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Abstract

Task assignment under execution uncertainty and tempo-
ral/resource constraints is a standard problem for many orga-
nizations. Existing approaches in the AI planning & schedul-
ing and operations research literature predominantly focus
on dynamic controllability, and non-preemptive execution of
tasks. Such solutions are appropriate for teams of agents un-
der tight control requirements. However, in most organiza-
tions with human teams, once tasks have been assigned, hu-
mans tend to execute their assignments without a constant
central oversight (which is needed for dynamic controllabil-
ity).
In this paper we define a problem in which execution of tasks
is distributed (without central oversight), and assumes hu-
mans can preempt their tasks when other tasks of higher pri-
ority are ready to be worked on. We present two algorithms
based on Tabu search and Monte Carlo Tree Search to assign
and prioritize tasks for such problems. Experimental results
show the improved efficacy of these approaches for this prob-
lem setting over non-preemptive strategies.

Introduction
Organizations manage human teams to accomplish their
goals by planning to complete a set of tasks within time and
resource constraints. As an example, in the Agile methodol-
ogy for software development, tasks are assigned to team
members typically every two weeks (Abrahamsson et al.
2017). An example goal would be to build a website, and
the associated tasks would include designing the interface,
programming different pages, and testing. There would be
dependencies among tasks, and goal priorities. Key charac-
teristics of these type of planning&scheduling (P&S) tasks
are: (1) uncertainty in task durations; (2) availability of team
members; (3) task-specific qualifications (e.g., only a de-
veloper trained on Javascript programming can develop the
front-end interface); and (4) there may be limited or no
central-control during the execution, as people’s tasks are
assigned at the start of the planned period, and then control
is local i.e. each person decides what to work on. In relation
to this last characteristic, if a team member can work on a
blocking task that is a prerequisite for other tasks, then they
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might preempt their current task to work on it. Once that is
done, then they can resume working on the preempted task.
In this way, that team member would unblock others who
might be idly waiting because they are not qualified to do it.

The objective of a P&S solution in our setting is to com-
pute a task-to-human assignment that considers the fol-
lowing: tasks dependencies, goal prioritization, makespan
(deadline), resource constraints (agent availability and qual-
ifications), uncertain tasks duration, distributed control, and
preemption capabilities of agents. In this paper, tasks are
low-level activities like actions in a plan. A good solution
to the type of P&S problems herein, would increase the like-
lihood of task completion within the makespan.

The contributions of this paper include the formalization
of a real-world P&S problem, and the adaptation of two
search algorithms to solve it, viz. Tabu search and Monte
Carlo Tree Search (MCTS). We then evaluate these ap-
proaches on diverse and randomly generated problem in-
stances. The experimental results show the ability of the al-
gorithms to effectively compute task assignments and task
priorities to leverage preemption and improve outcomes in
this problem setting.

Related Work
An approach to execution control under uncertainty is Dy-
namic Controlability (DC) (Morris et al. 2001) for Simple
Temporal Networks with Uncertainty (STNU) (Vidal and
Ghallab 1996; Shah et al. 2007). However, such DC ap-
proaches require a central controller for dispatching, and
continuous monitoring of the execution state which is not
available in our problem setting. Distributed Multi-agent
STNU (MaSTNU (Casanova et al. 2016)) sought to ad-
dress the problem of distributed control when communica-
tion with a central agent is absent or intermittent. It com-
putes multiple STNUs, one for each agent.

However, without enabling preemption of tasks (context
switching), these approaches cannot satisfy the makespans
in some problems. Figure 1 shows an example, where there
is no solution even without uncertainty (contingent links). In
the example, we use a disjunctive condition using the repre-
sentation used in (Cimatti, Micheli, and Roveri 2016) which
is there to indicate an agent can only do one task at a time
and no-preemption. We also have an external edge that en-
forces synchronization between agents (using the represen-
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Figure 1: Example of a multi-agent STN that cannot be
solved without preemption.

tation from (Casanova et al. 2016)). In this example, there
is no assignment to D2 or E2 that allows satisfying all con-
straints. However, if we allow preemption, it lets us ignore
the disjunctive constraint. Then E2 can be started at t=0, pre-
empted at t=6 to finish D2, and then return to E2. This would
satisfy all makespans (displayed in red).

Another framework is probabilistic STN (PSTN), where
the uncertain durations follow a probability distribution,
which is an assumption we make in our work as well. There
is recent work on computing a dynamic control schedule for
PSTNs (Gao, Popowski, and Boerkoel 2020), and another
one for using Monte Carlo Tree Search (Saint-Guillain, Va-
quero, and Chien 2021). These methods still require a central
controller.

