
Who Needs These Operators Anyway:
Top Quality Planning with Operator Subset Criteria

Michael Katz and Shirin Sohrabi
IBM Research, Yorktown Heights, NY, USA

michael.katz1@ibm.com, ssohrab@us.ibm.com

Abstract
Top-quality planning in general and quotient top-quality plan-
ning in particular deal with producing multiple high-quality
plans while allowing for their efficient generation, skipping
equivalent ones. Prior work has explored one equivalence re-
lation, considering two plans to be equivalent if their operator
multi-sets are equal. This allowed omitting plans that are re-
orderings of previously found ones. However, the resulting
sets of plans were still large, in some domains even infinite.
In this paper, we consider a different relation: two plans are
related if one’s operator multiset is a subset of the other’s. We
propose novel reformulations that forbid plans that are related
to the given ones. While the new relation is not transitive and
thus not an equivalence relation, we can define a new subset
top-quality planning problem, with finite size solution sets.
We formally prove that these solutions can be obtained by
exploiting the proposed reformulations. Our empirical evalu-
ation shows that solutions to the new problem can be found
for more tasks than unordered top-quality planning solutions.
Further, the results shows that the solution sizes significantly
decrease, making the new approach more practical, particu-
larly in domains with redundant operators.

Introduction
Top-quality planning deals with generating all high-quality
plans up to a certain bound (Katz, Sohrabi, and Udrea
2020). The need for producing such a collection of plans
is well established for many applications, including plan
recognition (Sohrabi, Riabov, and Udrea 2016), malware de-
tection (Boddy et al. 2005), business process automation
(Chakraborti et al. 2020), and automated machine learning
(Katz et al. 2020). Top-quality planning serves as a basis
for solving other computational problems, such as quality-
aware diverse planning (Nguyen et al. 2012; Vadlamudi and
Kambhampati 2016; Katz, Sohrabi, and Udrea 2022). In
these and other applications, the choices of planning models,
whether avoidable or not, may have unintended effects on
plans. These include (zero-cost) loops, unnecessary repeated
operator applications, continuing after the goal is reached.

While producing all high-quality plans can be challeng-
ing, and even impossible when there are infinitely many

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such plans, one practical approach suggested to generate
all plans that are not equivalent when ignoring operator or-
dering (Katz, Sohrabi, and Udrea 2020). However, this so-
called unordered top-quality planning solution can still be
very large. Further, this approach only reduces the solution
size by a finite number, not helping in domains with infinite
size solutions. Such domains are not uncommon, and even
appear at International Planning Competitions (IPC). Also,
previous work did not address unnecessary long plans.

In this work, we propose a novel computational problem
under the umbrella of top-quality planning that allows to
further restrict the solution set. We consider the following
relation: a plan is related to another if its operator multi-
set is a subset of the other’s. We propose a novel planning
task reformulation that forbids plans whose operator mul-
tisets are supersets of the given ones. We prove that the
solution sets of the new subset top-quality planning prob-
lem are of finite size. We propose a similar to the previ-
ously proposed solution scheme, iteratively finding and for-
bidding plans, exploiting the new reformulation. We empiri-
cally evaluate our approach, depicted by top-MSQ, compar-
ing to the unordered top-quality planner, showing a better
coverage and significantly reducing the solution size. Addi-
tionally, we propose a reformulation that forbids plans that
are supersets as sets rather than multisets, depicted by top-
SQ. This stricter reformulation top-SQ, can be preferred if it
is important to forbid alternative but similar ways of achiev-
ing subgoals. Our evaluation of the second method (depicted
by top-SQ) shows that while being simpler, and thus easier
to solve, it results in very similar solution sizes to the one
of top-MSQ. Both proposed approaches show promising re-
sults, in particular, being able to generate subset top-quality
solutions in domains with infinite size unordered top-quality
solutions. While each of the approaches to top-quality plan-
ning has its own motivating scenario, the two new ones show
a great promise, particularly in domains with redundant and
zero-cost operators.

