
Encoding Lifted Classical Planning in Propositional Logic

Daniel Höller1 and Gregor Behnke2,3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,
2 University of Freiburg, Freiburg, Germany,

3 University of Amsterdam, ILLC, The Netherlands
hoeller@cs.uni-saarland.de, g.behnke@uva.nl

Abstract
Planning models are usually defined in lifted, i.e. first order
formalisms, while most solvers need (variable-free) grounded
representations. Though techniques for grounding prune un-
necessary parts of the model, grounding might – neverthe-
less – be prohibitively expensive in terms of runtime. To over-
come this issue, there has been renewed interest in solving
planning problems based on the lifted representation in the
last years. While these approaches are based on (heuristic)
search, we present an encoding of lifted classical planning
in propositional logic and use SAT solvers to solve it. Our
evaluation shows that our approach is competitive with the
heuristic search-based approaches in satisficing planning and
outperforms them in a (length-)optimal setting.

1 Introduction
Planning models are usually defined in a lifted way on some
kind of (usually function-free) first order language. While
there are methods to solve such problems based on this rep-
resentation (e.g. Penberthy and Weld (1992), Younes and
Simmons (2003), or Ridder and Fox (2014)), by far most
work in the last decades has been based on grounded (i.e.
variable-free) models. The lifted model is therefore trans-
formed by a process called grounding, which systematically
replaces variables by all constants. To make this feasible,
models usually incorporate typing and grounding systems
apply techniques to exclude model parts for which they can
show that they cannot be contained in any solution (e.g.
delete-relaxed reachability). However, while this works well
in practice on certain models, it cannot prevent a blowup of
the model that might be exponential in the worst case.

Recently, several approaches have been presented that
solve planning problems based on the lifted model. These
systems are based on (heuristic) search. They maintain the
input model lifted, but ground the explored parts of the
search space during search. Corrêa et al. (2020) introduced
an approach to generate successor states in this process effi-
ciently. Heuristics to guide the search have been presented
by Corrêa et al. (2021) and Lauer et al. (2021). The for-
mer computes the Add and the Max heuristic (Bonet and
Geffner 2001) on the lifted model. It uses an approach based
on datalog (just like the grounded computation integrated in

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the Fast Downward system (Helmert 2006)). While the input
model is not pre-grounded, those parts that are reached dur-
ing heuristic calculation are grounded by the heuristic func-
tion, making the computation hard (NP-hard in the lifted in-
put size in worst case). Lauer et al. (2021) presented a re-
laxation that splits predicates into smaller ones of a fixed
arity. When choosing arity one, their heuristic can be com-
puted in polynomial time in the lifted input size. More pre-
liminary work has been presented by Wichlacz, Höller, and
Hoffmann (2021). They extract landmarks from the lifted
model, which are then used to guide the search.

In this paper we present a schema to encode lifted clas-
sical planning in a state-less way inspired by approaches
from plan space planning. We realize a translation to propo-
sitional logic to exploit the performance of modern SAT-
solvers. While the encoding is quadratic in plan length in the
worst case, we present a strategy to decrease its size in satis-
ficing planning, which proves very effective in practice. We
evaluate our resulting system on a benchmark set recently
introduced by Corrêa et al. and Lauer et al. to test lifted sys-
tems. The results show that our system has a slightly higher
normalized coverage than the systems from the literature in
the satisficing setting, and that it has three times the normal-
ized coverage in a length-optimal setting.

2 Formal Framework
We base our formalism on the one by Lauer et al. (2021).
A lifted planning problem is a tuple Π = (O, P, A, I, G).
O is a set of objects, P a set of predicate symbols, and A
a set of action symbols (all sets are finite). Each predicate
symbol Pn ∈ P has a tuple of parameters P (v1, . . . , vn).
As in this example, we annotate predicates with their arity
(here n) when the parameters are not given explicitly. When
relevant for a definition, we annotate each variable with a
type (e.g. vtii). Let Ot be the subset of O of the type t. We
assume a type hierarchy that is a tree1 in which for a parent
type tp and a child type tc holds that Otp ⊇ Otc. In par-
ticular, we assume that if Ot1 ∩ Ot2 6= ∅, then either t1 is
a parent-type of t2 or vice versa. Let T be the set of types.
A parameter vtii of a predicate can be substituted by an ob-
ject from Oti . When all variables are substituted we call the
predicate ground (also called atom).

1W.l.o.g. we assume a single tree to simplify our definitions.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

134

Similar to predicates, an action symbol An ∈ A comes
with a tuple of n typed parameters A(vt11 , . . . , v

tn
n). The

functions prec, add , and del map an action to its precondi-
tion, the add, and the delete effect. Each of these functions f
maps an action An ∈ A to a set f(An) = {P (i1, . . . , im) |
Pm ∈ P , 1 ≤ j ≤ m : ij ∈ {1, . . . , n}}. I.e., each ij is an
index of a variable from the action.
Example 1. Consider a pickup action from a simple trans-
port domain: Pick(xv , yl , zp), where x is of type vehicle, y
of type location, and y of type package. The precondition is
prec(Pick3) 7→ {At(3, 2),At(1, 2)}, i.e., the At predicate
must hold for the tuple consisting of the 3rd and 2nd param-
eter of the action (i.e. for At(z , y)), and for the 1st and 2nd

parameter (At(x , y)), i.e., vehicle and package are at the
same location. The effect is add(Pick3) 7→ {In(3, 1)} and
del(Pick3) 7→ {At(3, 2)}, the package is inside the vehicle.

Let A(vt11 , . . . , v
tn
n) be an action. We call it to be well-

defined if for all elements P (i1, . . . , im) in its preconditions
and effects with P (us11 , . . . , u

sm
m) ∈ P , it holds that Otij ⊆

Osj . I.e., the type of the action’s variable must be a subtype
(i.e., mapping to the same or a subset of the objects) of the
variable type of the predicate. In the following, we assume
that all actions in a problem definition are well-defined.

Similar to predicates, an action is ground when each of its
variables vtii is substituted by an object out ofOti . We define
a function ρ, which maps a ground action A(o1, . . . , on) ∈
A and a set P ′ = {P (i1, . . . , im) | P ∈ P , ij ∈ {1, . . . ,
n}} to the set {P (oi1 , . . . , oim) | P (i1, . . . , im) ∈ P ′}. I.e.
it replaces indices in a precondition or effect definition by
the objects from the action, resulting in a set of atoms.