From operations research (OR) literature, our problem
maps to Resource Constrained Project Scheduling Prob-
lems (RCPSP). There are different dimensions to RCPSP
problems. In a recent survey on RCPSP problems (Habibi,
Barzinpour, and Sadjadi 2018), the dimensions were catego-
rized into (1)resource type, (2) activity concepts, (3)objec-
tive function, (4) availability of information. With respect
to these dimensions, our problem is defined as (1)renewable
resources (human agents)(2) preemptable activities (3) time-
based objectives (4) Stochastic durations. We have not found
any RCPSP work that considers both stochastic durations
and preemption with a makespan objective. The approaches
we found in RCPSP literature that consider preemption have
deterministic durations. These approaches either have no
penalty for interruption (Moukrim, Quilliot, and Toussaint
2015) or impose a hard limitation on the number of inter-
ruptions (Zhu, Li, and Shen 2011) to account for preemp-
tion cost without explicitly considering it in the constraint
satisfaction problem.

The last branch of relevant literature is from Operating
Systems (OS), specifically from Real Time Operating Sys-
tems (RTOS) (Stankovic and Rajkumar 2004). In such sys-
tems, process priorities are used to interrupt/preempt the

current activity on a processing unit, and switch control.
Priorities become very useful when most of the tasks have
uncertain durations, or are affected by exogenous events
(interrupts), and the execution is distributed across dif-
ferent processes. The closest analogy to our problem we
found in RTOS literature is Worst Case Execution Time
(WCET)(Sharma, Elmiligi, and Gebali 2015). WCET is es-
pecially used to certify safety critical systems like automo-
tive controllers; the RTOS response to various test-loads is
evaluated to make sure the processing time for critical tasks
is within a safety cutoff. This is different from our prob-
lem in that we do not tune our approach to satisfy a fixed
makespan for certain tasks. Rather, ours is a general purpose
(assignment) algorithm to handle variable makespans, and
constraints over agent availability, and qualifications.

Problem Definition
Our problem of Assignment and Prioritization of Tasks
(APT) for Distributed Execution is given by the tuple <
π, T,A, P,G, γ, w,m, δ, q, a, β > where:

• π: Partial Order Plan represented by a directed acyclic
graph (DAG = < T,E >) where T is the set of vertices
of the DAG, and correspond to the tasks in the plan, and
the directed edges capture the ordering dependencies.

• T : set of tasks
• A: set of agents.
• P : fixed set of priority levels assignable to the actions.
P ⊂ Z+

• G: set of goals.
• γ : G → 2T : tasks associated to each goal. A goal is

considered complete when all its tasks are done.
• w : G → R+: importance weight (priority) of each goal.

This is different from the assignable task priority from P .
• m ∈ R+ is the maximum makespan within which the

goals ought to be completed.
• δ : T×R+ → [0, 1] defines the probability of completing

a task in a given amount of time.
• q : A×T → {0, 1}: qualification function; q(ai, tj) = 1

if agent ai can perform task tj .
• a : A × R+ × R+ → {0, 1}: availability function;
a(ai, t1, t2) = 1 if ai is available between t1 and t2.

• β : A × T → R+ is the preemption cost function that
tells how much additional time a task will take because it
has been preempted.

A solution (output) to the APT problem consists of find-
ing an assignment function α : T → A and prioritization
function ρ : T → P that fulfill the temporal and resource
constraints (given by π, q and a). In order to compare dif-
ferent solutions, we define a scoring function for goal com-
pletion. The score of a plan is the weighted probability of
goal completion within the maximum makespan (m). This
is defined in Equation 1.∑

g∈G

w(g)∑
g′∈G w(g′)

× prob(c(g, α, ρ) < m) (1)
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where prob(.) returns the probability of an event, and c(.)
is a stochastic function that returns the completion time of
goal g for a given assignment and prioritization. c(.) is de-
termined using a simulator of the execution process that we
will describe next in the following section.

Solving APT Problems
We use a search-based approach to solving APT. To estimate
the goodness of solutions –given the stochasticity of task
durations– we developed a simulator to sample and rollout
execution trajectories for a given assignment and prioritiza-
tion of tasks. In the following sections we will describe the
simulator and the search algorithms that use it to solve APT.

Simulator
The simulator takes in the problem components and a po-
tential solution (given by α and ρ) and returns a sampled
value of the c(.) function. The simulator samples durations
for each task, and simulates execution. We use a discrete-
time simulator. A continuous-time simulator would be faster,
but a discrete simulator implicitly considers the slack from
human behavior like reading emails. Thus, it better fits the
problem setting we are interested in. At each step, the simu-
lator determines which task an agent works on based on their
backlog; backlog is the set of tasks ready and incomplete at
that step. Tasks assigned to an agent as per α(.) will appear
on their backlog when task dependencies are completed. The
simulator includes certain key dynamics:

• Completion time: when a task is assigned to an agent’s
backlog, it comes with its priority level (given by ρ) and
the time required to complete the task (sampled using δ).