Background
A planning task in the SAS+ formalism (Bäckström and
Nebel 1995), extended with operator costs, is Π =
〈V ,O, s0, s?, cost〉 with a finite set of finite-domain state

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

179

variables V , a finite set of operators O, an initial state s0,
and the goal s?. Each variable v ∈ V is associated with a
finite domain D(v) of variable values. These variable and
value pairs are called facts. A partial assignment p maps a
subset of variables Vp ⊆ V to values in their domains. For a
variable v ∈ V and partial assignment p, the value of v in p
is denoted by p[v] if v ∈ Vp and we say p[v] is undefined if
v /∈ Vp. A partial assignment swith Vs = V is called a state.
State s is consistent with partial assignment p if they agree
on all variables in Vp, denoted by p ⊆ s. s0 is a state and
s? is a partial assignment. A state s is called a goal state if
s? ⊆ s and the set of all goal states is denoted by Ss? . Each
operator o in O is a pair 〈pre(o), eff (o)〉 where pre(o) is a
partial assignment called precondition and eff (o) is a partial
assignment called effect. Further, o has an associated natural
number cost(o), called cost. An operator o is applicable in
state s if pre(o) ⊆ s. Applying operator o in state s results
in a state denoted by sJoK where sJoK[v] = eff (o)[v] for all
v ∈ Veff and sJoK[v] = s[v] for all other variables. An op-
erator sequence π = 〈o1, · · · , on〉 is applicable in state s if
there are states s0, · · · , sn such that oi is applicable in si−1

and si−1JoiK = si for 0 ≤ i ≤ n. We denote sn by sJπK.
An operator sequence with s0JπK ∈ Ss? is called a plan.
The cost of a plan π, denoted by cost(π) is the summed cost
of its operators. For a planning task Π, the set of all plans
is denoted by PΠ. A plan π is optimal if its cost is mini-
mal among all plans in PΠ. For a plan π, MS(π) denotes
the multiset of operators in π. The multiplicity, that is, the
number of occurrences, of the element o ∈ X in a multiset
is denoted by mX(o). For multisets X,Y , we say that X is
a subset of Y (X⊆Y) if mX(o) ≤ mY (o) for all o. X = Y
if X ⊆ Y and Y ⊆ X , and X ⊂ Y if X ⊆ Y and X 6= Y .

The definitions of top-quality planning problems were
given by Katz, Sohrabi, and Udrea (2020).
Top-quality: Given a planning task Π and a natural number
q, find the set of plans P ={π ∈ PΠ | cost(π) ≤ q}.
Quotient top-quality: Given Π, an equivalence relation N
over its set of plans PΠ, and a natural number q, find a set
of plans P ⊆ PΠ such that

⋃
π∈P N [π] is the solution to the

top-quality planning problem.
Unordered top-quality: Given Π and a natural number q,
find a set of plans P ⊆ PΠ such that P is a solution to the
quotient top-quality planning problem under the equivalence
relation UΠ = {(π, π′) | π, π′ ∈ PΠ,MS(π) = MS(π′)}.

Forbidding Plans as Super-Multisets
We start by defining the computational problem of interest
as well as a method for solving it. First, let R⊂ = {(π, π′) |
MS(π) ⊂ MS(π′)} denote the relation defined by the subset
operation over plan operator multisets.

Definition 1 (subset top-quality planning problem)
Given a planning task Π and a natural number q, find a
set of plans P ⊆ PΠ s.t. (i) ∀π ∈ P , cost(π) ≤ q, and (ii)
∀π′∈PΠ\P with cost(π′)≤q, ∃π∈P s.t. (π, π′)∈R⊂.

In words, a plan π with cost(π) ≤ q may not be part
of the solution to the subset top-quality planning problem
only if its subset is part of the solution. Note, while a top-
quality and unordered top-quality solutions are also subset

top-quality solutions, we are interested in finding smallest
(in the number of plans) such solutions. While unordered
top-quality solutions can be of infinite size, smallest subset
top-quality planning solutions are always finite.

Theorem 1 Given a planning task Π and a natural number
q, a smallest subset top-quality planning problem solution P
is of finite size.

