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Abstract

Temporal Jump Point Search (JPST) is a recently introduced
algorithm for grid-optimal pathfinding among dynamic tem-
poral obstacles. In this work we consider JPST as a low-level
planner in Multi-Agent Path Finding (MAPF). We investigate
how the canonical ordering of JPST can negatively impact
MAPF performance and we consider several strategies which
allow us to overcome these limitations. Experiments show our
new CBS/JPST approach can substantially improve on CB-
S/SIPP, a contemporary and leading method from the area.

Introduction
Multi-Agent Path Finding (MAPF) is a combinatorial plan-
ning problem that asks us to coordinate a team of moving
agents. In the most common setup, classical MAPF (Stern
et al. 2019), the agents are situated on a 2D grid and each
must move from start to target, all while avoiding fixed
obstacles in the environment and avoiding collisions with
other agents. The same type of grid-based setup appears as
a necessary ingredient in a variety of important industrial
MAPF applications, such as warehouse logistics (Wurman,
D’Andrea, and Mountz 2008), mail sortation (Kou et al.
2020) and computer games (Silver 2005).

Leading methods for solving optimal MAPF, such as
those in the CBS family (Sharon et al. 2015; Gange, Hara-
bor, and Stuckey 2019; Li et al. 2021), take a decomposition-
based approach to the problem. They assign individually op-
timal paths to every agent and then re-plan pairs of agents
with conflicting (i.e., mutually incompatible) paths. Tempo-
ral constraints are added that ensure re-planned agents find
new individually optimal paths, thus avoiding the conflict.
An important consideration is how to efficiently compute
single agent paths among temporal obstacles.

Temporal Jump Point Search (JPST) is a recent method
for optimal grid-based pathfinding with temporal obsta-
cles (Hu et al. 2021). This problem is closely related to re-
planning in classical MAPF and of independent interest in
robotics applications. JPST is shown to be more than one
order of magnitude faster than SIPP (Phillips and Likhachev
2011), a contemporary and leading technique. A natural
question is whether JPST can be directly applied in MAPF
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Figure 1: For Single-Agent Path Finding (SAPF), we create
a CBS Conflict Tree and use JPST and SIPP to solve the
identical set of path planning problems arising at each node.
For MAPF, we use JPST and SIPP as low-level planners in
CBS. We add agents until CBS timeout (5 mins). We test on
lt gallowstemplar n, a game map from Dragon Age Origins.

for similar performance gains. Surprisingly, the answer is
no. In Figure 1a we show the raw performance of SIPP and
JPST on an identical set of single-agent path planning prob-
lems. Obviously JPST is far superior. But when we replace
SIPP by JPST (inside CBS), in Figure 1b, we see that JPST
fails to find any solution after the first 6 agents, while SIPP
solves problems with up to 30 agents. What is happening?

In this paper we show that the canonical move order-
ing of JPST, which makes the search fast, can also pro-
duce paths that are more likely to collide. The result is an
overall increase in the size of the CBS conflict tree, which
makes MAPF problems harder to solve. To address the issue
we investigate a variety of different strategies including tie-
breaking, bypassing and segment replanning. Experiments
show that our revised CBS/JPST planner improves upon and
can solve substantially more problems than CBS/SIPP.

Background
Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level search algorithm for classical MAPF. At the high-level,
CBS searches (in a best-first way) a binary constraint tree
(CT ) where each node is a complete assignment of paths to
agents (i.e. a plan). CBS assigns individually optimal paths
to each agent and resolves collisions between pairs of con-
flicting agents by introducing collision-avoiding constraints.
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CBS always expands the CT node with lowest f -cost. If
this current node is conflict-free then the search terminates,
having found a least-cost feasible plan. Otherwise, the cur-
rent node must contain at least one pair of agents a1 and a2
that are in collision. For simplicity we assume they both use
the same vertex v at time t (edge collisions are also possi-
ble). The node generates two child nodes. In one child CBS
adds a constraint ¬(a1, v@t) to say a1 cannot use vertex v
at time t. In the other child CBS adds a similar constraint for
a2. CBS then computes (e.g., by calling A*) new individu-
ally optimal and collision-avoiding paths for a1 and a2.

Most CBS implementations rely on a Conflict Avoidance
Table (CAT): a data structure that stores the currently as-
signed path of each agent. When replanning an agent a,
CBS finds the shortest path given the current constraints on
a and tie-breaks in favour of the least conflicts with the CAT.
This strategy avoids introducing unnecessary conflicts and is
known to substantially improve CBS performance.

Another common enhancement is (opportunistic) bypass-
ing (Boyarski et al. 2015). After CBS replans an agent a1, if
the new conflict-avoiding path has the same cost for a1 as in
the parent CT node, CBS simply adopts the new path in the
parent CT node. Since bypassing resolves conflicts without
branching it can substantially improve CBS performance.