Let PO and AO be the sets of ground actions and predi-
cates over O. I is the initial state, and G the goal definition;
both are elements out of 2P

O . A state is represented by the
atoms that hold in it (s ∈ 2P

O), all other atoms do not hold.
Definition 1 (Applicability). A ground action a is applica-
ble in a state s if and only if ρ(a, prec(a)) ⊆ s.
Definition 2 (State Transition). The state s′ resulting from
applying an applicable ground action is denoted γ(s, a) and
defined as γ(s, a) = (s \ ρ(a, del(a))) ∪ ρ(a, add(a)).
Definition 3 (Solution). A solution to a problem Π is 1. a
sequence of ground actions π = (a1, . . . , an) such that 2. ai
is applicable in si−1 with s0 = I as well as si = γ(si−1, ai)
for i > 0; and 3. for sn it holds that G ⊆ sn.

3 Lifted Planning in Propositional Logic
We first want to give an intuition of our encoding. It does not
include intermediate states of a plan, only the initial state and
an action sequence, which has strong similarities with plan-
space planning (see Ghallab, Nau, and Traverso 2004, Ch.
5), where systems maintain a partially ordered set of actions,
the partial plan, during search (resulting in the lack of a full
state definition at this point). E.g. in POCL planning (Pen-
berthy and Weld 1992), action preconditions are matched to
an effect fulfilling them by causal links, while actions that
delete such an atom are called threats for the link. Solutions
are then not defined via state, but via the absence of flaws,
where a flaw is either a precondition not linked, or a threat.

We will see that our encoding has much in common with
this view on planning. However, the actual solving tech-
niques differ severely. We use a translation instead of search,
have no causal links, and commit to a totally ordered plan.

We will discuss the relation of our approach to other trans-
lations from classical planning to propositional logic in Sec-
tion 4 after introducing our encoding.

3.1 A High-Level Description of Our Encoding
Our encoding is illustrated in Figure 1. First have a look
at the sequence at the top that resembles a solution, i.e., a
sequence of ground actions. Each box is a placeholder for
an action symbol (gray) or an object (white). Each action
is followed by n objects, where n is the maximum arity of
an action from Π. We now define the constraints needed to
make this sequence a solution to a given planning problem.

In the encoding we assign each placeholder a value. For
actions, this is a number from 1 to |A|. We assume an ar-
bitrary but fixed ordering of the actions A = (a1, . . . , aA).
Let I be a function mapping the index of an action in the
solution to its placeholder, i.e. I(i) is the placeholder at in-
dex (i − 1) × (n + 1). We define I also for parameter j
of action i, mapping I(i, j) to the placeholder at position
(i−1)×(n+1)+j (both i and j start with 1). In our encod-
ing, the placeholder I(i) will (at first) be an integer variable.
As such, we write I(i) = a to denote the fact that variable
I(i) is set to action a ∈ A and I(i) = I(j) to denote that
the values of the two placeholders need to be identical. We
use the same semantics for the object placeholders, where
I(i, j) = o indicates that the jth parameter of the ith action
is set to o.

Typing We first enforce that the types of the parameters fit
the action symbol. We assign every object from the problem
a unique number from 1 . . . |O| in a way such that objects
belonging to a certain type get consecutive numbers. This is
possible since we assert the type hierarchy to be a tree. For a
type t, let fi(t) be the smallest index of an object belonging
to t, and li(t) the largest one. Let L be the length of the
action sequence as given in Figure 1.

∀i ∈ {1, . . . , L} : ∀A(vt11 , . . . , v
tm
m) ∈ A : ∀j ∈ {1, . . . ,m}

(I(ai) = A)⇒ (I(i, j) ≥ fi(tj))

(I(ai) = A)⇒ (I(i, j) ≤ li(tj))

When solving this constraint system, we end up with a
sequence of action symbols followed by their parameters of
the correct type. When an action has less than n parameters
(let us assume k with k < n), we have no guarantee about
the placeholders at the positions between k and n. However,
these are not of interest when reconstructing the sequence of
actions and we get the following lemma:

Lemma 1. From a fulfilling assignment we can extract a
ground action sequence π = (a1, . . . , aL).

Preconditions Consider the (partial) action definitions
given at the bottom of Figure 1. On the right is the Pickup
action from Ex. 1, on the left a Drive action (for the former,
only preconditions are given, for the latter only effects).

135

a2 p(2,1) p(2,2) p(2,n). . . a3 p(3,1) p(3,2) p(3,n). . . aL p(L,1) p(L,2) p(L,n).a1 p(1,1) p(1,2) p(1,n). . .

Pick xv yl zp3

1

2

2

At

At

precondition action ai

0 1 2 . . .placeholder:

Drive uv vl wl 1

1

3

2

At

¬At

effectaction aj

I(1, n) I(2) . . .

Figure 1: Schema of our encoding.

The Pickup action needs the At predicate to hold for the
action parameter tuples (3, 2) and (1, 2), which translates
into the vehicle (param. 1) and the package (param. 3) to
be at the same location (param. 2). Consider the effect of
the Drive action: the tuple of param. 1 (a vehicle) and 3 (a
location) is added, while the tuple 1 and 2 (a location) is
deleted. The first effect is a possible achiever for the second
precondition of Pickup. An achiever is defined as follows:
Definition 4 (Achiever). An achiever for a (ground) atom
P (o0, o1, . . . , om) in a (ground) plan π = (a1, . . . , aL) is
1. I if and only if it holds that P (o0, o1, . . . , om) ∈ I, or
2. an action a ∈ π with P (o0, o1, . . . , om) ∈ ρ(a, add(a)).

We define the term position of the achiever w.r.t. a se-
quence of actions as 0 (in the first case), or as the position of
the action in the sequence (with 1 for the first action).

We know that the effect holds after executing the achiever.
However, it might be deleted by another action. We call such
an action a destroyer.
Definition 5 (Destroyer). A destroyer for a (ground) atom
P (o0, o1, . . . , om) in a (ground) plan π = (a1, . . . , aL)
is an action a ∈ π that has it in its delete effect, i.e.,
P (o0, o1, . . . , om) ∈ ρ(a, del(a)).

The position of the destroyer w.r.t. a sequence of actions
is its position in the sequence (with 1 for the first action).