Proof: For a plan π that contains a cycle, if π′ is obtained
from π by removing all cycles, then we have (π′, π) ∈ R⊂.
Thus, P is a subset of the set of all cycle-free plans. Since Π
has only a finite number of states, the number of cycle-free
plans is also finite. �

We now turn our attention to finding smallest subset top-
quality planning problem solutions. Following the line of
work on reformulating planning tasks to forbid a set of plans
(Katz et al. 2018; Katz and Sohrabi 2020; Katz, Sohrabi, and
Udrea 2020, 2022), we present a reformulation that, given a
set of plans, forbid all plans that are supersets (as operator
multisets) of some plan in the given set. In other words, the
reformulation preserves all plans that are not supersets of all
the plans in the given set. That allows for both ignoring plan
reorderings and unnecessary operators. We call it Forbidding
Multiple Plans as Operator Super-Multi-Sets (FOSMS).

Definition 2 Let Π = 〈V ,O, s0, s?, cost〉 be a planning
task,M={M1, . . .Mk} be a set of operator multisets, and
U⊆O be the set of all operators in the multisets inM. The
task Π−M+ = 〈V ′,O′, s′0, s′?, cost′〉 is defined as follows.

• V ′ = V ∪ {v} ∪ {vo | o ∈ U}, where the variable v
has the domain dom(v) = {0 . . . k} and dom(vo) =
{0, . . . ,m(o)}, where m(o) = maxki=1{mMi

(o)},
• O′ = {oi | o ∈ O, 0 ≤ i ≤ m(o)}∪{oi,j | o ∈Mj , 1 ≤
j ≤ k, 0 ≤ i < mMj (o)}, where

pre(oi) = pre(o) ∪ {〈v, 0〉} ∪ {〈vo, i〉 | o ∈ U},
eff (oi) = eff (o) ∪ {〈vo, i+ 1〉 | o ∈ U, i < m(o)},

oi,j = 〈s? ∪ {〈vo, i〉, 〈v, j − 1〉}, {〈v, j〉}〉, and

cost′(oi) = cost(o), cost′(oi,j) = 0,
• s′0 = s0 ∪ {〈v, 0〉} ∪ {〈vo, 0〉 | o ∈ U}, and
• s′? = s? ∪ {〈v, k〉}.

In words, the reformulation keeps track of the original op-
erators from the planning task Π applied on the way to the
goal (i.e., oi) with the extra effects counting the number of
applications of each operator applied to reach the goal. Once
the goal is reached, if there is an operator with the number
of applications lower than the number of appearances in a
multiset, then the found plan is not a superset of that multi-
set. The reformulation then switches to the second phase in
which it ensures that there exists at least one operator o from
the multisetMj , whose corresponding operator oi was not
applied and now oi,j can be applied. Note, the goal can only
be reached if 〈v, k〉 is true in addition to the original goal, s?.
That is the goal can be reached by applying the additional
operators oi,j , which are applicable only when the original
goal was achieved and the corresponding original operator
was not applied mMj

(o) times.

180

Algorithm 1: Iterative subset top-quality planning.
Input: Planning task Π, quality bound q
P ← ∅, Π′ ← Π, π ← shortest cost-optimal plan of Π′

while cost(π) ≤ q do
π ←MAPPLANBACK(π)
P← P∪{π}∪{π′ |π′ ∼ π,MS(π′) 6= MS(π)}
Π′ ← Π−M+ , whereM = {MS(π′) | π′ ∈ P}
π ← shortest cost-optimal plan to Π′

return P

Consider an example task Π with O = {a, b, c, d},
plans aba and ca and their corresponding multisets M =
{{a, a, b}, {a, c}}. The reformulated task Π−M+ has extra
variables: ternary v and va, as well as binary vb and vc. O′
includes multiple copies of the original operators that appear
in U . Here, we have O′ = {a0, a1, a2, b0, b1, c0, c1, d0} ∪
{a0,1, a0,2, a1,1, a1,2, b0,1, c0,2}. Consider a plan π = abd

for Π and a sequence of operators π = a0b0d0a1,1c0,2. Note
that π is a plan for Π−M+ : a0b0d0 achieves the original goal,
while a1,1 and c0,2 are changing the value of v from 0 to 1
and then to 2. Thus, π is not forbidden.

To solve the subset top-quality planning problem, one
can exploit the reformulation FOSMS in Definition 2 in a
fashion very similar to the one suggested by Katz, Sohrabi,
and Udrea (2020): find a plan, (possibly) extend it to a set
of plans with the help of structural symmetries (Shleyfman
et al. 2015), reformulate the original planning task using the
set of plans found so far, extend the set by solving the re-
formulated task optimally, adding the cost optimal plan (and
possibly its symmetric plans to the set), continue until there
are no more plans of cost lower or equal to q. The detailed
scheme is depicted in Algorithm 1.