Temporal Jump Point Search (JPST) (Hu et al. 2021)
is a fast and optimal A* algorithm for pathfinding in grids
with temporal obstacles. The first key idea is to search in
a canonical fashion. When moving across the grid, JPST
takes vertical (V) moves as early as possible, then horizontal
(H) moves, and then wait (W) moves. Other non-canonical
moves are pruned. Figure 2 shows several examples.1

The second key idea of JPST is jumping. After pruning,
the branching factor of many successor nodes is reduced to
zero or one. JPST processes these nodes recursively, which
allows the search to consider multiple grid locations in a sin-
gle expansion step. The recursion stops when an obstacle
impedes further progress or when the target is detected or
when a type of node called a jump point is reached. Jump
points are grid nodes with a successor that would normally
be pruned by the VHW-ordering but for which the local
VHW-path is invalid (due to a static or temporal obstacle).
Figure 2d shows an example. Here the obstacle prevents the
search from taking the vertical move earlier.

Safe Interval Path Planning (SIPP) (Phillips and
Likhachev 2011) is an algorithm for optimal SAPF with
temporal obstacles. The key idea (also adopted in JPST) is
to represent the time dimension for a grid location v with
a set of contiguous intervals [ti, tj ] (initially i = 0 and
j = ∞). Temporal obstacles can block location v: from time
to to to+k. This divides a safe interval in two: [ti, to) and
(to+k, tj ]. SIPP tracks the earliest arrival of the agent in each
safe interval. Later arrivals are pruned. This strategy elimi-
nates temporal path symmetries and can be much more ef-
ficient than conventional time-expanded grid A*. When run
under CBS, SIPP can also make use of a CAT, but it simply
stores which SIPP nodes (location + time interval) are tra-

1Note that the start node (at time 0) is a special case: all avail-
able grid moves are considered canonical.

Vertical Rules

(a)

Horizontal Rules 

(b)

Wait Rules   

(c)

Jump Point

(d)

Figure 2: Canonical pruning with JPST. We show the current
node (white circle), the parent node (dark circle) and VHW-
canonical successors (arrows). Other moves are pruned.

versed by the path of an agent. It counts a conflict whenever
two agents paths share a SIPP node. This is an approxima-
tion since it is possible for two agents to use the same SIPP
node without conflicting; i.e. by one leaving before the other
arrives. But, since this is only a heuristic, this is acceptable.

Canonical Paths in MAPF
To understand how JPST can end up being unable to solve
problems solvable by SIPP even though as a low level path
planner it is much faster, we examine Figure 3a. Here we
show the unique VHW-canonical paths for agents A1 (or-
ange) and A2 (green). The paths conflict from (6,3) until
(1,1). The standard CBS approach is to select the earliest
conflict position (6,3)@5 and branch. When replanning A2

CBS finds a new unique VHW-canonical path, with the same
cost as before, which turns at (6,4) to (5,4), and results in
another conflict with A1. If CBS expands this child first it
finds another similar conflict at (4,4). Indeed JPST needs to
add constraints at each of the locations marked with a cross
before finding a VHW-canonical path that does not conflict
with A1. Note that a CAT does not help JPST here, since at
every replanning step there is exactly one VHW-canonical
path; i.e., there are no ties to break. Thus the main advan-
tage of JPST, removing path symmetries to speed up SAPF,
makes conflict resolution harder in MAPF. Replanning A1

is somewhat easier. After adding a constraint at (6,3)@5, it
will then find a conflict at (6,4)@4. Adding a constraint on
this location increases the path length for A1.

Contrast this to the resolution of the same conflict using
SIPP and a CAT. When replanning A2, CBS will immedi-
ately find there is (at least) one shortest path which never
conflicts with another agent; e.g. (6,8), (6,4), (2,4), (2,2),
(0,2), (0,1). Also, since A2’s optimal cost is unchanged, CBS
can use the new path as a bypass in the parent node. This not
only resolves the conflict but also avoids any branching.

Idea
We now consider several bypassing strategies that help us
fruitfully combine CBS and JPST. The main idea, explicit
bypassing, aims to find an equivalent-cost non-VHW path,
which can be adopted in the CBS parent node to resolve a
conflict. During the bypassing process we can explore which
segment of the path to replan, and consider alternative re-
planning methods (i.e., not JPST).

170



8

7

6

5

4

3

2

1

0

2 3 4 5 6 7 810

A2

A1

G1G2

❌❌❌❌

❌❌

(a)

8

7

6

5

4

3

2

1

0

2 3 4 5 6 7 810

A2

A1

G1G2

(b)

Figure 3: Examples of canonical replanning with JPST.

