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Abstract

While numeric variables play an important, sometimes cen-
tral, role in many planning problems arising from real world
scenarios, most of the currently available heuristic search
planners either do not support such variables or impose heavy
restrictions on them. In particular, most admissible heuristics
are restricted to domains where actions can only change nu-
meric variables by predetermined constants. In this work, we
consider the setting of optimal numeric planning with linear
effects, where actions can have numeric effects that assign the
result of the evaluation of a linear formula. We extend a recent
formulation of Numeric LM-cut for simple effects by adding
conditional effects and second-order simple effects, allowing
the heuristic to produce admissible estimates for tasks with
linear numeric effects. Empirical comparison shows that the
proposed LM-cut heuristics favorably compete with the cur-
rently available state-of-the-art heuristics and achieve signif-
icant improvement in coverage in the domains with second-
order simple effects.

Introduction
Numeric planning is a class of AI planning problems where
states contain numeric variables, preconditions of actions
and the goal conditions can be given in the form of inequal-
ities of the numeric variables, and action effects modify nu-
meric variables according to given formulas. In 2002, it was
shown that numeric planning even only with constant effects
is undecidable (Helmert 2002). Yet, a number of heuristic
search approaches have been developed to solve numeric
planning problems with both constant and linear additive ef-
fects. Hoffmann (2003) proposed a heuristic based on the
interval-based relaxation, where each variable is assigned
not a single value, but an interval of possible numeric assign-
ments. More than a decade later, Aldinger, Mattmüller, and
Göbelbecker (2015) showed that the interval-based relax-
ation can be computed in polynomial time if numeric effects
do not have cyclic dependencies. Subsequently, repetition-
based relaxation heuristics, which can be computed in poly-
nomial time with cyclic dependencies, were proposed for
general numeric planning (Aldinger and Nebel 2017). In
parallel, Scala et al. (2016a) developed the additive interval-
based relaxation (AIBR), which ensures polynomial compu-
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tational time by transforming assignment effects to increase
or decrease effects. However, except for the repetition-based
max heuristic by Aldinger and Nebel, these methods are lim-
ited to the satisficing setting. The progress of methods for
satisficing planning gave rise to the question ‘can one plan
optimally in presence of numeric variables in practice?’.
The answer to this question was positive: recently, multiple
admissible heuristics were proposed for numeric planning
(Scala et al. 2020, 2017; Piacentini et al. 2018b; Kuroiwa
et al. 2021). These heuristics, however, are limited to tasks
with simple effects, i.e., each action increases or decreases
the value of a numeric variable by a constant.

In this paper, we extend the LM-cut heuristic for nu-
meric planning tasks with simple conditions (SCT) (Kuroiwa
et al. 2021) to linear numeric planning tasks (LT), an ex-
tension that includes linear effects which increase or de-
crease numeric variables by linear combinations of the nu-
meric variables. While several heuristics exist in the satis-
ficing setting of this formalism (Hoffmann 2003; Li et al.
2018), our heuristics are the first admissible heuristics ex-
ploiting the structure of LT. Following Kuroiwa et al., we
first formalize the one-variable compilation for linear nu-
meric planning, which transforms linear numeric conditions
to comparisons of a single numeric variable and a constant.
Then we introduce two relaxations of the compiled task,
the first-order delete-relaxation and the second-order delete-
relaxation, and propose LM-cut heuristics based on the justi-
fication graphs of each of them. In particular, the first variant
of the heuristic exploits conditional effects, while the second
variant makes use of second-order simple effects – linear
effects that are themselves dependent on only constant in-
crease or decrease. We summarize our contributions in Fig-
ure 1. Our experimental results show that both LM-cut vari-
ants outperform the current state-of-the-art heuristics, and
the second variant excels in the domains with second-order
simple effects.

Background
A linear numeric planning task (LT) is 5-tuple
〈F ,N ,A, sI , G〉 with a set of propositions F , a set of
numeric variables N , a set of actions A, initial state sI , and
goal conditions G. If there are no numeric variables, i.e.,
N = ∅, the task is called a classical planning task.