Theorem 2 Algorithm 1 is sound and complete for subset
top-quality planning when using cost-optimal planners that
find shortest cost-optimal plans.

Proof: First, according to Theorem 1, Algorithm 1 will ter-
minate and return a set of plans.

Let P = {π1, . . . , πk} be plans for Π with their corre-
sponding multisetsM = {MS(π1), . . . ,MS(πk)}. Let π =
a1 . . . an be some plan for Π such that MS(πi) 6⊂ MS(π)
for 1 ≤ i ≤ k. We show that there exists a corresponding to
π plan π for Π−M+ . Let π1 = a1

i1 . . . a
n
in be the applica-

ble sequence of operators from O′ that corresponds to π =
a1 . . . an and s1 be the end state of applying π1 in s′0. Then,
s? ⊆ s1 and s1[v] = 0. Since MS(πi) 6⊂ MS(π), there ex-
ists an operator bi ∈ MS(πi) such that bi 6∈ MS(π). Thus,
we have s1[vbi] = 0, 1 ≤ i ≤ k. Then, π2 = b10,1 . . . b

k
0,k is

applicable in s1 and results in a state s2 such that s? ⊆ s2

and s2[v] = k. In other words, π = π1π2 is a plan for Π−M+ .
The relationR⊂ is reflexive, antisymmetric, and transitive

and thus defines a partial order over plans. Let π and π′ be
two plans such that (π, π′) ∈ R⊂. Then cost(π) ≤ cost(π′)
and the plan π is strictly shorter than π′ and therefore a plan-
ner that finds shortest among the optimal plans will find π
before π′. Thus, Algorithm 1 finds plans that are minimal

under the partial order defined by R⊂ and will terminate
when it finds all such plans of cost less or equal q. �

Forbidding Plans as Super-Sets
The reformulation in Definition 2 might in some cases be
unnecessarily permissive, allowing plans that are supersets
as sets but not as multisets. The stricter reformulation will,
therefore, given a set of plans, forbid all plans that are super-
sets (as operator sets) of some plan in the given set. We call it
Forbidding Multiple Plans as Operator Super-Sets (FOSS).

Definition 3 Let Π = 〈V ,O, s0, s?, cost〉 be a planning
task, X = {X1, . . .Xk} be a set of operator sets, and
U =

⋃k
i=1 Xi ⊂ O be the union of these sets. The task

Π−X+ = 〈V ′,O′, s′0, s′?, cost′〉 is defined as follows.

• V ′ = V ∪ {v} ∪ {vo | o ∈ U}, where the variable v
has the domain dom(v) = {0 . . . k} and all additional
variables vo being binary variables,

• O′ = {o | o ∈ O} ∪ {oi | o ∈ Xi, 1 ≤ i ≤ k}, where

o =〈pre(o) ∪ {〈v, 0〉}, eff (o) ∪ {〈vo, 1〉 | o ∈ U}〉,
oi =〈s? ∪ {〈vo, 0〉, 〈v, i− 1〉}, {〈v, i〉}〉, and

cost′(o) = cost(o), cost′(oi) = 0,
• s′0 = s0∪{〈v, 0〉}∪{〈vo, 0〉 |o ∈ U}, and
• s′? = s? ∪ {〈v, k〉}.
Xi, 1 ≤ i ≤ k are the operator sets associated with the

plans seen so far for the original planning task Π. In words,
the reformulation keeps track of the original operators from
the planning task Π applied on the way to the goal (i.e., o)
with the extra effect 〈vo, 1〉 for the operators in the set U ,
and then switches to the second phase, in which it ensures
that there exists at least one operator from the original plans,
that was not applied and now can be applied. Note, k is the
size of the set X , and the goal can only be reached if 〈v, k〉
is true in addition to the original goal, s?. Thus, the goal can
be reached by applying the additional operators oi, which
are applicable only when the original goal was achieved and
the corresponding original operator was not applied.

