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Abstract

Decoupled search decomposes a classical planning task by
partitioning its variables such that the dependencies between
the resulting factors form a star topology. In this topology,
a single center factor can interact arbitrarily with a set of
leaf factors. The leaves, however, can interact with each other
only indirectly via the center. In this work, we generalize this
structural requirement and allow arbitrary topologies. The
components must not overlap, i. e., each state variable is as-
signed to exactly one factor, but the interaction between fac-
tors is not restricted. We show how this generalization is con-
nected to star topologies, which implies the correctness of
decoupled search with this novel type of decomposition. We
introduce factoring methods that automatically identify these
topologies on a given planning task. Empirically, the gener-
alized factorings lead to increased applicability of decoupled
search on standard IPC benchmarks, as well as to superior
performance compared to known factoring methods.

Introduction
Star-topology decoupled state-space search, decoupled
search for short, tackles the state explosion problem by ex-
ploiting the dependency structure of the given model. In
classical planning, decoupled search decomposes planning
tasks by partitioning the state variables such that the de-
pendencies between the resulting factors form a star topol-
ogy (Gnad and Hoffmann 2018). Here, a single center fac-
tor C can interact arbitrarily with the remaining set of leaf
factors {L1, . . . , Ln}. Thereby, decoupled search exploits a
form of conditional independence of the leaves; given a se-
quence of center actions, i. e., actions that have an effect on
the center, the leaves are independent. This allows for an
enumeration of the compliant leaf paths for each leaf sepa-
rately. The search is then performed over center actions only,
where each sequence of center actions πC ends in a decou-
pled state consisting of a single center state (an assignment
to C) and a non-empty set of leaf states (assignments to each
Li). The leaf states reached for an Li are exactly those Li-
assignments reachable by any sequence of Li-actions that
can be executed along πC , i. e., that is compliant with πC .
Thus, a decoupled state compactly represents exponentially
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many explicit states, which share the same center state and
result from all combinations of leaf states across leaf factors.

Application of decoupled search requires finding a suit-
able decomposition of the task into factors. Existing work
has explored several methods to automatically find such a
factoring. They partition the variables into factors by analyz-
ing their causal dependencies (Gnad, Poser, and Hoffmann
2017; Gnad and Hoffmann 2018), or using integer linear
programming (ILP) (Schmitt, Gnad, and Hoffmann 2019).
All known approaches focus specifically on star-topology
factorings with a designated center factor, where cross-leaf
interactions are limited to actions affecting the center.

In this work, we generalize the concept of star factorings
to generalized factorings, which allow arbitrary cross-factor
interactions. In fact, we even allow factorings without cen-
ter factor. Our main motivation for the generalization is that
very few actions (even a single one) can render star factor-
ings impossible if such actions lead to direct cross-leaf in-
teractions. By relaxing the requirements of factorings, such
actions can simply be made center actions, which are consid-
ered by the main search. We do so by extending the notion
of center actions to those that share precondition or effect
variables with more than one leaf factor. We prove the cor-
rectness of this novel form of decomposition by connecting
it to the known star topologies, extending the possibilities of
decoupled search while keeping all its desirable properties.

We illustrate the advantages of generalized factorings on
a collaborative robotics task and devise a new ILP encod-
ing with different optimization criteria to decompose plan-
ning tasks. Our evaluation in optimal and satisficing settings
shows that generalized factorings open up a wide range of
possibilities, enabling the use of decoupled search on plan-
ning tasks that could not be tackled before. While there is no
single best strategy for every domain or setting, the factor-
ings from our new strategies can significantly improve per-
formance over prior methods and explicit-state search.

Some full proofs, details of our ILP encoding, and addi-
tional results are provided in a technical report (TR) (Gnad,
Torralba, and Fišer 2022).

Background
A planning task (Bäckström and Nebel 1995) is a tuple
Π = ⟨V ,A, I, G⟩, where V is a finite set of variables,
and each variable v ∈ V has a finite domain D(v). A
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is a finite set of actions. Each action a ∈ A is a triple
⟨pre(a), eff(a), cost(a)⟩, where preconditions pre(a) and
effects eff(a) are partial assignments to V , and the cost
cost(a) ∈ R0+ is a non-negative real number. A state is
a complete assignment to V , I is the initial state, and the
goal G is a partial assignment to V . For a partial assignment
p, we denote by vars(p) ⊆ V the subset of variables on
which p is defined. For V ′ ⊆ V , we denote the restriction
of p onto V ′ by p[V ′], i. e., the assignment to V ′ ∩ vars(p)
by p. We identify (partial) states with sets of variable/value
pairs. An action a is applicable in a state s if pre(a) ⊆ s.
Applying a in a (partial) state s changes the value of all
v ∈ vars(eff(a)) ∩ vars(s) to eff(a)[v], and leaves s un-
changed elsewhere. The outcome state is denoted sJaK. A
plan for Π is an action sequence π applicable in I that ends
in a state sG ⊇ G; it is optimal if its summed-up action cost,
denoted cost(π), is minimal among all plans for Π.

Decoupled search is a technique developed to avoid the
combinatorial explosion of having to enumerate all possi-
ble variable assignments of causally independent parts of a
planning task. It does so by partitioning the state variables V
into a star factoring, whose elements are called factors.

Definition 1 (Star Factoring) Let Π = ⟨V ,A, I, G⟩ be a
planning task. A factoring F ⊂ 2V for Π is a partition of V .

A pair Fs = ⟨C,L⟩ is a star factoring for Π, if {C}∪L is
a factoring and for all actions a ∈ A either there exists an
L ∈ L such that vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆
L, or vars(eff(a)) ∩ C ̸= ∅. C is called the center factor of
Fs, and L are its leaf factors.