In our example we can observe that we do not need to
assign all parameters of the Drive action to know that it is
an achiever for the precondition of our Pickup action. We
need to set the param. 1 and 3 since only those are contained
in effect 1. This makes perfect sense since we do not care
from which location the vehicle comes, but where it is after
the execution. Our second observation is that we do not need
to pick the actual constants we assign to the parameters, it
suffices to ensure that the respective parameters are equal.
I.e., to check whether there is an achiever for precondition 2
of action a (the Pick action) we do not need to track the state
nor to fully instantiate the achiever action’s parameters. It is
sufficient to check whether there is some j such that:

[I(j) = drive] ∧ [I(j, 1) = I(i, 1)] ∧ [I(j, 3) = I(i, 2)]

Definition 6 (Achiever Assignment Set). Given an action
a and an element P (i1, . . . , im) out of its precondition
prec(a). The function α(a, P (i1, . . . , im)) maps the two el-
ements to the following set:

α(a(vt11 , . . . , v
tl
l), P (i1, . . . , im)) = {(a′, (j1, . . . , jm)) |

a′(us11 , . . . , u
sk
k) ∈ A, P (j1, . . . , jm) ∈ add(a′),

for 1 ≤ h ≤ m : Otih ∩ Osjh 6= ∅}

The function maps one element of an action’s precondi-
tion to a set of tuples containing (1) an action a′ having the
same predicate in its add effect (the achiever), and (2) the
indices ji from the action appearing in that effect. Be aware
that these are just indices of the action’s parameters. When
we enforce parameter indexed j1 of a′ to be equal to the first
parameter used in a’s precondition, parameter j2 of a′ equal
to the second parameter and so on, we know that a′ is an
achiever for the precondition. Notice that neither precondi-
tion nor effect are included in this equality tests (it is a test
on parameters). We define the same for destroyers:
Definition 7 (Destroyer Assignment Set). Given an ac-
tion a and an element P (i1, . . . , im) out of its precondition
prec(a). The function β(a, P (i1, . . . , im)) maps the two el-
ements to the following set:

β(a(vt11 , . . . , v
tl
l), P (i1, . . . , im)) = {(a′, (j1, . . . , jm)) |

a′(us11 , . . . , u
sk
k) ∈ A, P (j1, . . . , jm) ∈ del(a′),

for 1 ≤ h ≤ m : Otih ∩ Osjh 6= ∅}
Definition 8 (Achiever/Destroyer Assignm. Set on Goals).
We use analogous functions for P (o1, . . . , on) ∈ G.

α/β(P (o1, . . . , om)) = {(a, (j1, . . . , jm)) |
a(us11 , . . . , u

sk
k) ∈ A, P (j1, . . . , jm) ∈ add/del(a),

for 1 ≤ h ≤ m : oh ∈ Osjh }
To enforce the preconditions of all actions in the se-

quence, we include the constraints given in Figure 2. For
each combination of placeholder ic and action A ∈ A, there
is one implication. When the placeholder is equal to A, for
each precondition there must be an index ia containing an
achiever, such that there is no destructor between ia and ic.
Lemma 2. For each precondition P (o0, o1, . . . , om) ∈
ρ(ai, prec(ai)) of each action ai = A(v0, v1, . . . , vL) in the
action sequence extracted from the fulfilling assignment, the
following holds:
1. There is an achiever for P (o0, o1, . . . , om) at some posi-

tion j with 0 ≤ j < i such that
2. there is no destroyer between j and i.

Goal Condition The goal condition is defined in a similar
way, given in Figure 3.
Lemma 3. In the action sequence extracted from the fulfill-
ing assignment, in each P (o0, o1, . . . , om) ∈ G:
1. There is an achiever for P (o0, o1, . . . , om) at some posi-

tion j with 0 ≤ j ≤ L such that
2. there is no destroyer between j and L.

From the combination of Lem. 1–3, we get the following:

136

∀ic ∈ {1, . . . , L} : ∀A ∈ A : (I(ic) = A)⇒ ∀P o(k1, . . . km) ∈ prec(A) :∃ia : (0 ≤ ia < ic) :(
(ia = 0)⇒ [ρ(A, {P o}) ⊂ I] ∧ (ia ≥ 1)⇒

[∨
(A′,(j1,...,jm))
∈α(A,P o)

(I(ia) = A′)∧
m∧
l=1

(I(ic, kl) = I(ia, jl))
])
∧

¬∃id : (ia < id < ic) :
[∨

(A′,(j1,...,jm))
∈β(A,P o)

(I(id) = A′)∧
m∧
l=1

(I(ic, kl) = I(id, jl))
]

Figure 2: Constraints to enforce that all preconditions have achievers.

∀P (o1, . . . , on) ∈ G : ∃ia : (0 ≤ ia ≤ L) :
(
(ia = 0)⇒ [P (o1, . . . , on) ∈ I]∧

(ia ≥ 1)⇒
[∨

A∈A,P (j1,...,jm)
∈α(A,add(A))

(I(ia) = A) ∧
m∧
l=0

(ol = I(ia, jl))
])
∧ ¬∃id : (ia < id ≤ L) :

[∨
A∈A,P (j1,...,jm)
∈β(A,del(A))

(I(id) = A) ∧
m∧
l=1

(ol = I(id, jl))
]

Figure 3: Constraints to enforce goal achievers.

Theorem 1 (Correctness). The plan extracted by our encod-
ing is a plan for the underlying planning problem.

Proof. We need to show that we receive a sequence of
ground actions that is applicable and leads to a goal. As-
sume that there is an action ai that is not applicable though
Lem. 1–3 hold. To be not applicable, there must be at least
one atom contained in its preconditions not contained in the
state right before the execution (see Def. 1). Let p be such an
atom. According to Lem. 2.1, there is an achiever for p. Thus
it was true right after the achiever has been executed (or in
I if the achiever has position 0). The only means by which
p can be false before ai is by a delete effect of an action be-
tween the achiever’s position j and i. Such an action would
be a destroyer violating Lem. 2.2, which does not exist. The
same reasoning holds for the goal.

Theorem 2 (L-Completeness). Given π is a plan accord-
ing to Def. 3 of length L = |π| for problem Π, there is a
satisfying assignment of our encoding.

Proof. Similarly, assume a plan of lengthL satisfying Def. 3
but not Lem. 1–3. There must be some action ai (or the goal)
and precondition p of ai that is not fulfilled. Since ai is ap-
plicable in si, p ∈ si, it must have been in the initial state or
been inserted by some action without a subsequent delete ef-
fect. Both cases would constitute the required achiever, lead-
ing to a contradiction.

Theorem 3 (Size). Given a (lifted) planning problem Π, our
encoding is quadratic in the length of the plan.

Proof Sketch. The size is determined by the interplay of an
action sequence of length L and the positions of possible
achievers and destroyers. For an action a at position i, there
are j = i−1 possible achievers. We can encode the selection
of the achiever for a at position i in linear size.

The destroyers are critical as there are k = i− j possible
destroyers for every pair i, j. Whether a concrete action is a

destroyer does not depend on the exact achiever position, but
only on whether it is before the destroyer or not. As such, we
can encode for every position k whether the achiever of a at
i is before k – which is possible with a linear encoding. We
then encode for every position k that its action is a destroyer
if the achiever for any i > k is before k. This leads to a
quadratic encoding. For more details, we refer to the follow-
ing encoding and the detailed proof in the appendix.

3.2 An Encoding in Propositional Logic
We presented a schema for a state-less encoding that could
be realized in different formalisms. In this paper we present
a realization in propositional logic, which is described in
this section. Other variants could e.g. use Integer Linear Pro-
gramming or CSP. We create the formula for a given number
of positions, denoted with L (the length of the plan).