Explicit Bypassing The main difficulty with canonical re-
planning is finding an equally good path, which is not VHW
canonical. We propose to find such paths using a modified
bypassing procedure. The obvious approach is to add tem-
poral obstacles at all collision points when doing the by-
pass check (as opposed to just the selected conflict location).
This essentially “fast-forwards” the usual CBS process on
the branch that leads to the bypassed path. We can do better
than this by noting that we only need to add temporal obsta-
cles at all jump points on the path of agent a1 which collide
with the current path of a2. Examining Figure 3b we can
see that adding temporal obstacles at (3,3)@8, and (1,1)@12
(the start and target are both always jump points), allows a2
to discover the green VHW canonical bypass path.

Lemma 1 Adding temporal obstacles at each conflicting
jump point will create a VHW canonical bypass path, if a
bypass path exists.

Proof: Suppose agent a1 has current VHW canonical path
p1, and agent a2 has current VHW canonical path p2. Let
O be the set of vertex@time pairs in common. Let J be the
subset of O which are jump points on path p1. Suppose there
exists a bypass path p of equal length to p2 when all pairs in
O are treated as temporal obstacles. We show there is an
equi-length VHW path when only pairs in J are treated as
temporal obstacles. Suppose p has a HV, WV or WH transi-
tion; that is, it may not be canonical. Either (a) we can invert
the order of these operations to get an equi-length canonical
path p′, or (b) there must be some obstacle that prevents the
reordering from being feasible. If the obstacle is permanent,
then clearly p at this point is VHW canonical. If the obstacle
is temporary then we can show it must be in J . We consider
the case where we have a HV move in p, the other cases are
similar. The temporal obstacle v@t must be vertical to the
starting point to prevent the inversion. Now on the original
path p1 the move from v cannot be horizontal, otherwise it
would intersect the HV part of p, so it must be vertical or
wait. If it is a wait then v must be a jump point (since we
have to move off it, or it is the target). If it is vertical then
on the original path p1 the move into v cannot be vertical
since it would intersect with the HV part of p. Hence v@t is
a jump point on p1, and is in J . Thus, there is an equi-length
VHW only using pairs in J . □

During explicit bypassing we add (due to Lemma 1) tempo-
ral obstacles at all shared jump points in the path. If there
are no shared jump points we do not run explicit bypassing.

Replanning End Normally when we branch on a conflict,
agents are replanned from the beginning of their path. This is
required because we need to guarantee that the selected path
is a shortest possible path. But when we are performing ex-
plicit bypassing checks we do not have to follow this restric-
tion. Every time we choose the earliest conflict to branch,
so there is no conflict before the current conflict location.
Therefore, we can instead try replanning from the previous
jump point p@t′ closest to the conflict v@t. For the end point
of the bypass, we consider three options: (J) to the next jump
point which is not in a straight line from p@t′ (since there is
no alternate equal length path in this case); and (M) replan-
ning from the previous jump point to the furthest point on
the current path m@t′′ which is Manhattan optimal distance
from the conflict (i.e. Manhattan distance from v to m equals
t′′ − t); and (G) replanning from the previous jump point to
the goal location. Replanning optimal segments appears pre-
viously in path smoothing for games (Sturtevant 2008).

Replanning Method Since the problem arises from the re-
striction to VHW canonical paths, one possibility is to relax
the method used in the replanning phase. We consider sev-
eral options: (A) A* and the CAT to replan the agent, remov-
ing the canonical restriction on paths; (S) SIPP and the CAT,
hoping to more easily find a non-canonical path of the same
length; (J) still use JPST replanning because it is faster.

Experiments
We evaluate experimentally the relative merits of using dif-
ferent planning and bypass methods, after planning ini-
tial paths with JPST. We use standard benchmark prob-
lems (Stern et al. 2019), where each map has n in-
dependent problems, and the goal is to simultaneously
solve problems 1, . . . , k for maximal k. There are 25
such scen(ario) files per map, each having a set of ran-
domly generated problem instances that are evenly dis-
tributed by path length. We choose the first scenario file.
All the algorithms are implemented in C++ and based on
code from libMultiRobotPlanning, a freely avail-
able pathfinding library due to Wolfgang Hönig.2. We use
Ubuntu 20.04 LTS on an Intel(R) i7-8700 CPU with 32GB
RAM, and set a 5 mins timeout for each problem.

In Table 1 we report the max number of agents solved per
map by each algorithm. Best performances are in bold, ex-
cept when all algorithms have the same performance. The
first four result columns are baseline algorithms used for
solving single-agent problems given path constraints at the
low-level of CBS. JPST is much faster than A*, so it is able
to solve more problems overall, but JPST does worse than
SIPP. Note that canonical A* (CA*), which first tries paths
in VHW order like JPST, is also worse than A* showing
how canonical paths make it harder, but not as bad as JPST
compared to SIPP since it can still use a conflict avoidance
table.