A state s = 〈sp, sn〉 has set of propositions sp ⊆ F
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Figure 1: Overview of the steps to produce the heuristics.

and value assignments to numeric variables sn, with s[v] the
value of variable v in s. A numeric condition ψ is a lin-
ear inequality

∑
v∈N w

ψ
v v D wψ0 , where v is a numeric

variable, wψv and wψ0 are rational numbers, and D is ei-
ther of ≥ or >. State s satisfies ψ, denoted by s |= ψ, if∑
v∈N w

ψ
v s[v] D wψ0 . For a set of numeric conditions Ψ̂, if

s |= ψ for all condition ψ in Ψ̂, we denote s |= Ψ̂. We say ψ
is a fact if it is either of a proposition or a numeric condition.
For a proposition ψ, we also say s |= ψ if ψ ∈ sp.

A goal condition G is pair 〈Gp, Gn〉 where Gp is a set of
propositions andGn is a set of numeric conditions. State s is
a goal state if Gp ⊆ sp and s |= Gn. For a fact ψ, by abuse
of notation, we say ψ ∈ G if ψ ∈ Gp or ψ ∈ Gn.

Action a is triplet 〈pre(a), eff(a), cost(a)〉 where cost(a)
is a nonnegative number. Preconditions pre(a) is pair
〈prep(a), pren(a)〉where prep(a) is a set of propositions and
pren(a) is a set of numeric conditions. Action a is applica-
ble in state s if prep(a) ⊆ sp and s |= pren(a), denoted
by s |= pre(a). We use Ψ to denote the set of all numeric
conditions, i.e., Ψ = Gn ∪

⋃
a∈A pren(a).

An effect eff(a) is triplet 〈add(a), del(a), num(a)〉 where
add(a) and del(a) are sets of propositions, and num(a) is
a set of numeric effects of the form (v += ξ + c), where
ξ is a numeric expression of the form

∑
v∈N w

ξ
vv and c is

a rational number. Each wξv is also a rational number. The
value of ξ in state s is defined as s[ξ] =

∑
v∈N w

ξ
vs[v].

We assume that assignment effect v := ξ + c and sub-
tractive effect v −= ξ + c are normalized to the additive
forms v += ξ − v + c and v += −ξ − c, and one ac-
tion has at most one effect on each numeric variable. Apply-
ing action a makes state s transition to state s[[a]] such that
s[[a]]p = (sp \ del(a)) ∪ add(a), s[[a]][v] = s[v] + ξ[s] + c if
v += ξ + c ∈ num(a), and s[[a]][v] = s[v] otherwise.

For state s, an s-plan is a sequence of actions that can be
sequentially applied from s and that makes s transition to a
goal state. A solution for the task is an sI -plan, and we call
it a plan for the task. When an s-plan is π = 〈a1, ..., an〉,
the cost of the s-plan is cost(π) =

∑n
i=1 cost(ai). In opti-

mal planning, we find an optimal plan, which minimizes the

cost. The value of variable v after the execution of sequence
of actions π is denoted π[v]. A heuristic h is a function that
maps state s to heuristic value h(s) ∈ R0+. If, for all state
s, h(s) is a lower bound of the cost of the optimal s-plan,
then h is admissible.

Planning with Simple Numeric Conditions
Scala et al. (2016b) introduced the notion of a simple effect
and a simple numeric condition (SC). If an effect changes a
variable only by a constant, i.e., of the form v += c, it is a
simple effect. We call effects that are not simple in LT lin-
ear effects. A numeric condition

∑
v∈N wvv D w0 is a SC

if for all v with wv 6= 0, all effects that change v are simple
effects. Tasks with SC only are called SC tasks (SCT). SCT is
a subset of LT and a superset of restricted tasks (RT) (Hoff-
mann 2003), where every numeric condition is a comparison
of a single variable and a constant, i.e., of the form v D w0

where v is a numeric variable and w0 is a rational number.
SCT can be reduced to RT by introducing a new nu-

meric variable for each SC and modifying numeric ef-
fects so that they change the variable by the net effects
on the SC. Given an SCT Π = 〈F ,N ,A, sI , G〉, Kuroiwa
et al. (2021) construct a transformed task ΠRT to be the 5-
tuple 〈F ,N RT,ART, sRT

I , G
RT〉 defined as follows. For nu-

meric condition ψ :
∑
v∈N w

ψ
v v D w0, we add an aux-

iliary numeric variable uψ ∈ N RT that corresponds to the
left-hand side of the condition and replace ψ with uψ D wψ0 .
The initial value is defined as sRT

I [uψ] =
∑
v∈N w

ψ
v sI [v].