We underline names of propositional variables to make
formulae as clear as possible. Throughout this section,
we generate parts of the formula for every position p ∈
{1, . . . , L}. To ease notation we omit the quantification.

We first define variables representing the placeholders:
• ai@p – for every ai ∈ A and position 1 ≤ p ≤ L.
• oi@p, j – for every oi ∈ O, position 1 ≤ p ≤ L, and

1 ≤ j ≤ n where n is the maximum arity of an action.
These variables represent every possible value of each place-
holder with a separate variable (one-hot encoding). To en-
force this semantics, we have to assert that for every position
1 ≤ p ≤ L and argument index 1 ≤ j ≤ n at most one of
the ai@p and oi@p, j is true. There are several ways of en-
coding such at-most-one constraints. For a set of variables
V , we denote with A(V) a set of clauses that pose the con-
straint that at most one variable in V is true. If |V | < 256
we use the naı̈ve quadratic encoding, for larger sets V we
use the binary counter encoding (Sinz 2005). We postpone
providing the exact constraints until after discussing typing.

Typing Next, we assure the correct parameter typing for
the different actions. We do not encode typing constraints

137

directly, but we encode more object placeholders than the
maximum arity n and consider the maximum arity sepa-
rately per type. For every type t, we determine the maximum
number nt of parameters of this type an action has.
Example 2. Consider a planning problem with the actions
Pick(xv , yl , zp), Drop(xp , yl , zv), and Drive(xl , yv , zl).
In this case, we have a maximum arity n = 3 and type arities
of nv = 1, np = 1, and nl = 2.

We then generate N =
∑
t∈T nt many placeholders per

position. For a fixed but arbitrary ordering of the types
(t1, . . . , tt), we assign the first nt1 placeholders to argu-
ments of type t1, the next nt2 placeholders to arguments
of type t2 and so on. By this, we obtain a new mapping
τ : A × N 7→ N assigning every argument of an action
to the index of its placeholder. Let T : N 7→ T define the
type of each placeholder.
Example 3. Continuing Example 2, we create 4 placehold-
ers and set T (1) = v, T (2) = l, T (3) = l, T (4) = p,
and τ(Pick , 1) = 1, τ(Pick , 2) = 2, τ(Pick , 3) = 4,
τ(Drop, 1) = 4, τ(Drop, 2) = 2, τ(Drop, 3) = 1,
τ(Drive, 1) = 1, τ(Drive, 2) = 1, and τ(Drive, 3) = 3.

We increase the number of placeholders, but eliminate
variability in the order of arguments of actions, by grouping
arguments with (ostensibly) similar semantics together. Fur-
ther, the typing of object placeholders is now independent of
the actually chosen action. This reduction will also be of use
when encoding the equality of parameters. To ensure a cor-
rect typing and unique selection of actions and parameters,
we add the following constraints to our formula, which en-
sure that of the possible values for each placeholder at most
one is picked and no impossible value is chosen.

A({ai@p | ai ∈ A})
∀j ∈ {1, . . . , N} : A({oi@p, j | oi ∈ OT (j)})
∀j ∈ {1, . . . , N} : ∀o ∈ O \ OT (j) : ¬o@p, j

For the time being, we also enforce that every position
actually contains an action, i.e. when generating the formula
for L positions, we can only find plans that contain exactly
L actions. We therefore add the formula:

∨
ai∈A ai@p.

Equality For implementing the formula in Figure 2, we
need to be able to refer to the equality of objects assigned to
two parameter placeholders. Since we will use this construct
frequently, we describe it now, prior to the actual implemen-
tation of preconditions and effects. We introduce proposi-
tional variables expressing equality as follows
• b, i = p, j – for each pair of positions 1 ≤ b < p ≤ L

and 1 ≤ i, j ≤ N .
b, i = p, j shall be true if and only if the ith placeholder at
position b has the same value (i.e. object) as the jth place-
holder at position p. Like for p, we will not explicitly state
the quantification over b to improve readability. We always
generate the clauses for all 1 ≤ b < p ≤ L.

∀i, j ∈ {1, . . . , N}, ∀ok ∈ O :

b, i = p, j ∧ ok@p, j → ok@b, i

b, i = p, j ∧ ok@b, i→ ok@p, j

ok@p, j ∧ ok@b, i→ b, i = p, j

We only generate variables b, i = p, j if they are used in en-
coding the preconditions and effects of actions. Empirically,
we often only encode a small portion of the possible equals
variables. Typically, only variables of the same type need to
be compared (e.g. locations with locations). Here we benefit
from our decision to group arguments of similar types to-
gether as arguments of the same type could occur at widely
different positions in the argument list.

Preconditions Next, we implement the formula in Fig-
ure 2. This poses two main issues: (1) the existential quanti-
fier and (2) the equality constraints in the formula. We com-
pile (1) into additional decision variables. Let P be the max.
number of preconditions that any action has. We assume that
the preconditions prec(a) of an action a form a list s.t. we
can refer to the ith precondition with prec(a)[i] (1-indexed).
• �b, i@p – for every 0 ≤ b < p ≤ L and 1 ≤ i ≤ P .
• b, i, ak(l1, . . . , lm)@p, aj – for every 1 ≤ b < p ≤
L, 1 ≤ i ≤ P , aj ∈ A and (ak, (l1, . . . , lm)) ∈
α(aj , prec(aj)[i]).�b, i@p shall be true if the action at b is the achiever for the

ith precondition of the action at p. We allow b = 0 to model
that it is supported by I. We add the following implications
assuring that an achiever is picked for every precondition:

∀aj ∈ A, ∀i ∈ {1, . . . , |prec(aj)|} : aj@p→
p−1∨
b=0

�b, i@p
For the following steps, we have to distinguish multiple

cases. We start with the easiest case: b > 0 (i.e. the achiever
is an action) and |α(aj , prec(aj)[i])| = 1 (i.e. there is only
one possible achiever apart from init). In this case, if we
choose �b, i@p and aj@p to be true, then this directly implies
certain parameter equalities. We encode this as follows:

∀aj ∈ A, ∀i ∈ {1, . . . , |prec(aj)|}
let prec(aj)[i] = P (r1, . . . , rm)

and (ak, (l1, . . . , lm)) ∈ α(aj , prec(aj)[i]), then add:�b, i@p ∧ aj@p→ ak@b

∀q ∈ {1, . . . ,m} :�b, i@p ∧ aj@p→ b, τ(ak, lq) = p, τ(aj , rq)

In the next case, when |α(aj , prec(aj)[i])| > 1, we first
need to select an achiever with the following clauses.