By imposing a structural requirement on the interac-
tion between the factors, namely a star topology, decou-
pled search can efficiently handle cross-factor dependencies.
Here, the center C can interact arbitrarily with the leaves L,
but interaction between leaves is allowed only if the center is
affected at the same time. Actions affecting C, i. e., with an
effect on a variable in C, are called center actions, denoted
AC , and those affecting a leaf are called leaf actions, de-
noted AL. The actions that affect a particular leaf L ∈ L are
denoted AL. We define the set of leaf-only actions of a leaf
L as AL

̸C := AL \AC . A sequence of center actions applica-
ble in I in the projection onto C is a center path, a sequence
of AL-actions applicable in I in the projection onto L, is a
leaf path. A complete assignment to C, or to an L ∈ L, is
called a center state, or leaf state, respectively. SL is the set
of all leaf states and that of a particular leaf L is denoted SL.

A decoupled state sF is a pair ⟨center(sF ), prices(sF )⟩
where center(sF ) is a center state, and prices(sF ) : SL 7→
R0+ ∪ {∞} is a pricing function, mapping each leaf state
to a non-negative price. By πC(sF ) we denote the center
path that starts in the initial decoupled state IF and ends
in sF . The pricing function is maintained during decoupled
search in a way so that the price of a leaf state sL is the cost
of a cheapest leaf path that ends in sL and that is compli-
ant with πC(sF ), i. e., that can be scheduled alongside the
center path executed up to sF . A decoupled state sF satis-
fies a condition p, a partial state, denoted sF |= p, iff (i)
p[C] ⊆ center(sF ) and (ii) for every L ∈ L there exists
an sL ∈ SL s.t. p[L] ⊆ sL and prices(sF )[sL] < ∞. We

define the set of leaf actions enabled by a center state sC

as AL|sC := {aL | aL ∈ AL ∧ pre(aL)[C] ⊆ sC}. For
a center state sC and a pair of leaf states sL1 , s

L
2 ∈ SL, by

csC (s
L
1 , s

L
2 ) we define the cost of a cheapest path of AL

̸C |sC
actions from sL1 to sL2 . If no such path exists csC (sL1 , s

L
2 ) =

∞. A decoupled state sF represents a set of explicit states,
its member states, namely those states s where sF |= s.

Definition 2 (Decoupled State Space) Let Π be a planning
task, and F = ⟨C,L⟩ a star factoring for Π. The decoupled
state space is a labeled transition system ΘF

Π = ⟨SF ,AC ,
cost|AC , T F , IF ,SF

G ⟩ as follows:

(i) SF is the set of all decoupled states.
(ii) The transition labels are the center actions AC .

(iii) The cost function is that of Π, restricted to AC .

(iv) T F contains a transition sF
aC

−−→ tF ∈ T F whenever
aC ∈ AC and sF , tF ∈ SF are such that:
1. πC(sF ) ◦ ⟨aC⟩ = πC(tF ),
2. sF |= pre(aC),
3. center(sF )JaCK = center(tF ),
4. for every leaf L ∈ L and leaf state sL ∈ SL,

if sL |= pre(aC)[L], then prices(tF )[sLJaCK] =
prices(sF )[sL]. Additionally, prices(tF )[sL] =
mintL∈SL prices(tF )[tL] + ccenter(tF )(t

L, sL).

(v) IF is the decoupled initial state, where center(IF ) :=
I[C], πC(IF ) := ⟨⟩, and, for every leaf L ∈ L,
prices(IF )[I[L]] = 0 and for all other leaf states
sL ∈ SL, prices(IF )[sL] = ccenter(IF )(I[L], s

L).
(vi) SF

G = {sFG | sFG |= G} are the decoupled goal states.

Decoupled search runs a search over center actions only,
enumerating, for each leaf separately, the set of leaf states
that can be reached in the form of the pricing function. Every
search algorithm and heuristic function can be employed on
the decoupled state space (Gnad and Hoffmann 2018).

Beyond Star Topologies
In this section, we generalize the concept of star factorings
by introducing generalized factorings. The key novelty is
that we no longer impose any structural restriction regarding
the dependencies between factors, i. e., any partition of the
state variables is a generalized factoring.

Definition 3 (Generalized Factoring) Let Π be a planning
task. A pair Fg = ⟨C,L⟩ is a generalized factoring for Π, if
either L or {C} ∪ L is a factoring for Π. C is the (possibly
empty) center factor of Fg , and L are its leaf factors.

In addition to allowing arbitrary cross-factor interactions,
we also consider empty center factors, i. e., factorings where
all components are leaves. Note that every star factoring is
also a generalized factoring, but not vice versa. Next, we re-
solve complications with respect to the interaction between
factors by introducing the notion of global actions, which
replace the center actions from star factorings.

Definition 4 (Global Action) Let Fg = ⟨C,L⟩ be a gener-
alized factoring for the planning task Π. An action a ∈ A is
a global action iff there does not exist an L ∈ L such that
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vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆ L. The set of all
global actions is denoted AG.

While leaf and leaf-only actions are defined as before, we
need to adapt center actions to be able to handle more com-
plex interactions. We call the new type of action global to
make the distinction clear, since global actions not necessar-
ily affect the center. Essentially, an action a is global if it is
not a leaf-only action of any leaf. In particular, actions with
preconditions or effects on more than one leaf, but without
center effect become global actions.