For action a ∈ A, we add a numeric effect with the form
uψ +=

∑
v∈N w

ψ
v c

a
v , where v += cav are the original nu-

meric effects of the action. This translation is polynomial in
the number of numeric conditions of the task, and called the
one-variable compilation (OVC). For example, suppose an
SCT with numeric variables x and y, condition x + y ≥ 1,
and action a with effects x += 3 and y += 2. We replace
x+ y ≥ 1 with ux+y ≥ 1, and add effect ux+y += 5 of a.

RT Π+ is delete-free if for each action a ∈ A, delete ef-
fects del(a) is empty and all numeric effects are of the form
v += cav ∈ num(a) with cav > 0. The support function for
such tasks is a function that maps a fact to actions that can
achieve the fact and defined to be supp(ψ) = {a ∈ A | ψ ∈
add(a)} if ψ is a proposition and supp(v D w0) = {a ∈ A |
v += cav ∈ num(a)} if ψ is a numeric condition v D w0.

LM-Cut in Numeric Planning with Simple Effects
Helmert and Domshlak (2009) introduced the LM-cut
heuristic for classical planning. Kuroiwa et al. (2021)
adapted this heuristic to the SCT setting by compiling SCT to
RT. Here, we briefly present their notations and algorithm.

The heuristic is based on disjunctive action landmarks,
computed as cut in the labelled weighted digraph called a
justification graph (JG). To construct this graph, we need
to introduce additional notation. Let us start with the action
multiplicator function, introduced by Scala et al. (2016) for
a relaxation of hmax (Bonet and Geffner 2001). Intuitively,
action multiplicator ma(s, ψ) represents the number of times
one needs to apply action a to achieve fact ψ from state s in
a delete-free RT. If s |= ψ, ma(s, ψ) = 0. Otherwise, if
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a ∈ supp(ψ) and ψ is a proposition, ma(s, ψ) = 1. If ψ
is a numeric condition of the form v ≥ w, and a has effect
v += ca with ca > 0, then ma(s, ψ) = w−s[v]

ca . Condition
v > w is normalized to v ≥ w + ε where ε is a sufficiently
small constant. Otherwise, ma(s, ψ) =∞.

Using this action multiplicator, Kuroiwa et al. define an
inadmissible heuristic, hmax

cri , as a maximal fixed point of a
system of recursive equations; hmax

cri (s) = hmax
cri (s,G). For

a set of facts F : hmax
cri (s, F ) = max

ψ∈F
hmax

cri (s, ψ). For a fact

ψ, it holds that hmax
cri (s, ψ) = 0 if s |= ψ, or otherwise

hmax
cri (s, ψ) = min

a∈supp(ψ)
hmax

cri (s, pre(a)) + ma(s, ψ)cost(a).

A labelled weighted digraph is formally defined by a
triplet 〈N,E,W〉, where N are the vertices of the graph,
E ⊆ N × N × A are labelled edges of the graph, where
A denotes the label set, and W : E → R0+ is the weight
function on edges. To construct the JG, each action should
be associated with at most one fact in its preconditions. To
this end, the precondition choice function (pcf) is defined.
In the case of hmax

cri this function is defined as follows:
pcfcri(s, a) ∈ arg max

ψ∈pre(a)
hmax

cri (s, ψ).

For actions with no precondition, we add an artificial fact
denoted by ∅. If pre(a) = ∅, we write pcfcri(s, a) = ∅.
Thus, for each state s we can construct the following JG
〈N,E,W〉, where N = {nψ | ψ ∈ F ∪ Ψ ∪ {∅}} is the
set of vertices, E = Ê ∪ {(nψ, nψ′ ; a) | a ∈ supp(ψ′), ψ =
pcf(s, a)} is the set of labeled edges with the zero-cost edges
Ê = {(n∅, nψ; a0) | s |= ψ}, and the weight function is de-
fined as W((nψ, nψ′ ; a)) = ma(s, ψ′) · cost(a).