∀aj ∈ A, ∀i ∈ {1, . . . , |prec(aj)|}�b, i@p ∧ aj@p→ ∨
(ak,(l1,...,lm))∈α(aj ,prec(aj)[i])

b, i, ak(l1, . . . , lm)@p, aj

We can then use the same encoding for enforcing the re-
quired parameter equality as in the previous case – we sim-
ply have to loop over all achievers and replace �b, i@p∧aj@p
with b, i, ak(l1, . . . , lm)@p, aj .

The last case to consider is the case b = 0, i.e. when I
is chosen as achiever. Consider the case that the precon-
dition prec(aj)[i] = P (r1, . . . , rm) is supported by a fact

138

that is true in I. Let IP be the atoms whose predicate is P .
If �0, i@p is true, we have to check whether the arguments
r1, . . . , rm correspond to one of the atoms in IP . We could
easily encode this directly by stating that for one atom in
IP all parameter variables must have the required constants:
aj@p ∧ �0, i@p → ∨

P (o1,...,om)∈IP
∧m
k=1 ok@p, τ(aj , rk).

To transform this formula into CNF, we would need to intro-
duce additional variables. Instead we use a different encod-
ing that is both more compact in practice and yields better
runtime. We encode that if the first k − 1 parameters match
to one of the facts in the IP , then the kth parameter must be
one of the possible continuations, i.e. a constant s.t. a fact in
IP agreeing on the first k − 1 parameters has this constant
as its kth parameter. This includes the case k = 1, i.e. we
require that the first parameter is chosen s.t. a fact in IP ex-
ists that has this object as its first parameter. Via induction,
we get that for a satisfying valuation, we indeed selected a
fact from IP . We encode this in the following way:

∀i ∈ {1, . . . , |prec(aj)|} : let prec(aj)[i] = P (r1, . . . , rm)

∀k ∈ {1, . . . ,m}
∀(o1, . . . , ok−1) ∈ {(o1, . . . , ok−1) | P (o1, . . . , om) ∈ IP }

aj@p ∧ �0, i@p ∧ k−1∧
l=1

ol@p, τ(aj , rl)→
∨

ok∈{ok|(o1,...,ok,...,om)∈IP }

ok@p, τ(aj , rk)

We encode the goal with the same mechanics as the pre-
conditions. We introduce the following achiever selection
variables, assuming that the goal is a list G = (g1, . . . , g|G|).
• �b, i@G – for every 1 ≤ p ≤ L and i ∈ {1, . . . , |G|}
• b, i, aj(l1, . . . , lm)@G – for every 1 ≤ p ≤ L, i ∈
{1, . . . , |G|}, and (aj , (l1, . . . , lm)) ∈ α(gi).

We select the achiever position ∀gi ∈ G :
∨L
b=0

�b, i@G.
Then we select an achiever if the position has been chosen.

∀gi ∈ G : �b, i@G→ ∨
(aj(l1,...,lm))∈α(gi)

b, i, aj(l1, . . . , lm)@G

We then ensure the correct effect of the achiever.

∀gi ∈ G :∀(aj , (l1, . . . , lm)) ∈ α(gi) :

let gi = P (o1, . . . , om) : ∀q ∈ {1, . . . ,m} :

b, i, aj(l1, . . . , lm)@G→ ok@p, τ(aj , lq)

Lastly, we consider the support of a goal by the initial state
and disallow the support, if the fact does not hold in init.

∀gi ∈ G \ I : ¬0, i@G

Destroyers Lastly, we need to integrate destroyers into our
encoding. A central objective is to ensure that it does not be-
come cubic. Please keep in mind that the question of whether
the effects of an action actually inhibit an achiever does not
depend on the concrete position of the achiever action, but
only on the fact that the achiever action is ordered before the
destroyer (proof of Thm. 3). As such, we first introduce a
new type of decision variable that encode that the achiever b
for a given precondition i is before a given position p.

•
←−−−
b, i@p – for every 1 ≤ b < p ≤ L and 1 ≤ i ≤ P .

We exclude support for b = 0 and treat destroyers for
facts in I separately. Next we define the following clauses
∀i ∈ {1, . . . , P}: (

←−−−
b, i@p → ←−−−−−−

b+ 1, i@p) ∧ (�b, i@p →
←−−−−−−
b+ 1, i@p). Referring to b + 1 in the right-hand-side equa-
tion accounts for the precedence of add over delete effects.

Next we have to consider under which criteria a potential
destroyer actually inhibits an achiever. This is the case if the
delete effect of the destroyer is the exact same atom as the
precondition the achiever shall achieve. As such, we only
need to compare with this precondition. We then formulate
the criterion under which the inhibition occurs (which will
be a conjunction) and add its negation (a disjunction) as a
single clause to the formula:
∀aj ∈ A∀i ∈ {1, . . . , |prec(aj)|} :

∀(ak, (l1, . . . , lm)) ∈ β(aj , prec(aj)[i]) :

let P (r1, . . . , rm) = prec(aj)[i]

¬aj@p ∨ ¬ak@b ∨ ¬←−−−b, i@p ∨
m∨
q=1

¬b, τ(ak, lq) = p, τ(aj , rq)

Now we consider destroyers for atoms in I. For them, we
again introduce new decision variables.
•
−−−−−−−−−−−−→
P (o1, . . . , om)@p – for every 1 ≤ p ≤ L and
P (o1, . . . , om) ∈ I.−−−−−−−−−−−−→

P (o1, . . . , om)@p shall be true if the fact P (o1, . . . , om)
which was initially true in init was false at least once, i.e. init
cannot be used for support any more. We define this with the
following clauses:
∀P (o1, . . . , om) ∈ I :
−−−−−−−−−−−−→
P (o1, . . . , om)@p→ −−−−−−−−−−−−−−−→P (o1, . . . , om)@p+ 1

∀(ak, (l1, . . . , lm)) ∈ β(P (o1, . . . , om)) :

ak@p ∧
m∧
q=1

oq@p, τ(ak, lq)→
−−−−−−−−−−−−→
P (o1, . . . , om)@p

If a fact from init has been destroyed at some point, it cannot
be used as an achiever any more:
∀i ∈ {1, . . ., |prec(aj)|} : let prec(aj)[i] = P (r1, . . . , rm)

∀P (o1, . . . , om) ∈ IP : ¬aj@p ∨ ¬�0, i@p∨
¬−−−−−−−−−−−−−−−→P (o1, . . . , om)@p− 1 ∨

m∨
q=1

¬oq@p, τ(aj , rq)

We omit this part of the encoding if β(P (o1, . . . , om)) = ∅.
Lastly, we have to consider destroyers for goal conditions.

Here we use a direct, quadratic encoding. Note that the for-
mula also handles a goal supported by I for b = 0.
∀gi ∈ G : ∀(aj , (l1, . . . , lm)) ∈ β(gi) :

let gi = P (o1, . . . , om) :

¬aj@p ∨ ¬�b, i@G ∨ m∨
q=1

¬oq@p, τ(aj , lq)

A formula resulting from the translation of an example
problem can be found in the appendix.