The basic concept of decoupled search remains intact. In
Definition 2, we replace mentions to center actions AC by
global actions AG. The search then branches over global ac-
tions, and all leaf states reachable via leaf-only actions are
enumerated for each leaf separately. The center state associ-
ated with a decoupled state can now be empty (if C = ∅).
Hence, while we generalize the notion of factorings, the
underlying idea of the decomposition is preserved. In par-
ticular, even though it might seem we adopt the flexibil-
ity of traditional factored planning approaches—and thus
their weaknesses—our search still strictly distinguishes be-
tween center/global transitions where components interact,
and leaf-only transitions that do not affect another leaf.

Example 1 We show the advantages of generalized fac-
torings on a collaborative robotics task where n battery-
powered agents (ai variables) move on a map. Mov-
ing consumes battery (bi variables), and an agent can
charge another one by sharing its battery charge. A sin-
gle agent has a non-empty battery initially, all agents
need to reach a goal location. Formally, the task is de-
fined with variables V = {a1, b1, . . . , an, bn}, domains
D(ai) = {l1, . . . , lm},D(bi) = {0, . . . , B}, actions A =
{move(ai, lx, ly, k), charge(ai, aj , l, x, y)}, where i ̸= j,
initial state I = {a1 = l1, b1 = B} ∪ {ai = li, bi = 0 |
i > 1}, and goal G = {ai = l1}. The actions are defined
as follows: pre(move(ai, lx, ly, k)) = {ai = lx, bi = k},
eff(move(ai, lx, ly, k)) = {ai = ly, bi = k − 1}, and
pre(charge(ai, aj , l, x, y)) = {ai = l, aj = l, bi = x, bj =
y}, eff(charge(ai, aj , l, x, y)) = {bi = x− 1, bj = y + 1}.

With generalized factorings, we can have every agent with
its battery in a leaf Li = {ai, bi}, the center is empty, result-
ing in a factoring where the number of leaves scales with the
number of agents. The search then branches over the global
charge actions, the move actions are leaf-only actions.

Due to the charge actions, however, by which any pair of
agents can interact, in a star factoring we can only place a
subset of the agents (and possibly their battery) into one leaf,
and the remaining variables in the center. Thus, only a linear
state-space reduction can be achieved by decoupled search.
We remark that there actually exists a scaling star factoring
(i. e., where |L| = n), namely placing all battery variables in
the center, and each agent in a separate leaf. As we will show
in Proposition 1, though, this does not lead to any state-
space reduction, since all actions are center actions.

Correctness
We prove the correctness of decoupled search with general-
ized factorings using a polynomial mapping from a task Π

and a generalized factoring Fg to a modified task Πs and a
star factoring Fs such that the decoupled state spaces Θ

Fg

Π

for Π and Fg and ΘFs

Πs
for Πs and Fs are the same.

Definition 5 (Star-Mapping) Let Fg = ⟨C,L⟩ be a gener-
alized factoring for Π = ⟨V ,A, I, G⟩, and AG the global
actions for Π and Fg . S(Π,Fg) = ⟨Πs,Fs⟩ is a star map-
ping constructed as follows: Πs := ⟨Vs,As, Is, G⟩ is the
star-mapped planning task and Fs := ⟨Cs,L⟩ the star-
mapped factoring for Πs given Π and Fg , where:
• Vs := V ∪ {x}, x ̸∈ V , with D(x) := {0},
• As := {as | a ∈ AG, pre(as) := pre(a), cost(as) :=
cost(a), eff(as) := eff(a) ∪ {x = 0}} ∪ (A \ AG),

• Is := I ∪ {x = 0}, and
• Cs := C ∪ {x}.

In words, we map a generalized factoring Fg for a task Π
to a star factoring Fs for a modified task Πs by introducing
a new state variable x with unary domain. Then x is added
to the center factor Cs of Fs and we add an auxiliary effect
{x = 0} to all global actions. It is easy to see that Fs is
indeed a valid star factoring for Πs, where leaf-only actions
AL

̸C of a leaf L ∈ L affect only L and are preconditioned
by C ∪L, as for the generalized factoring. All other actions,
namely the global actions of Fg , are made center actions for
Fs by adding the effect on x. Note that the set of plans for Π
is exactly the same as for Πs, i. e., solutions are not affected.

Given a decoupled state space ΘF
Π and a variable x, ΘF

Π\x
denotes the same decoupled state space except the variable
x and its assignments are removed from all states and labels.

Theorem 1 (Correspondence) Let Fg be a generalized
factoring for Π, let S(Π,Fg) = ⟨Πs,Fs⟩, and let ΘFg

Π and
ΘFs

Πs
be decoupled state spaces of Fg and Fs, respectively.

Then Θ
Fg

Π = ΘFs

Πs
\ x.

Proof Sketch: The key observations are that the set of global
actions for Fg coincides with the set of center actions for
Fs. So, the search branches over exactly the same action
sequences. Next, the set of leaf-only actions for each L ∈ L
is also the same for both factorings, so the pricing functions
are exactly the same. Finally, the auxiliary center variable x
and the additional effect x = 0 of center actions does not
affect the behaviour of decoupled search in any way. □

With Theorem 1, we can perform decoupled search with
generalized factorings like with star factorings, and all prop-
erties of decoupled search with star factorings are preserved.

Corollary 1 Decoupled search with generalized factorings
is sound, complete, and preserves optimality.