Given two disjoint vertex sets N1, N2 ⊆ N , we define a
directed cut to be (N1, N2) = {(n1, n2; a) ∈ E | n1 ∈
N1, n2 ∈ N2}. The weights of the cut L is defined as
W(L) = min

e∈L
W(e). For goal condition g ∈ G we define

the vertex sets for the cut: the goal zone is
Ng = {nψ ∈ N | ∃ zero-weight path from nψ to ng};

the before-goal zone is a set of vertices that can be reached
from the vertex n∅ without passing through Ng:

N0 = {nψ ∈ N | nψ is reachable from n∅
without crossing Ng

};

and the beyond-goal zone is N b = (N \Ng) \N0.
The LM-cut heuristic is computed in rounds. Set

hLM-cut(s) value to zero, and iterate over:
1. Compute the hmax

cri values of all relevant facts. If
maxg∈G h

max
cri (g) = 0 return the hLM-cut(s) value. If

there is g ∈ G such that hmax
cri (g) =∞ return∞.

2. Use the hmax
cri values to construct a JG and use this graph

to compute a directed cut L = (N0, Ng) with the cost
W(L). Update hLM-cut(s) += W(L).

3. Reduce the costs of actions so that weights of all edges
in L are reduced by W(L).

4. Go to Step 1, using the updated action costs.
The admissibility is guaranteed by cost-partitioning (Katz
and Domshlak 2008; Yang et al. 2008); the weight of the cut
L, W(L) in 2., is admissible in a cost-partitioned task at each
iteration, thus

∑
W(L) is admissible for the original task.

One-Variable Compilation of Linear Effects
We extend the LM-cut procedure to LT. Kuroiwa et al. pre-
sented an LM-cut version that can deal with simple effects.
Here we generalize it to account for non-simple effects. The
LM-cut for SCT is based on OVC, the compilation of SCT into
RT, so we first generalize OVC to LT as shown in Figure 1.
Then, we introduce the first-order delete-relaxation, where a
linear effect is relaxed to a conditional effect that increases
a variable to infinity if the linear formula is positive. In the
justification graphs (JGs), these conditional effects are de-
coupled to different actions sharing the same label. We pro-
pose heuristic hLM-cut

1 based on such JGs. Next, we tighten
the first-order delete-relaxation by preserving second-order
simple effects, linear effects that only contain numeric vari-
ables affected by simple effects. In the resulting second-
order delete-relaxation, we derive a lower bound to achieve a
numeric condition using only simple and second-order sim-
ple effects. Using this bound, we propose heuristic hLM-cut

2
based on augmented JGs.

Since LT is different from SCT only in that it has linear
effects, in OVC of LT, we introduce additional linear ef-
fects so that they appropriately change auxiliary variables
in the compiled task. An OVC of a linear numeric plan-
ning task Π = 〈F ,N ,A, sI , G〉 is defined as ΠOVC =

〈F , Ñ , Ã, s̃I , G̃〉. The set of variables Ñ = N ∪N c where
N c is a set of auxiliary variables; for each numeric condition
ψ ∈ Ψ, we add an auxiliary numeric variable uψ ∈ N c with
s̃I [u

ψ] =
∑
v∈N w

ψ
v sI [v]. We introduce action ã ∈ Ã for

each a ∈ A, where prep(ã) = prep(a), pren(ã) = {uψ D
wψ0 | ψ ∈ pren(a)}, add(ã) = add(a), del(ã) = del(a),
and cost(ã) = cost(a). Goal conditions G̃ is pair 〈GP , G̃n〉,
where G̃n = {uψ D wψ0 | ψ ∈ Gn}. The set of all numeric
conditions in ΠOVC is defined as Ψ̃ = {uψ D wψ0 | ψ ∈ Ψ}.

For numeric effects of actions in Ã, we start by divid-
ing the effects of the original actions into simple effects
and additive linear effects. Note that this is an abuse of no-
tation and does not contradicts that an action has at most
one effect on one numeric variable. We divide the effect
v += ξ + c ∈ num(a) into two effects v += c and
v += ξ. The set of simple effects of an action a ∈ A is
defined as num1(a) = {v += c ∈ num(a) | c ∈ Q}. The
non-simple effects of an action a are denoted numc

1(a) =
num(a)\num1(a). The set of all actions that have only sim-
ple effects is defined as

A1 = {a ∈ A | numc
1(a) = ∅}, and Ac1 := A \ A1.