Consider the same example planning task Π over opera-
tors O = {a, b, c, d}, the same two plans aba and ca and
their corresponding sets X = {{a, b}, {a, c}}. The refor-
mulated task Π−X+ would then have extra ternary variable
v and binary variables va, vb and vc. O′ includes multiple
copies of the original operators that appear in U . Here, we
have O′ = {a, b, c, d} ∪ {a1, a2, b1, c2}. Consider again the
plan π = abd for Π and a sequence of operators π = abd.
Applying π to the initial state of Π−X+ results in a state
s′ = s? ∪{〈v, 0〉, 〈va, 1〉, 〈vb, 1〉, 〈vc, 0〉, 〈vd, 1〉}. Note that
none of {a1, a2, b1, c2} operators are applicable in s′ and
therefore there is no corresponding to π plan of Π−X+ .

Observe that the reformulation, while forbidding plans
that are supersets of elements in X , allows plans that are
proper subsets of these sets in X . For example, a plan abc is
a superset (as operator set) of aba. Assuming the reformu-
lation is used within Algorithm 1, if aba is found first, abc
is forbidden, but not vice versa. Thus, Algorithm 1 can be

181

Domain top-uQ top-MSQ top-SQ
childsnack14 0 6 6
data-network18 0 4 4
elevators08 0 2 2
gripper 5 16 16
miconic 15 17 16
movie 1 0 0
openstacks08 2 1 1
parcprinter08 25 24 24
parcprinter11 18 17 17
pipesworld-notankage 8 7 7
psr-small 45 45 47
satellite 2 4 4
scanalyzer08 4 6 6
scanalyzer11 1 3 3
sokoban08 0 0 1
storage 11 9 10
Sum 337 361 364

Table 1: Per-domain coverage for the three configurations.

slightly adapted to check whether the newly found plans are
subsets of previously found ones, discarding the plans that
are supersets. Note that this could not happen in the case of
Definition 2, since a plan that corresponds to a proper subset
(as multiset) of another one will be found earlier.

It is worth noting here that in some cases FOSS might be
preferred over FOSMS or vice versa. One example of such a
case is whether it is important to differentiate alternative but
similar ways of achieving subgoals.

Experimental Evaluation
To empirically evaluate the feasibility of our suggested ap-
proach, we have implemented our diverse planners on top of
the ForbidIterative planners collection (Katz, Sohrabi, and
Udrea 2019), on top of the Fast Downward planning sys-
tem (Helmert 2006). ForbidIterative planner implements a
shortest cost-optimal planner as a modified orbit A∗ search
(Domshlak, Katz, and Shleyfman 2015), considering both
the cost and the distance of the search nodes. The code is
available at https://github.com/ibm/forbiditerative. The ex-
periments were performed on Intel(R) Xeon(R) CPU E7-
8837 @2.67GHz machines, with the time and memory limit
of 30min and 3.5GB, respectively. The benchmark set con-
sists of all STRIPS benchmarks from optimal tracks of IPC
1998-2018, a total of 1797 tasks in 64 domains.

We have compared the two proposed reformulations de-
picted in Definition 2 (denoted by top-MSQ) and Definition
3 (denoted by top-SQ) to the unordered top-quality planning
(top-uQ) (Katz, Sohrabi, and Udrea 2020). In our evalua-
tion we focused on cost-optimal plans, e.g., q=1. First, Table
1 depicts the per-domain coverage of the three approaches,
with the largest coverage bolded. A planner gets coverage of
1 for a task if it was able to find the solution for its corre-
sponding computational problem. For top-uQ it means find-
ing all cost-optimal plans up to reorderdings. For top-MSQ
(top-SQ) it means finding all cost-optimal plans up to sub-
multi-sets (subsets). While on most of the 64 domains there
is no change in the coverage, there are 16 domains depicted

0 40 80 120 1600

40

80

120

160

subset top-quality (top-SQ)

un
or
de
re
d
to
p-
qu
al
ity

(t
op
-u
Q
)

Number of plans in a solution

Figure 1: Solution size, comparing top-SQ to top-uQ.

in the table where the coverage differs. Note that the over-
all coverage significantly increases compared to the base-
line, for both approaches. There are four domains where the
previous approach could not solve any task, but our pro-
posed approach can. Out of these, elevators and sokoban
could not be solved by the previous approach in principle,
as the unordered top-quality solution has an infinite number
of plans. The superset top-quality one is however finite in
these domains. Still, in a few domains (movie, openstacks,
parcprinter, pipesworld, storage) the baseline top-uQ still
dominates. This is not surprising, as the corresponding re-
formulation is simpler than the suggested ones, and there-
fore the classical planners are expected to be able to solve
these reformulated tasks quicker. If the number of iterations
does not (significantly) decrease when attempting to forbid
more plans, the baseline should perform better than our ap-
proaches. These new suggested approaches thrive when the
solution size decreases significantly.