Characteristics of Generalized Factorings
Gnad, Poser, and Hoffmann (2017) observed that the so
called mobility is an important property of factorings,
closely related to the state-space reduction of the decoupled
search. For a generalized factoring Fg , a leaf L ∈ L is mo-
bile if there exists a leaf-only action for L, i. e., |AL

̸C | > 0. A
factoring is mobile if all its leaves are. Next, we show that a
state-space reduction is possible only with mobile leaves.
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Proposition 1 (Non-mobile Leaves) Let Π be a planning
task and Fg = ⟨C,L⟩ a generalized factoring for Π. If a
leaf L ∈ L is not mobile, then in all decoupled states sF

reachable from the initial decoupled state IF there exists
exactly one sL ∈ SL where prices(sF )[sL] < ∞.

Proof: The claim is true in the initial state, since there ex-
ists no leaf-only action for L, so prices(IF )[I[L]] = 0
and prices(IF )[sL] = ∞ for all sL ̸= I[L]. Let sF be a
successor of IF via global action aG. Then the leaf state
sL = I[L]JaCK has a price of 0 in sF . Again, because there
are no leaf-only actions of L, no other leaf state of L is
reached in sF . This argument applies inductively to all de-
coupled states reachable from IF . □

Consequently, a leaf L ∈ L for which there can only ever
be a single reached leaf state can be merged into a new center
factor C∪L without affecting the set of member states of any
reachable decoupled state. In the extreme case where no leaf
is mobile, every decoupled state has exactly one member
state, so decoupled search degrades to explicit-state search.

While mobility can be seen as a qualitative property, prior
work also tried to quantify the “amount of work a leaf can
do on its own”. We adopt the definition of mobility of a fac-
toring as the sum of the number of leaf-only actions |AL

̸C | of
its leaves L ∈ L. This definition allows us to reason about
the reduction power of a factoring more accurately, since
the number of leaf-only actions provides an estimate on how
many leaf states can be reached in a single decoupled state.

Although the state-space reduction is exponential in the
number of leafs, sometimes we can obtained stronger reduc-
tion by moving leaf variables into the center.

Proposition 2 Let Fg = ⟨C,L⟩ be a generalized factor-
ing for Π with mobility M . If there exist non-mobile leaves
{L1, . . . Ln} ⊆ L, then there exists a mobile factoring with
|Fg| − n leaves with mobility M ′ ≥ M .

Proof: The mobility of a leaf L ∈ L equals the number of
leaf-only actions of L, namely |AL

̸C |. Thus, as L1, . . . , Ln

are not mobile, the factoring F ′
g = ⟨C ∪ L1 ∪ · · · ∪ Ln,L \

{L1, . . . , Ln}⟩ has at least the mobility of Fg .
We get a strictly higher mobility if there exists a leaf ac-

tion a ∈ AL of an L ∈ L where, w.l.o.g. for L1, we have
vars(eff(a)) ⊆ L and vars(pre(a)) ⊆ L ∪ L1. Then a was
a global action for Fg , but is a leaf-only action for F ′

g . □

Given the construction in the proof, it can even make
sense to sacrifice a leaf with low mobility and merge it into
the center, since this can increase the number of leaf-only
actions for potentially many other leaves.

Relation to Other Forms of Factored Planning
Decoupled search on star topologies differs conceptually
from other factored planning approaches by requiring a spe-
cific structure to be present in a planning task. With general-
ized factorings, this is no longer the case. Like other factored
planning methods, this allows arbitrary variable partitions.

In localized factored planning (e. g. Amir and Engelhardt
2003; Fabre et al. 2010; Brafman and Domshlak 2006, 2008,

2013), the planning process performs a local search for the
individual factors. Solutions to these sub-problems are coor-
dinated by resolving cross-factor interactions using a global
constraint-satisfaction problem. Hierarchical factored plan-
ning (e. g. Knoblock 1994; Kelareva et al. 2007; Wang and
Williams 2015) refines top-level solutions for an increasing
number of factors while moving down a hierarchy of de-
creasing level of abstraction, resolving inconsistencies by
backtracking to higher levels. The crucial difference to de-
coupled search is that keeping global (center) and leaf ac-
tions separate allows to perform a monolithic search, just
over the more complex decoupled state space. Thus, there
is never the need to coordinate sub-solutions, or backtrack
from partial plans that cannot be refined. This also allows us
to use any standard search algorithm, planning heuristic, or
pruning method, which are orthogonal to the decomposition
performed by decoupled search (Torralba et al. 2016; Gnad
et al. 2017; Gnad, Hoffmann, and Wehrle 2019).

Obtaining Generalized Factorings
Following prior work (Schmitt, Gnad, and Hoffmann 2019),
we formulate the problem of finding a generalized factor-
ing as an integer linear program (ILP) and describe several
objective functions targeting different factoring properties.

First, we choose a set of candidates for leaves called po-
tential leaves. Then we set constraints so that the resulting
partition of variables is indeed a generalized factoring. Fi-
nally, we add more constraints ensuring that all leaves are
mobile, as we have shown in Proposition 1 and 2 that non-
mobile leaves do not contribute to the state-space reduction.

Before getting to the specifics of the ILP encoding, we de-
fine the notion of action variable schemas expressing causal
dependencies between the center and leaves.
Definition 6 Given an action a ∈ A, an action variable
schema (or a-schema for short), denoted by Aa, is a tuple
Aa = ⟨pre(Aa), eff(Aa)⟩, where pre(Aa) = vars(pre(a)),
and eff(Aa) = vars(eff(a)). The set of all a-schemas is de-
noted by K = {Aa | a ∈ A}. Given a set of variables
L ⊆ V , K(L) = {A ∈ K | eff(A) ⊆ L} denotes a set of
a-schemas affecting L. And given an a-schema A ∈ K, |A|
denotes the number of actions with a-schema A.