• FIFO: when two tasks arrive to an agent’s backlog with
equal task priority (set by ρ), the agent works on the first
task that arrived. If they arrive at the same time, then the
order is arbitrary.

• Agent availability: when an agent is working on a task,
progress is made on the task only during the time when
the agent is available (given by a(.) ). When the agent is
available, the time required to complete the task is decre-
mented by one time-step of the simulator.

• Preemption: when a higher-priority task enters the back-
log, it will preempt the current task, which will return to
the backlog. The time needed for completion of the pre-
empted task will increase (as per β).

The simulator returns the completion time of each goal
in G. Completion times are used by the search algorithms
to find good assignments and prioritizations of tasks. In this
work, we consider all tasks as preemptible. Non-preemptible
tasks can be easily supported by checks in the simulator. The
rest of the methodology remains unchanged.

Search Algorithms
We present two stochastic search approaches to solve APT
problems: Tabu search and MCTS. Both use simulations to
evaluate the value of a solution using Equation 1. In Tabu
search, we start with a random initial solution, and take lo-
cal improvement steps until no more improvements greater

than a specified threshold are possible. We iterate the pro-
cess (random restart) for as many times as possible within a
time limit. The tabu list in tabu search only keeps the solu-
tions obtained at the end of each iteration.

For MCTS, the nodes at each level in the tree correspond
to a partial assignment of tasks with priorities (a partial solu-
tion). Each successor node adds an assignment and a priority
for a task. During MCTS search, the process steps through
each node and recursively selects the best-child node based
on the average reward of the node, (initialized to 0); this
is only if the node is already fully expanded. If the node
is not yet fully expanded, i.e. only a subset of children have
been evaluated, then a random node from the remaining chil-
dren is selected to be opened. Each node is evaluated by ran-
dom rollout, i.e. random assignments and prioritizations for
the remaining tasks (subject to the qualification constraints).
The reward at the leaf node (end of a rollout) is the aver-
age score returned by 30 simulations of the complete so-
lution obtained at the leaf node. This reward is backpropa-
gated to each of the parent nodes, and the average reward
is updated. When the allowed time for search has expired,
MCTS may not have opened a terminal node of the search
tree (which would have all tasks assigned). In that case, we
take the best leaf-node from amongst the nodes opened so
far; this would only have a partial assignment of tasks. We
then complete the assignment using a hill-climbing search
for the remainder with no random restarts or tabu list. This
is needed because unlike MCTS for the games of Chess or
Go, we need a complete solution and not just the next deci-
sion in the search tree. In our experiments, we did not utilize
exploration with upper confidence bounds (Fürnkranz and
Scheffer 2006). We found that exploration resulted in worse
solutions when limited by the cutoff time; we attribute this
to MCTS taking more time to explore than exploit/discern
between good partial solutions that were found early.

One of the algorithmic decisions that helped improve re-
sults in MCTS was to order the task assignment decisions
intelligently. We run a topological sort on the partial-order
plans DAG and use the topology levels to order tasks in the
search tree. The rationale is that decisions made for tasks
(nodes) at lower topological levels would impact down-
stream decisions, so it makes more sense to decide these
first. Additionally, since goals have importance weights as-
sociated to them, we further order task assignments in
MCTS based on the highest weight of the goals that require
them. Lastly, our MCTS code was built upon the standard
implementation of the algorithm (Coulom 2006) as imple-
mented in the python mcts library.

Experiments
We evaluate the Tabu and MCTS algorithms on 6 randomly
generated APT problems. We give each algorithm a time
limit of 30 minutes. The number of tasks in each plan is
fixed to 30. So, a plan DAG with fewer levels/depth will have
more tasks per topology level resulting in a wider graph. The
number of goals was randomly set between [3, 5], and each
goal weight was randomly set between [1,3]. Each task from
the last topological level was randomly assigned to one of
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Goals
H a p m g0 g1 g2 g3 g4 MCTS Tabu
3 4 1 163 1 1 2 1 1 0.86 0.83
3 4 3 163 1 1 2 1 1 0.99 0.93
3 6 1 163 2 2 1 3 3 0.99 1.0
3 6 3 163 2 2 1 3 3 1.0 1.0
3 4 1 156 2 3 1 0.04 0.0
3 4 3 156 2 3 1 0.48 0.4
3 6 1 156 1 2 1 2 2 1.0 1.0
3 6 3 156 1 2 1 2 2 1.0 1.0
3 4 1 165 3 3 3 1 3 1.0 1.0
3 4 3 165 3 3 3 1 3 0.93 0.99
3 6 1 165 3 3 2 1.0 1.0
3 6 3 165 3 3 2 1.0 1.0
6 4 1 169 2 1 3 0.32 0.33
6 4 3 169 2 1 3 0.34 0.33
6 6 1 169 1 3 3 1.0 1.0
6 6 3 169 1 3 3 1.0 1.0
6 4 1 174 2 1 1 1.0 1.0
6 4 3 174 2 1 1 1.0 0.99
6 6 1 174 3 1 2 1.0 1.0
6 6 3 174 3 1 2 1.0 1.0
6 4 1 154 1 2 3 3 0.51 0.59
6 4 3 154 1 2 3 3 0.7 0.76
6 6 1 154 3 2 3 3 1.0 0.84
6 6 3 154 3 2 3 3 1.0 1.0