139

Algorithm 1: Length-Optimal Planning
for l ∈ [0, 1, . . .] do

p := translation with length bounded by l
if SAT(p) then return solved

3.3 From the Encoding to a Planning System
Since we presented a translation bounded in the plan length
L, L is an obvious parameter to set before translation. Our
first configuration starts with L = 0 and increases L by 1
when the resulting formula is proven unsolvable. This re-
sults in length-optimal solutions, which is cost-optimal if all
actions have cost 1. The pseudocode is given in Alg. 1.

Besides L there is a second, less obvious parameter that
proves very powerful in practice. The achiever/consumer
structure seems to be very “local” in practice, i.e., the dis-
tance between consumer and achiever in a solution is very
small. We exploit this insight by limiting the distance d be-
tween an action and the achievers fulfilling its precondition
in our encoding, which makes it more compact. With d = 1,
every precondition of an action a must be fulfilled by I or
the action directly before a. While this is an extreme ex-
ample, there are domains in the benchmark set where this
suffices to solve the problems. In general, our experiments
show that we at least do not need to include all actions back
to I as possible achievers to solve many problems.

To implement this restriction to a distance d, we modify
the selection of the achiever position to the following:

∀aj ∈ A∀i ∈ {1, . . . , |prec(aj)|} :

aj@p→ �0, i@p ∨ p−1∨
b=max{1,d−p}

�b, i@p
We further do not generate clauses pertaining to achiever

selection variables �b, i@p that are not part of this disjunction
anymore. This notably includes variables b, i = p, j express-
ing equality for p−b > d and destroyer clauses for p−b > d.
We further remove the constraint that every position must
contain an action and only enforce that if a position contains
an action, the previous position must as well.

∀ai ∈ Aai@p→
∨
aj∈A

aj@p− 1

The pseudocode is given in Alg. 2. We fixed a set of length
bounds L. On each length we spend a slice of the overall
runtime and start with a distance d = 1; until the time is up,
we increase d. Using this configuration, we cannot provide
a guarantee regarding optimality anymore, of course.

4 Related Work
Our approach is of course not the first SAT-based system in
planning. However, most recently introduced encodings as-
sume a grounded input, e.g., the original SAT planner (Kautz
and Selman 1996), SATPLAN04 (Kautz and Selman 2006),
Madagascar (Rintanen, Heljanko, and Niemelä 2006; Rin-
tanen 2014), Aquaplanning (https://github.com/domschrei/
aquaplanning), or SASE (Huang, Chen, and Zhang 2012).

Algorithm 2: Satisficing Planning
L := [10, 25, 50, 100, 200]
for l ∈ L do

with limit of 1
|rem. L values|

× rem. runtime do

for max achiever distance d ∈ [1, . . . , l] do
p := translation with length bound l and

achiever distance bounded by d .
if SAT(p) then return solved

Robinson et al. (2009) propose an approach that does not
require full grounding. They split up the action schemata
and only partially ground actions. Correctness is ensured via
intra-operator mutex axioms. Especially in domains with ac-
tion with high arity this approach is helpful. However, they
still represent the state explicitly and as such have to ground
the state space. We contacted the authors to get the code for
our evaluation, but it is not available anymore.

Kautz, McAllester, and Selman (1996) introduce a
“causal encoding” that also uses a split action representation
and does not explicitly encode state. The main difference
to our work is that it allows for a partial order of actions,
while we do not. Committing to a total order allows for a
more compact encoding of destroyers (causal threats), which
we can encode quadratic, while they need a cubic encoding.
Further, the total order allows for the “maximum distance
of achiever” encoding that we use for satisfying planning,
which further decreases the (practical) size of the encod-
ing. Their encoding of preconditions is atom-centric (they
consider support/needs for a lifted atom) while we encode
this index-centric (support for the ith precondition). Kautz,
McAllester, and Selman further use a more complex means
to handle equality as they – via a special lifted SAT system –
allow for equality testing over terms not only over variables
as we do. Lastly, we do not introduce intermediate variables
for the fact that a timestep produces, needs, or destroys a
given first-order atom, but encode the dependencies directly
– reducing the number of decision variables.

5 Evaluation
We integrated our approach in the search-based Powerlifted
(PWL) system (Corrêa et al. 2020). In the following, we will
call it LiSAT (Lifted SAT-based planner)2. We also created
and evaluated a version using incremental solving and will
present its results. However, it did not increase performance
and we do not give a description here due to lack of space.

We use a benchmark set dedicated to lifted planning3.
Experiments ran on a single Intel Xeon Gold 6242 CPU
core (2.80GHz) with 4GB memory and 30 minutes run-
time. We ran a satisficing and a length-optimal evalua-
tion. For the non-incremental encoding we use the SAT
solver Kissat 2.0.1 (winner of the 2020 SAT Comp., main
track) (Biere et al. 2020), for incremental solving Crypto-

2Source code is available online https://lisat-planning.github.io/
3https://github.com/abcorrea/htg-domains

140

Lifted Systems
LiSAT (time slices) Powerlifted Unary Relaxation

Kissat (n.i.) CMS (i.) CMS (n.i.) Add+po GC GC, ur-d GC, ur
Blocksworld 40 100.0 (40) 100.0 (40) 100.0 (40) 10.0 (4) 2.5 (1) 15.0 (6) 15.0 (6)
Childsnack 144 100.0 (144) 100.0 (144) 100.0 (144) 45.8 (66) 16.0 (23) 60.4 (87) 41.7 (60)
GED 312 36.5 (114) 24.4 (76) 33.7 (105) 79.8 (249) 100.0 (312) 100.0 (312) 100.0 (312)
Logistics 40 100.0 (40) 97.5 (39) 100.0 (40) 100.0 (40) 47.5 (19) 0.0 (0) 0.0 (0)
Organic synt. 56 92.9 (52) 92.9 (52) 92.9 (52) 83.9 (47) 82.1 (46) 80.4 (45) 80.4 (45)
Pipesworld 50 42.0 (21) 38.0 (19) 40.0 (20) 50.0 (25) 44.0 (22) 22.0 (11) 24.0 (12)
Rovers 40 10.0 (4) 7.5 (3) 10.0 (3) 77.5 (31) 2.5 (1) 37.5 (15) 32.5 (13)
Visitall MD 180 98.3 (177) 92.8 (167) 94.4 (170) 78.9 (142) 35.6 (64) 81.7 (147) 55.6 (100)

862 579.7 (592) 553.0 (540) 568.5 (574) 526.0 (604) 330.2 (488) 396.9 (623) 349.1 (548)