Besides the planning task Π, the ILP encoding depends on
the choice of a set of potential leaves, Λ ⊆ 2V . We choose
potential leaves as the sets of variables affected by at least
one action, i. e., Λ = {eff(A) | A ∈ K}. Clearly, a set of
variables V such that eff(A) ̸⊆ V for every A ∈ K can
never be a mobile leaf, which makes our selection of Λ the
set of minimal possible variable sets that can become mobile
leaves. We experimented with supersets of these potential
leaves, e. g., by combining pairs of intersecting or causally
related leaves. However, this lead to a significant increase in
the size of the encoding and never paid off in practice.

Our ILP encoding uses the following binary variables:
(i) XL for every potential leaf L ∈ Λ; XL is set to 1 when

L becomes a leaf, and it is set to 0 otherwise.
(ii) YL,A for every potential leaf L ∈ Λ and every a-

schema A ∈ K(L). This variable is set to 1 when the
actions a ∈ A with the a-schema A are mobile for L.
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(iii) Zv for every variable v ∈ V . This variable is set to 1 if
v becomes a center variable in the resulting factoring.

The XL variables correspond to the actual choice of the
variable partition that is made, YL,A and Zv are used to en-
sure that we obtain a proper factoring.

The following constraints ensure that the solution to our
ILP is indeed a mobile generalized factoring. There are con-
straints XL + XL′ ≤ 1 for every L,L′ ∈ Λ s.t. L ̸= L′

and L ∩ L′ ̸= ∅, enforcing a partition of the leaf variables.
Constraints Zv ≤ 1−XL for every L ∈ Λ and every v ∈ L,
ensure that the center is disjoint with all leaves.

A necessary condition for a leaf L to be mobile is that
there exists an action a such that vars(eff(a)) ⊆ L. So, it
is enough to consider a-schemas A with eff(A) ⊆ L, i.e.,
the set K(L). For every potential leaf L ∈ Λ we add the
constraint:

XL −
∑

A∈K(L)

YL,A ≤ 0 (1)

The next constraint serves two purposes. First, it ensures
that any variable YL,A is set to 1 only if the correponding
variable XL is set to 1. Second, in combination with the pre-
vious constraint it enforces mobility of each leaf. The mo-
bility of a leaf L requires that there exists at least one action
a such that (a) vars(eff(a)) ∈ L, and (b) every outside pre-
condition of a (i.e., vars(pre(a)) \ L) is part of the center.
As the constraint Eq. (1) takes care of (a), the following con-
straint ensures that (b) holds as well. For every potential leaf
L ∈ Λ and every action schema A ∈ K(L), we define the
following constraint:

|pre(A) \ L| · YL,A −
∑

v∈pre(A)\L

Zv ≤ XL − YL,A (2)

Finally, the following set of constraints makes sure that
if a variable v is not part of any leaf, then it is part of the
center: 1−

∑
L∈Λ,v∈L XL ≤ Zv for every variable v ∈ V .

Every solution to the ILP described above is a generalized
factoring with mobile leaves. Next, we discuss different op-
timization criteria that can be applied.

Towards Finding Good Factorings
Our main target is to obtain factorings that reduce the state-
space the most, i. e., where each decoupled state has as many
member states as possible. We consider several objective
functions that correlate positively with this metric.

Maximize number of mobile leaves (L) This is desirable,
as the number of member states is exponential in the number
of leaves. In the ILP, the objective is to maximize

∑
XL.

Maximize leaf mobility (M) An increased leaf mobility
contributes linearly to the state-space reduction. In the ILP,
the objective is to maximize

∑
YL,A|A|.

Similar to previous attempts to maximize mobility,
though, this completely ignores how much each leaf con-
tributes to the overall mobility. Ideally, we want a balanced
contribution to maximize the search-space reduction. We
capture this with the new notion of balanced leaf mobility.

Maximize balanced leaf mobility We define bal-
anced leaf mobility as

∏
L∈L |AL

̸C | or equivalently∑
L∈L log(|AL

̸C |). That is, we multiply the number of mo-
bile actions per leaf so that factorings with a balanced num-
ber of leaf-only actions per leaf are preferred (e.g., we prefer
two leaves with 5 leaf-only actions each over one with 9 and
another with only 1). In the ILP encoding, we can achieve
this by introducing a binary variable WL,C for every com-
bination C ∈ 2K(L) of a-schemas from K(L) that can be
mobile for a potential leaf L. We add constraints such that at
most one WL,C can be set to 1 for every L. The objective is
to maximize

∑
L∈Λ log(

∑
Ai∈C |Ai|)WL,C .

This encoding is not practical, though, as its size is expo-
nential in the number of a-schemas of a potential leaf. Em-
pirically, we observed an increase in the ILP size by one to
two orders of magnitude on average, making it prohibitively
large (statistics are available in the TR). Thus, we introduce
an approximation that does not require additional variables.

Maximize (approximate) balanced leaf mobility (bM)
For every potential leaf L, we divide the set of affecting
actions AL := {a ∈ A | vars(eff(a)) ⊆ L} into those
whose precondition is contained in L, AL

⊤ := {a ∈ AL |
vars(pre(a)) ⊆ L}, and the rest, AL

pre := AL \ AL
⊤. Note

that, if L is chosen as leaf factor, all actions in AL
⊤ will be

leaf-only actions, regardless of what variables are in the cen-
ter. The remaining actions AL

pre will be leaf-only actions iff
vars(pre(a)) ⊆ L ∪ C. Hence, the minimum and maxi-
mum balanced mobility of L are ML

min = log(|AL
⊤|) and

ML
max = log(|AL|), respectively. Moreover, let AL

pre|A de-
note the actions that have a-schema A and are in AL

pre. Our
objective function maximizes the following expression:∑
L∈Λ

ML
minXL +

∑
A∈K(L)

YL,A(M
L
max −ML

min)
|AL

pre|A|
|Apre

L|

The intuition is that the approximation is correct at the ex-
tremes, whenever none or all actions in AL

pre are leaf-only
actions. This is always the case if |K(L)| ≤ 1, which hap-
pens in many domains. In the middle, the function grows
with the number of leaf-only actions, so that factorings with
more leaf-only actions are always preferred.