Table 1: Likelihood of finishing execution by maximum
makespan for MCTS and Tabu search given different con-
figurations of topological depth (H), number of agents (a =
|A|), priority levels (p = |P |)) and maximum makespan (m).

the goals. The simulation time-step was 1 hour. The follow-
ing problem features were randomly generated:

Task Time: The time required per task is stochastic, and
follows a uniform distribution between two limits. The limits
are sampled from a normal distribution with a mean of 8
(hours), and standard deviation of 3; the smaller sampled
value is the lower bound.

Agent Availability: Each agent is available during ran-
dom intervals of time to make the search more challenging.
We start with the agent being available for the max duration
of a problem. Then, for each hour, the likelihood of an agent
taking time off starting from any given hour is 0.05. If an
agent takes time off, the duration is sampled from a Gaus-
sian distribution with mean 8 and standard deviation 4.

Likelihood of Task Dependency: Each task has a 5%
chance of being connected to any other task. This is on-top
of the single edge needed to enforce the depth of the DAG
underlying the partial plan.

Qualifications: Each task requires a qualification to per-
form it. Each agent is assigned a subset of the possible qual-
ifications, with at least one agent having each qualification.
The likelihood of an agent having an additional qualification
is 0.25. We fixed the number of qualifications to 4.

The makespan m was set to 60% of the sum of all the
tasks’ duration upper bound. We set this value empirically
based on results from using a team of 3 agents and 1 prior-

ity level; the score using Equation 1 was often below 50%
with either search algorithm, so we chose it as a challenging
makespan. Given these variations in problem parameters, we
posit that our problem generation is sufficiently parameter-
ized to produce diverse, and challenging problems.

During simulation of an assignment on a plan, when an
agent’s task is preempted by a higher priority task, we set
the penalty to a fixed amount; 0.5 hours additional time to
complete the preempted task. For our experiments, we vary
the following: topology of the underlying DAG - we set the
depth to 3 or 6, which affects the longest sequence of depen-
dencies; number of agents - we used teams of 4 and 6 people;
priority levels - we used 1 and 3 priority levels to evaluate
the effects of preemption. All code was written in python and
experiments were run on a PC with Intel® Core™ i7-6700
CPU, running at 3.40GHz on Ubuntu 20.04 with 32 GB of
memory. All random elements are controlled by a seed.

Results

In Table 1, we present the results on 6 randomly generated
problems; each problem’s data is separated into a sub-table.
The score under the MCTS and Tabu columns is computed
as per Equation 1, and is the averaged result of 100 simu-
lation runs. For 4 agents, when the number of priorities in-
creases from 1 to 3, the success rate increases appreciably
for both algorithms, except in one anomalous case which
we attribute to the stochastic nature of the search. Having
more priority levels alleviates the agent resource constraint.
An example of this is when only one agent has a necessary
qualification for many tasks, that agent becomes the bottle-
neck. By allowing preemption, that agent can switch tasks
and improve outcomes. For example, in the second graph
we see an increase in the score from 4 agents with 1 priority
level, to 4 agents and 3 priority levels. The reason for that
is only one agent had the qualification required for 8 longer
tasks. When the same partial plan was run with 6 agents,
there were two more agents who had that qualification, and
that helped the success rate jump to 1.0. Both MCTS and
Tabu search performed comparably well, and so we cannot
say one is better. It is unsurprising that with 6 agents (even
with just 1 priority) both methods tend to find seemingly op-
timal score solutions, except for the last graph when Tabu
search only finds a 1.0 score solution with 3 priority levels
and not with 1 priority level.

Conclusion

In this work, we presented a new type of P&S problem
(APT) that resembles a set of real world problems. The main
differences with prior work is the combination of distributed
control during execution and the agent’s ability to preempt
tasks. We also contribute the adaptation of two search al-
gorithms, MCTS and Tabu search, to solve these problems.
The experimental results show that both algorithms provide
promising results for APT problems. The results also show
that when agents are able to preempt their current tasks, the
goal completion score improves appreciably.
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