Grounded Systems
Fast Downward MpC

Add FF inv. no inv.
Blocksworld 40 20.0 (8) 20.0 (8) 10.0 (4) 0.0 (0)
Childsnack 144 41.0 (59) 72.2 (104) 45.8 (66) 45.8 (66)
GED 312 82.4 (257) 100.0 (312) 37.2 (116) 16.7 (52)
Logistics 40 10.0 (4) 10.0 (4) 0.0 (0) 0.0 (0)
Organic synt. 56 32.1 (18) 32.1 (18) 0.0 (0) 0.0 (0)
Pipesworld 50 28.0 (14) 28.0 (14) 20.0 (10) 18.0 (9)
Rovers 40 10.0 (4) 10.0 (4) 0.0 (0) 0.0 (0)
Visitall MD 180 40.0 (72) 40.0 (72) 6.7 (12) 25.6 (46)

862 263.5 (436) 312.4 (536) 119.7 (208) 106.1 (173)

Table 1: Coverage results for satisficing planning. LiSAT configurations marked “n.i.” use non-incremental SAT solving, those
marked “i.” use incremental solving. MpC configurations marked “no inv.” do not use MpC’s invariant analysis in preprocessing.

Lifted Systems
LiSAT (optimal) Powerlifted

Kissat (n.i.) CMS (i.) CMS (n.i.) BFS A∗ Max
Blocksworld 40 100.0 (40) 100.0 (40) 100.0 (40) 0.0 (0) 0.0 (0)
Childsnack 144 51.4 (74) 33.3 (48) 33.3 (48) 2.1 (3) 0.7 (1)
GED 312 21.8 (68) 17.3 (54) 19.2 (60) 13.1 (41) 13.8 (43)
Logistics 40 75.0 (30) 75.0 (30) 67.5 (27) 12.5 (5) 5.0 (2)
Organic synt. 56 100.0 (56) 98.2 (55) 98.2 (55) 76.8 (43) 76.8 (43)
Pipesworld 50 40.0 (20) 34.0 (17) 40.0 (20) 22.0 (11) 14.0 (7)
Rovers 40 10.0 (4) 10.0 (4) 7.5 (3) 0.0 (0) 2.5 (1)
Visitall MD 180 57.2 (103) 56.1 (101) 55.6 (100) 18.3 (33) 37.2 (67)

862 455.4 (395) 424.0 (349) 421.3 (353) 144.8 (136) 150.0 (164)

Grounded Systems
Fast Downward MpC

A∗ Max A∗ LM-Cut opt, (inv.) opt, (no inv.)
Blocksworld 40 2.5 (1) 20.0 (8) 10.0 (4) 12.5 (5)
Childsnack 144 3.5 (5) 5.6 (8) 0.7 (1) 0.0 (0)
GED 312 15.4 (48) 16.0 (50) 14.1 (44) 12.8 (40)
Logistics 40 2.5 (1) 10.0 (4) 0.0 (0) 0.0 (0)
Organic synt. 56 30.4 (17) 30.4 (17) 0.0 (0) 0.0 (0)
Pipesworld 50 16.0 (8) 16.0 (8) 14.0 (7) 12.0 (6)
Rovers 40 2.5 (1) 5.0 (2) 0.0 (0) 0.0 (0)
Visitall MD 180 38.9 (70) 33.3 (60) 5.0 (9) 14.4 (26)

862 111.6 (151) 136.3 (157) 43.8 (65) 51.8 (77)

Table 2: Coverage results for length-optimal planning. The abbreviations have the same meaning as in Table 1.

141

LiSAT Kissat (n.i.)
LiSAT CMS (i.)
PWL Add
PWL GC
UR GC, ur-d
UR GC, ur
FD FF
FD Add
MpC sat

100

101

102

ru
n
ti
m
e

in
se
co
n
d
s

0 100 200 300 400 500
normalized

coverage

LiSATKissat (n.i.)
LiSATCMS (n.i.)
LiSATCMS (i.)

PWLA∗ Max
PWLBFS
FDA∗ LM-Cut
FDA∗ Max
MpCopt
MpCopt, no inv.

100

101

102

ru
n
ti
m
e

in
se
co
n
d
s

0 100 200 300 400
normalized

coverage

Figure 4: Normalized coverage against runtime (be aware the log scale) for the satisficing (left) and the optimal setting (right).

10−1 100 101 102 103
10−1

100

101

102

103

TLE

TLE

10−1 100 101 102 103
10−1

100

101

102

103

TLE

TLE

ru
n
ti
m
e
n
on

-i
n
cr
em

en
ta
l

runtime incremental

Blocksworld Childsnack GED Logistics Organic synt. Pipesworld Rovers Visitall

Figure 5: Ablation study on the runtime of CMS (be aware the log scale) for the satisficing (left) and the optimal setting (right).
Each dot represents the runtime needed to solve an instance using incremental (x axis) and non-incremental (y axis) solving.

MiniSat (CMS) 5.8.0 (winner of the 2020 SAT Comp., in-
cremental track) (Soos, Nohl, and Castelluccia 2009).

We evaluate our satisficing configuration (Alg. 2) against
the PWL planner with (1) lazy best first search, helpful op-
erators and the lifted hadd heuristic (Corrêa et al. 2021), and
(2) eager best first search with Goal Counting (GC). Further
we use GC with the unary relaxation heuristic as tiebreaker,
with (ur-d) and without (ur) disambiguation of static predi-
cates (Lauer et al. 2021). We also included Fast Downward
(FD) (Helmert 2006) (which grounds the problems) with
lazy best first search with hadd (Bonet and Geffner 2001)
and hff (Hoffmann and Nebel 2001) and the SAT-based
Madagascar system MpC (Rintanen, Heljanko, and Niemelä
2006; Rintanen 2014) in two configurations: once with and
once without its pre-processing. We compare our length-

optimal configuration (Alg. 1) with PWL using Breadth First
Search (BFS) and anA∗ search with the hmax heuristic used
on the problems compiled to unit-costs. We included the FD
system with A∗ search with hmax (Bonet and Geffner 2001)
and the LM-Cut heuristic (Helmert and Domshlak 2009),
and the SAT-based Madagascar system MpC with the se-
quential encoding and a bound increase of 1.

The coverage results for the satisficing setting are given
in Table 1. Since the domains come with a very different
number of instances (between 40 and 312), we normalized
the score in each domain to 100. The absolute number of
solved instances is given afterwards in parenthesis.

From our configurations, the (non-incremental) Kissat
solver reaches highest coverage, followed by the non-
incremental and the incremental configurations using the

142

102 103 104 105 106 107 108 MpC
102

103

104

105

106

107

108

LiSAT

Figure 6: Comparison of formula sizes. Each dot represents
the number of clauses generated by MpC (x axis) and LiSAT
(y axis) for a certain instance and plan length bound.