Maximize average leaf fact flexibility (F) Prior defini-
tions of mobility attempt to maximize the number of leaf-
only actions, but ignore their effects. Yet, this is important
because the number of member states of a decoupled state
is exponential only in the number of leaves with more than
one reached leaf state. If all leaf-only actions have exactly
the same effect, then the number of leaf states with finite
price is limited. Thus, we aim to maximize the percentage
of actions affecting each leaf fact.

This can be encoded in the ILP by introducing a real vari-
able Wv=d with domain [0, 1] for every fact v = d of Π,
where v ∈ V and d ∈ D(v). The value of each Wv=d corre-
sponds to the percentage of actions with effect v = d that are
leaf-only actions. To set the value of Wv=d, we introduce a
constraint Wv=d = (

∑
L∈Λ,A∈K(L) |Av=d|YL,A)/|Av=d|,

where Av=d is the subset of actions a with a-schema A
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Figure 1: Coverage (on y-axis) of our new factoring strategies, with fallback to Base if a method abstains, as a function of the
minimum leaf flexibility (x-axis). We also show the coverage of the baselines Base, Fork, and IFork.

where eff(a)[v] = d, and Av=d is the set of all actions with
that effect. The objective is to maximize

∑
Wv=d. We re-

mark that this ignores the distribution of facts across leaves.

Constraint on minimum leaf flexibility While the previ-
ous objectives aim to maximize overall mobility across all
leaves, here we target a minimum amount of mobility per
leaf. Given a parameter fmin, we restrict the minimum flex-
ibility of a potential leaf L by introducing an additional con-
straint per candidate leaf L ∈ Λ:

fmin ·XL ≤
∑

A∈K(L)

|A|YL,A

|{a ∈ A | eff(a) ∩ L ̸= ∅}|
(3)

Here, to select L as a leaf, the ratio of leaf-only actions
affecting L must be at least fmin. As soon as fmin > 0, this
is strictly more constrained than Equation 1, requiring not
only that the leaf is mobile but that at least some minimum
percentage of actions affecting it are leaf-only.

Polynomial Test of Existence
The ILP can become very large for some tasks, so it is ben-
eficial to check in advance if a non-trivial mobile factoring
exists. There is an exact check that is quadratic in |A|:
Proposition 3 (Existence of Mobile 2-Leaf Factoring)
There exists a mobile generalized factoring with at least
two leaves iff there exist two distinct actions a1, a2 such
that vars(eff(a1)) ∩ vars(eff(a2)) = ∅, vars(eff(a1)) ∩
vars(pre(a2)) = ∅, and vars(pre(a1))∩vars(eff(a2)) = ∅.

Proof Sketch: “⇒”: If such two actions exist, the following
factoring fulfills the conditions: Fg = ⟨C, {L1, L2}⟩, L1 =
vars(eff(a1)), L2 = vars(eff(a2)), and C = V \ (L1∪L2).

“⇐”: Given a mobile factoring with leaves L1, L2,
for each of the two there exists an action ai where
vars(eff(ai)) ⊆ Li and vars(pre(ai)) ⊆ Li ∪ C. □

With Proposition 3, we have an efficient way to check if
a mobile 2-leaf factoring exists at all. We just need to iterate
over all pairs of actions and check the stated conditions.

Experimental Evaluation
We implemented our factoring strategies in the decoupled
search planner of Gnad and Hoffmann (2018), which is
based on Fast Downward (Helmert 2006). Our experiments

were conducted using Lab (Seipp et al. 2017). We used
all benchmarks of the International Planning Competitions
(IPC) from 1998-2018 in the optimal as well as satisficing
tracks, eliminating duplicate instances that appeared in sev-
eral IPC iterations. For optimal planning, we report results
for blind search and A∗ with hLM-cut (Helmert and Domsh-
lak 2009); in satisficing planning, we use greedy best-first
search (GBFS) with the hFF heuristic (Hoffmann and Nebel
2001), with and without preferred operator pruning (PO) us-
ing the common dual-queue approach (Richter and Helmert
2009). To compute these heuristics for decoupled states,
prior work has introduced a task compilation that enables, in
principle, the use of any heuristic. Via Theorem 1, this com-
pilation is directly applicable to generalized factorings. The
experiments were performed on a cluster of Intel E5-2660
machines running at 2.20 GHz with the runtime/memory
limits of 30min/4GiB. Our code and data are publicly avail-
able (Gnad, Torralba, and Fišer 2022).

In our evaluation, we include the four ILP encodings that
maximize the number of mobile leaves (L), the leaf mobil-
ity (M), the approximated balanced leaf mobility (bM), and
the leaf-fact flexibility (F). For all these strategies, we run
two variants. Our basic variant takes the set of all a-schema
effects as potential leaves, the second one additionally con-
siders the set of all strongly-connected components (SCC)
in the causal graph (if there are at least two). We indicate
the latter configurations with a postfix “s”, e. g., Ls consid-
ers all a-schema effects and SCCs. We perform a system-
atic study of the influence of the minimum leaf flexibility
on the performance of decoupled search. To do so, we run
each of the aforementioned eight variants with increasing
fmin: 0%− 30%, in steps of 5, and 40%, 60%, 80%, 100%.
For non-zero flexibility, we indicate the used percentage in
the configuration alias, e. g., bM60 maximizes balanced leaf
mobility and enforces a minimum leaf flexibility of 60%.