To verify that the solution sizes indeed decrease, we com-
pare the number of plans in the solution for the three ap-
proaches. Out of 327 tasks solved by all three approaches,
on 277 the plan sets are of the same size. The remaining 50
tasks are depicted in Figure 1, comparing top-SQ to top-uQ.
We do not show a comparison to top-MSQ, as only on 5 of
these tasks the solution size of top-SQ is strictly smaller than
of top-MSQ, namely one ged (49 vs. 50) and four psr tasks
(2, 16, 2, 4 vs. 3, 26, 3, 7). Each point in the plot corresponds
to a planning task that was solved by both approaches, and
depicting the number of plans in each solution. The 50 tasks
depicted in the figure all belong to the following four do-
mains: ged, pegsol, psr, and spider. For these tasks, the so-
lution size is decreased by half on average.

Conclusions and Future Work
We have presented new computational problems under the
umbrella of top-quality planning, as well as corresponding
planners. Our empirical evaluation shows these planners to
be more practical than the previously existing tools.

For future work, we would like to investigate ways of
improving the performance of these planners, possibly by
reusing information from one iteration for the next one.

182

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of Action Generation for Cyber Security Using Classical
Planning. In Biundo, S.; Myers, K.; and Rajan, K., eds.,
Proceedings of the Fifteenth International Conference on
Automated Planning and Scheduling (ICAPS 2005), 12–21.
AAAI Press.
Chakraborti, T.; Isahagian, V.; Khalaf, R.; Khazaeni, Y.;
Muthusamy, V.; Rizk, Y.; and Unuvar, M. 2020. From
Robotic Process Automation to Intelligent Process Automa-
tion. In Business Process Management: Blockchain and
Robotic Process Automation Forum: BPM 2020 Blockchain
and RPA Forum, volume 393, 215–228. Springer Nature.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Symme-
try Breaking in Deterministic Planning as Forward Search:
Orbit Space Search Algorithm. Technical Report IS/IE-
2015-03, Technion.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Katz, M.; Ram, P.; Sohrabi, S.; and Udrea, O. 2020. Ex-
ploring Context-Free Languages via Planning: The Case for
Automating Machine Learning. In Beck, J. C.; Karpas, E.;
and Sohrabi, S., eds., Proceedings of the Thirtieth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2020), 403–411. AAAI Press.
Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. In Conitzer, V.; and Sha, F., eds., Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI 2020), 9892–9899. AAAI Press.
Katz, M.; Sohrabi, S.; and Udrea, O. 2019. ForbidIterative
planners for top-k, top-quality, and diverse planning prob-
lems. https://doi.org/10.5281/zenodo.3246773.
Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
Conitzer, V.; and Sha, F., eds., Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence (AAAI
2020), 9900–9907. AAAI Press.
Katz, M.; Sohrabi, S.; and Udrea, O. 2022. Bounding Qual-
ity in Diverse Planning. In Honavar, V.; and Spaan, M., eds.,
Proceedings of the Thirty-Sixth AAAI Conference on Artifi-
cial Intelligence (AAAI 2022). AAAI Press.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
Novel Iterative Approach to Top-k Planning. In de Weerdt,
M.; Koenig, S.; Röger, G.; and Spaan, M., eds., Proceed-
ings of the Twenty-Eighth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2018). AAAI Press.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence, 190: 1–31.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Bonet, B.; and Koenig, S., eds., Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015), 3371–3377. AAAI Press.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In Kambhampati, S., ed., Pro-
ceedings of the 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016), 3258–3264. AAAI Press.
Vadlamudi, S. G.; and Kambhampati, S. 2016. A Combina-
torial Search Perspective on Diverse Solution Generation. In
Schuurmans, D.; and Wellman, M., eds., Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (AAAI
2016), 776–783. AAAI Press.

183