2https://github.com/whoenig/libMultiRobotPlanning
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JPST

map JPST SIPP A* CA* N A-J S-J J-J A-M S-M J-M A-G S-G J-G

Berlin 1 256 54 54 54 54 54 54 54 54 54 54 54 54 54 54
Boston 0 256 59 56 52 58 44 59 59 69 59 59 77 78 77 83
brc202d 39 39 40 39 23 40 40 40 40 40 40 40 40 40
den312d 33 25 25 33 25 33 33 36 36 36 36 36 36 36
den520d 23 23 23 23 23 23 23 23 23 23 23 23 23 23
empty-16-16 26 35 35 28 18 30 30 28 38 38 37 38 38 37
empty-32-32 33 33 33 33 33 33 33 33 38 35 33 45 36 33
empty-48-48 56 56 56 56 53 56 56 56 56 56 56 56 56 56
empty-8-8 20 20 25 20 20 24 24 22 26 26 22 26 26 22
ht chantry 27 30 27 27 27 30 30 27 30 30 27 30 30 30
ht mansion n 49 49 49 46 46 49 49 49 49 49 49 49 49 49
lak303d 25 25 25 25 25 25 25 25 25 25 25 34 34 34
lt gallowstemplar n 6 30 6 6 6 6 6 6 11 6 6 26 11 6
maze-128-128-10 19 21 21 19 19 19 19 19 19 19 19 26 26 19
maze-128-128-2 18 18 17 18 16 18 18 18 18 18 18 18 18 18
maze-32-32-2 16 16 16 16 14 17 17 17 17 17 17 17 17 17
maze-32-32-4 25 22 25 24 20 22 22 25 25 25 25 25 25 25
orz900d 39 41 24 24 23 40 39 40 41 41 41 27 40 41
ost003d 23 23 23 23 23 23 23 23 23 23 23 23 23 23
Paris 1 256 81 67 67 67 72 98 98 98 118 118 118 118 118 118
random-32-32-10 42 52 47 42 38 43 43 42 54 53 43 54 54 53
random-32-32-20 46 45 45 40 28 47 47 47 47 47 47 47 47 47
random-64-64-10 18 18 18 18 18 18 18 18 18 18 18 18 18 18
random-64-64-20 62 66 62 62 48 66 66 66 66 66 66 66 66 66
room-32-32-4 13 15 13 15 13 15 15 15 16 15 15 16 19 19
room-64-64-16 28 28 28 28 28 28 28 28 28 28 28 28 28 28
room-64-64-8 19 19 19 19 19 19 19 19 19 19 19 20 19 19
w woundedcoast 29 35 29 37 29 29 29 29 41 40 40 41 40 40

Total solved agents 928 961 904 900 805 964 963 972 1035 1024 1022 1079 1068 1054

Table 1: Comprehensive results of different algorithm variants on the MAPF benchmark problems. Results reported are the
number of agents solved per map. JPST explicit bypassing variants are two letter codes: (A) using A* for replanning, (S) using
SIPP, (J) using JPST; and replanning to (J) the next following jump point, (M) the end point of Manhattan optimal path from
the conflict, and (G) to the goal location. The column ’N’ mean JPST version without (even opportunistic) bypassing.

The remaining columns show the results of the JPST vari-
ants. The best performance overall is JPST with A* for by-
pass replanning from the previous jump point to the goal,
which does slightly better (11 problems) than JPST with
SIPP for bypass replanning from the previous jump point
to the goal. The reason A* is better than SIPP even in re-
planning is that the SIPP CAT is less precise than the A*
CAT because it counts a conflict whenever two agents use
the same SIPP node, but this may not necessarily lead to a
conflict. Clearly the longer the segment we replan the better,
from the previous to the next jump point, being worse than
to the furthest Manhattan optimal from the conflict, being
worse than to the goal. Figure 4 shows CBS success rates
(% problems solved) on two maps (one small, one large),
using all 25 scenario files. We see that JPST is clearly better.

Conclusion
Even though JPST is an order of magnitude faster than SIPP
for low level path planning with temporal obstacles, when
used as a drop-in replacement for SIPP in CBS it actually
degrades performance. This is because it cannot take ad-
vantage of the CBS Conflict Avoidance Table (CAT), and
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Figure 4: Success rates using all 25 scenario files per map.

this makes it harder to resolve collisions among agents. We
consider how explicit bypassing strategies can overcome this
weakness and we show the resulting algorithm (CBS+JPST)
is substantially better than alternatives. Explicit bypassing is
not valuable for SIPP, since SIPP uses the CBS CAT to try
to reduce conflicts, and most bypasses will be discovered by
the usual opportunistic bypassing strategy.
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