We compare to explicit-state search (Base) and a set of
existing factoring strategies for decoupled search as base-
lines. In particular, we run fork and inverted-fork factorings
(Fork/IFork, in short Fo/IF), a strategy based on comput-
ing maximum independent sets of the causal graph (MIS), a
greedy strategy (IA), and two ILP-based methods that pro-
duce strict-star (LPS), respectively general star factorings
(LPG) (Gnad, Poser, and Hoffmann 2017; Schmitt, Gnad,
and Hoffmann 2019). Strict-star factorings are a special case
of star factorings where no action is allowed to touch, in pre-
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Optimal Planning: A∗ with LM-cut
Base Fo IF IA MIS LPS LPG O(o) L L80s bM bM40 M M40 F F80 O(n) O(d) O(a)

Tackled 1630 430 385 912 641 1125 1126 1243 1247 794 1233 847 1230 847 1236 846 1293 1321 1046
Not t. before - - - - - - - - 77 1 76 3 76 3 76 3 78 78 44
# fork - 430 1 207 244 225 225 312 166 245 207 227 223 225 226 245 241 313 243
# inv-fork - 0 384 136 46 137 57 194 30 193 30 213 35 215 85 229 107 178 171
# strict-star - 0 0 569 351 763 274 620 40 196 35 171 22 153 26 158 79 531 418
# star - 0 0 0 0 0 570 117 217 6 240 60 229 53 261 42 259 129 93
# generalized - 0 0 0 0 0 0 0 794 154 721 176 721 201 638 172 607 170 121
C = ∅ - 1 1 0 0 0 0 0 1 39 1 0 1 0 3 0 2 0 0
Solved 790 263 132 471 397 549 568 637 584 415 596 470 598 470 606 471 673 681 851
+Base - 812 799 791 802 812 811 836 772 809 791 817 793 816 800 817 838 840 851
Solved\Base - 28 13 30 21 35 39 55 19 36 35 35 37 34 37 35 60 61 61
Base\Solved - 6 4 29 9 13 18 9 37 17 34 8 34 8 27 8 12 11 0

Satisficing Planning: GBFS using FF and preferred-operator pruning
Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM30s M M5 F F20s O(n) O(d) O(a)

Tackled 1686 437 403 897 654 1173 1171 1309 1280 916 1270 896 1255 1093 1271 991 1335 1374 898
Not t. before - - - - - - - - 65 2 64 2 60 27 64 13 65 65 25
# fork - 437 1 207 244 225 225 318 166 166 207 240 223 223 226 255 214 303 128
# inv-fork - 0 402 96 46 140 41 219 9 143 19 191 26 121 97 156 166 183 169
# strict-star - 0 0 594 364 808 277 587 32 222 51 176 23 120 31 137 156 435 251
# star - 0 0 0 0 0 628 185 220 88 258 84 247 226 302 176 218 197 164
# generalized - 0 0 0 0 0 0 0 853 297 735 205 736 403 615 267 581 256 186
C = ∅ - 1 1 0 0 0 0 1 1 0 1 2 1 0 1 2 0 1 0
Solved 1370 427 366 775 574 996 993 1167 1006 845 1046 832 1070 985 1102 899 1254 1279 1499
+Base - 1382 1407 1383 1383 1361 1343 1440 1277 1439 1322 1439 1351 1437 1378 1440 1490 1493 1499
Solved\Base - 12 37 35 19 43 79 104 35 82 66 81 71 98 90 91 128 129 129
Base\Solved - 0 0 22 5 51 105 34 127 13 113 12 89 30 81 21 8 6 0

Table 1: Results summary on optimal and satisficing planning. See text for detailed explanations.

condition or effect, more than one leaf. For the ILP-based
strategies, we include two variants in our evaluation, one
that maximizes the number of mobile leaves, and another
that maximizes leaf mobility. We only report data for the
variants that maximize the mobility, since these give consis-
tently better results. All baseline strategies (except the two
that maximize mobility) have in common that they return
the factoring with the maximum number of mobile leaves
among the respective subset of considered factorings. For all
factoring methods, we only consider candidate leaves with
size (product of variable domain sizes) below 232.

Like prior work on decoupled search, our methods abstain
from solving a task if the generated factoring has less than
two leaves. We say that a method tackles an instance if it
does not abstain. We impose a runtime limit of 30s on the
factoring process. On abstained instances, we sometimes (in
particular in Figure 1) report the performance of the explicit-
state baseline, because otherwise the underlying instance set
would vary for each method. In this case, we consider an
instance solved if the factoring method abstains or times out,
and the baseline solves the instance in the remaining time.

In Figure 1, we show results of our minimum-leaf-
flexibility investigation. For each of the eight base variants,
we report the coverage (number of solved instances) as a
function of the minimum flexibility for all four search set-
tings. In addition to our new strategies, we also include the
coverage of Base, Fork, and IFork for comparison. In gen-
eral, the graphs confirm that the minimum flexibility has a
significant impact on performance. For all methods, it is ben-

eficial to impose at least a mild minimum of around 5%; and
performance is worst without any restriction. Requiring a
flexibility of 100% almost never results in the highest cover-
age, either. There usually is a sweet-spot between the two
extremes that yields the best performance. For satisficing
planning, the data indicates a maximum coverage between
20% and 40%, with a peak around 25% for most methods.
Adding the causal-graph SCCs does not lead to significant
changes in satisficing planning. The SCCs do not seem to
increase the number of alternative factorings that result in
better performance in many cases. For optimal planning, the
best coverage is achieved with higher minimum flexibility,
between 40% and 80% for all but one configuration: blind
search with L has its maximum at 100%. Adding SCC has a
mixed impact, it results in significantly higher coverage for
some objective functions, but can be detrimental, too.