CMS system. Compared to the competition, our system has
the highest normalized coverage, while ur-d reaches the
highest absolute coverage because it solves more instances
in Genome Edit Distance (GED), which comes with 312 in-
stances. In three domains, our system solves all instances,
these are Blocksworld, Childsnack, and Logistics. In Multi-
dimensional Visitall and Organic Synthesis we reach a cov-
erage of over 97% and 92%. In Pipesworld and GED, we
reach 42% and 35%. The worst performance of our system
can be observed in Rovers, where we reach 10% coverage.

Compared with the lifted heuristic search-based sys-
tems, LiSAT performs better especially in two domains,
Blocksworld and Childsnack, where its coverage is roughly
90.0 and 54.2 percent points higher. The PWL system has
the highest advantage in Rovers (+67.5) and GED (+44.2).

The results for the length-optimal setting are given Ta-
ble 2. Again, Kissat performed better than CMS on our
encoding. When we compare the optimal to the satisficing
configuration (Table 1), we see that the coverage dropped
especially in two domains, Childsnack and Visitall. This
is reasonable, since these are domains where the achiev-
er/consumer distance should be low (resulting in a large
gain of limiting their distance in the formula). Interestingly,
there is also a domain with a (small) gain in coverage: in
Organic Synthesis, LiSAT now has a coverage of 100%.
In Blocksworld, the coverage is still 100%. In this setting,
LiSAT outperforms all competitors reaching three times the
normalized coverage of the other systems.

Figure 4 shows normalized coverage (on the x axis)
against runtime (y axis). The left plot shows the satisfic-
ing setting. Between 1 and 10s, the GC heuristic and the
heuristics by Lauer et al. reach highest (normalized) cover-
age, followed by LiSAT. Thereafter, LiSAT with the non-
incremental solver is the fastest. The dent (around 400

points) is caused the following effect: in Childsnack and
Visitall, the solver quickly shows unsolvability for small
plan lengths, reaches the timeout for medium lengths, be-
fore solving the problems quickly when reaching a sufficient
length. In the optimal setting (Figure 4, right) LiSAT outper-
forms the other systems. Since we do not use a time-slide
strategy like before, we cannot observe a similar dent. For
experimental results on classical IPC benchmarks, please
see the appendix.

Next we compare an incremental and a non-incremental
run of the CMS solver (Kissat does not support incremen-
tal solving). In the satisficing setting (Tab. 1), incremen-
tal solving does not increase the coverage in any domain.
This is different in the optimal setting (Tab. 2). However,
there is still no advantage in the total (normalized) coverage
over all domains. Figure 5 gives an ablation study on incre-
mental solving. Each dot represents the time needed by the
two configurations to solve an instance. Over all, there are
certain domains that benefit from incremental solving, but
there is no systematic gain. For satisficing planning, the non-
incremental version solves 36 problems not solved by the in-
cremental, while only 2 are solved incrementally that are not
solved without it. However, in 349 instances the incremental
solver has a lower runtime, in 165 a higher one. The “hori-
zontal” in the scatter plot are instances solved for length l by
the incremental solver, but that time out non-incrementally
and get solved quickly for the next length bound. For optimal
planning, non-incremental solves 9 problems not solved by
incremental and 5 vice versa. For 170 instances incremental
solving is faster and for 163 non-incremental.

Figure 6 shows the number of clauses generated by MpC
and by LiSAT in the optimal setting. For this experiment,
we increased MpC’s memory limit to 20GB. However,
we only report a total of 488 instances from the domains
Blocksworld, Childsnack, GED, Pipesworld, and Visitall.
For the other problems, the formula generation of MpC ran
out of memory. We give one point per instance and length
bound from 1 to 100.

6 Conclusion

We presented a state-less encoding of lifted classical plan-
ning that is inspired by techniques from plan space plan-
ning. The resulting constraints can be realized in different
ways, we presented an encoding in propositional logic to ex-
ploit the performance of modern SAT solvers. The encoding
is quadratic in plan length. We presented a strategy to de-
crease the size by limiting the achiever/consumer distance,
which proved to be very effective in practice. It further di-
rects to a promising avenue for future work: to analyze the
problem structure (e.g. using causal graph-like methods) and
come up with different distances for each predicate. On a
benchmark set dedicated to evaluate lifted planning systems,
our approach reaches (slightly) higher normalized coverage
than the predominating heuristic search-based systems. In
a length-optimal setting, we reach three times the normal-
ized coverage of these systems, including, e.g., a coverage
of 100% in the Organic Synthesis domain.

143

Acknowledgments
We want to thank the reviewers for their help and effort to
improve this work.

Gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – Projektnummer 232722074 – SFB 1102 / Funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 232722074 – SFB 1102.

References
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. In Proceedings of the
2020 SAT Competition – Solver and Benchmark Descrip-
tions, volume B-2020-1 of Department of Computer Science
Report Series B, 51–53. University of Helsinki.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS), 94–
102. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation Using Query Opti-
mization Techniques. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 80–89. AAAI Press.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning – Theory and Practice. Elsevier.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research (JAIR), 26: 191–
246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 162–169. AAAI
Press.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research (JAIR), 14: 253–302.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ Planning
as Satisfiability. Journal of Artificial Intelligence Research
(JAIR), 43: 293–328.
Kautz, H.; and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search. In
Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI), 1194–1201. AAAI Press.
Kautz, H.; and Selman, B. 2006. SATPLAN04: Planning as
Satisfiability. In Proceedings of the 5th International Plan-
ning Competition (IPC), 45–46.
Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996. En-
coding Plans in Propositional Logic. In Proceedings of
the 5th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), 374–384. Morgan
Kaufmann.

Lauer, P.; Torralba, Á.; Fiser, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence (IJCAI), 4119–4126. IJCAI
organization.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In Proceedings
of the 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), 103–114. Morgan
Kaufmann.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation Based
on Lifted Relaxed Planning Graphs. In Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS), 244–252. AAAI Press.
Rintanen, J. 2014. Madagascar: Scalable Planning with
SAT. In Proceedings of the 2014 International Planning
Competition: Description of Participating Planners, Deter-
ministic Track, 66–70.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence, 170(12-13): 1031–1080.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based Parallel Planning Using a Split Representation
of Actions. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 281–
288. AAAI Press.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In Proceedings of the
11th International Conference on Principles and Practice
of Constraint Programming (CP), 827–831. Springer.
Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT Solvers to Cryptographic Problems. In Proceedings of
the 12th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), 244–257. Springer.
Wichlacz, J.; Höller, D.; and Hoffmann, J. 2021. Landmark
Heuristics for Lifted Planning – Extended Abstract. In Pro-
ceedings of the 14th International Symposium on Combina-
torial Search (SoCS), 242–244. AAAI Press.
Younes, H. L. S.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research (JAIR), 20: 405–430.

144

