planning with LTL and LTLf
Goals. In IJCAI.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J.; and McIl-
raith, S. 2017. Non-Deterministic Planning with Temporally
Extended Goals: LTL over Finite and Infinite Traces. In
AAAI.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. Artificial Intelligence, 147(1-2).
De Giacomo, G.; and Rubin, S. 2018. Automata-Theoretic
Foundations of FOND Planning for LTLf and LDLf Goals.
In IJCAI.
Fu, J.; Ng, V.; Bastani, F. B.; and Yen, I. 2011. Simple and
Fast Strong Cyclic Planning for Fully-Observable Nondeter-
ministic Planning Problems. In IJCAI.
Geffner, T.; and Geffner, H. 2018. Compact Policies for Fully
Observable Non-Deterministic Planning as SAT. In ICAPS.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2): 35–62.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
IJCAI.
Kissmann, P.; and Edelkamp, S. 2009. Solving Fully-
Observable Non-Deterministic Planning Problems via Trans-
lation into a General Game. In KI Advances in AI, volume
5803, 1–8.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence, 27(1):
97–109.
Kuter, U.; Nau, D. S.; Reisner, E.; and Goldman, R. P. 2008.
Using Classical Planners to Solve Nondeterministic Planning
Problems. In ICAPS.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern Database Heuristics for Fully Observable Non-
deterministic Planning. In ICAPS.
Mattmüller, R. 2013. Informed Progression Search for Fully
Observable Nondeterministic Planning. Ph.D. thesis, Albert-
Ludwigs-Universität Freiburg.
Muise, C.; Belle, V.; and McIlraith, S. A. 2014. Computing
Contingent Plans via Fully Observable Non-Deterministic
Planning. In AAAI.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-deterministic Planning by Exploiting State Relevance.
In ICAPS.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-
Deterministic Planning With Conditional Effects. In ICAPS.
Patrizi, F.; Lipovetzky, N.; and Geffner, H. 2013. Fair
LTL Synthesis for Non-Deterministic Systems using Strong
Cyclic Planners. In IJCAI.
Pereira, R. F.; Pereira, A. G.; Messa, F.; and Giacomo, G. D.
2022. Iterative Depth-First Search for Fully Observable Non-
Deterministic Planning. arXiv preprint.
Ramı́rez, M.; and Sardiña, S. 2014. Directed Fixed-Point
Regression-Based Planning for Non-Deterministic Domains.
In ICAPS.
Rodriguez, I. D.; Bonet, B.; Sardiña, S.; and Geffner, H. 2021.
Flexible FOND Planning with Explicit Fairness Assumptions.
In ICAPS.
Winterer, D.; Alkhazraji, Y.; Katz, M.; and Wehrle, M. 2017.
Stubborn Sets for Fully Observable Nondeterministic Plan-
ning. In ICAPS.
Winterer, D.; Wehrle, M.; and Katz, M. 2016. Structural
Symmetries for Fully Observable Nondeterministic Planning.
In IJCAI.

99