Comparing the objective functions, there is no clear win-
ner. For blind search bMs performs best, for A∗ with hLM-cut

it is bM and F, and for both satisficing search types it is F.
Still, in all settings there are several configurations that out-
perform even the best previous method (which is either Fork
or IFork), and most methods are significantly stronger than
Base at the minimum flexibility where their coverage peaks.

In Table 1 we summarize the results for a selection of
our new factoring strategies for A∗ search with hLM-cut,
and GBFS with hFF and PO. We show Base and all prior
methods. From our strategies, we include the basic vari-
ant without enforced minimum flexibility and the best sub-
configuration for all four objective functions. In addition,
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Figure 2: Distribution of different factorings per instance
found by the 8 old and 88 new factoring methods.

we show results for oracle configurations (Oracle(x), short
O(x)), where x ∈ {old, new, dec, all} denotes the set of
configurations that are considered by the oracle: “old” are
all previous strategies, “new” are the ones presented in this
paper, “dec” considers both, and “all” includes Base as well.
An oracle is a simulated best-case combination of all consid-
ered methods, which picks, per instance, the factoring that
results in the lowest search time. For instances not solved
by any method, it picks any of the methods that tackle the
instance, and abstains only if all methods do.

The overall conclusions are similar for both settings. First,
we observe that generalized factorings have opened up many
new possibilities and they can tackle a lot more instances, up
to 78 for O(n). This is largely due to generalized factorings,
as confirmed by the second part of the table, which reports
the kind of factorings found by each method. While, e. g.,
Fork and IFork obviously always return fork/inverted-fork
factorings, IA, MIS, LPS, and LPG produce a larger variety
of star topologies. Our new strategies make great use of gen-
eralized no-star factorings, sometimes with empty center.

But are those new possibilities any good? Definitely, at
least in some cases. Comparing the factorings preferred by
the oracles, it turns out that strict-star factorings often yield
the best performance. For both search settings these are by
far preferred by Oracle(all), but generalized factorings are
also performing better than all other factorings and the base-
line in 121 instances for optimal and 186 for satisficing plan-
ning. The “+Base” row reveals that our best new methods
outperform all prior ones, especially in satisficing planning.
Some configurations, however, perform worse than Base.
Indeed, the best performing variants do not tackle that many
new instances, showing that minimum leaf flexibility is a
good criterion to decide when to use decoupled search.

Figure 2 shows that there are many planning tasks for
which our methods return a significant number of different
factorings. The main peak is at 2 factorings per instance,
but there exist tasks for which up to 110 different factorings
were generated. Across both benchmark sets, with a total of
2330 instances, there are only 494 for which no factoring
was computed, out of which in 340 no factoring with two
mobile leaves is provably possible by Proposition 3.

Finally, in Figure 3 we report per-instance runtime results,
comparing Oracle(new) to Base and Oracle(old). Every
point below the diagonal indicates an instance where one
of the new factoring strategies performs better than Base
or than every of the existing methods. For blind search, the
results look worst. Here, Base is often better than the new
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Figure 3: Per-instance runtime comparison for Oracle(new)
(on y-axis) vs. Base and Oracle(old) on the x-axis.

methods, though Oracle(new) actually solves 59 more in-
stances. The old strategies perform close to the new ones,
indicating that the oracles probably often chose the same
factorings. Still, there are instances where the new strate-
gies result in a strong performance, sometimes several or-
ders of magnitude faster than Base, and even than the best
old method. For the remaining three search settings, the re-
sults look much more favorable for Oracle(new). There are
many cases where the performance is a lot better than Base
and Oracle(old), and it happens only very rarely that the
best of the new strategies performs a lot worse than both.

Conclusion
We have overcome the structural requirements of decoupled
search and extended its applicability to planning tasks that
could not be tackled before. The former restriction to star
topologies is obsolete, and we can now decompose planning
tasks very flexibly by partitioning the state variables in an
arbitrary way. We proved the correctness of the novel gen-
eralized factorings by making a connection to the existing
star factorings. Thereby, all properties of decoupled search
using star factorings are inherited, most importantly sound-
ness, completeness, and optimality preservation.

We introduced a factoring strategy based on integer lin-
ear programming that is capable of producing generalized
factorings, while being adaptable with respect to the prop-
erties of the factoring that should be optimized. Our experi-
mental evaluation showed the effectiveness of our strategies
and illustrated the benefit of the new freedom to decompose
planning tasks for decoupled search. Given the vast space of
possible factorings, however, the question of what the best
decomposition for a given task is remains open. We believe
this to be an important research topic for future work, that
can further enhance the understanding, but also the perfor-
mance of decoupled search.
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Gnad, D.; Torralba, Á.; Shleyfman, A.; and Hoffmann, J.
2017. Symmetry Breaking in Star-Topology Decoupled
Search. In Proceedings of the 27th International Confer-
ence on Automated Planning and Scheduling (ICAPS’17),
125–134. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Crit-
ical Paths and Abstractions: What’s the Difference Any-
way? In Proceedings of the 19th International Conference

on Automated Planning and Scheduling (ICAPS’09), 162–
169. AAAI Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
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