In each action ã ∈ Ã, the original effects stay the same:
each effect of the form v += ξ + c ∈ num(a) is di-
vided into v += c ∈ num1(ã) and v += ξ ∈ numc

1(ã).
For each auxiliary variable uϕ ∈ N c that corresponds to
uϕ =

∑
v∈N w

ϕ
v v, we add the following constant and linear

additive effects

uϕ +=
∑

v+=cv∈num1(ã)

wϕv cv = cauϕ ∈ num1(ã)

uϕ +=
∑

v+=ξv∈numc1(ã)

wϕv
∑
v′∈N

wξvv′ v
′ ∈ numc

1(ã).
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The expression in the second line is a linear formula in the
original variables in N , and we denote it by φauξ . Thus, we
can write uξ += φauξ + cauξ ∈ num(ã).1

Example 1. Let Π = 〈F ,N ,A, sI , G〉 be a linear numeric
planning task, where F = ∅, N = {x, y}, A = {a1, a2},
sI = {x = 1, y = 0}, and G = {2y ≥ 30}. For all ac-
tions a ∈ A, prep(a) = pren(a) = add(a) = del(a) = ∅,
cost(a) = 1, and num(a) is defined as:

A num type
a1 {x += 1} simple (constant increase/decrease)
a2 {y += 3x} linear (linear formula)

In ΠOVC, auxiliary variables are introduced for numeric
conditions. In this example, the variable u2y is introduced
for 2y ≥ 30, so N c = {u2y}. s̃I [u2y] = 0 and G̃n =
{u2y ≥ 30}. The numeric effects are

Ã num
ã1 {x += 1}
ã2 {y += 3x, u2y += 6x}

For u2y , since a2 has linear effect y += 3x, linear effect
u2y += 2·3x is introduced, which is represented by original
variable x ∈ N .

Relaxing Linear Effects
Kuroiwa et al. presented the delete-relaxation of RT that re-
laxed simple numeric effects by removing negative constant
effects. For each action a ∈ A, they remove all simple nu-
meric effects of the form u += c where u ∈ Ñ and c ≤ 0.
Propositional delete-effects are removed as well.

We extend the delete-relaxation of RT to OVC of LT. In
OVC, since a numeric condition has the form u ≥ w where
u is a numeric variable andw is a constant, ignoring negative
numeric effects on u underestimates the effort to achieve the
condition, consistent with admissibility. However, in LT, the
values of linear effects are state dependent, and we do not
know whether an effect is negative in advance. To address
this issue, we ignore negative effects by turning linear effect
v += ξ into a conditional effect which fires only if ξ > 0.
In addition, to account for the effort of achieving a numeric
condition v ≥ w via v += ξ, we overestimate the effect
v += ξ as v += ∞. In other words, all conditions of the
form v ≥ w are achieved by applying the effect v += ∞
exactly once, again underestimating the effort.

Formally, conditional effects of an action a are given as a
set of tuples, where each conditional effect e is represented
as 〈cond(e), eff(e)〉, and cond(e) and eff(e) have the struc-
ture of preconditions and an effect of a regular action. The
conditional effect is applied in a state s immediately after
the application of the action, but only if s |= cond(e).2

We introduce the first-order delete-relaxation of ΠOVC,
Π1

OVC = 〈F ,N 1,A1, s1I , G̃〉 where N 1 = N ∪ N c,1. In
N c,1, in addition to the auxiliary variables in N c, we in-
troduce uξ, u−ξ ∈ N c,1 for each linear effect v += ξ ∈
numc

1(a) for each a ∈ A. Here, v ∈ N , and we do not

1In what follows we omit the indices if evident from the context.
2The usual assumption in the case of conditional effects is that

their application is consistent and not order dependent.

introduce auxiliary variables for linear effects on auxiliary
variables in N c. The domain of each variable v ∈ N 1 is
extended to R ∪ {∞}, where for each c ∈ R it holds that
∞ + c = ∞, ∞ · c = ∞, and c ≤ ∞. It holds that
∞+∞ =∞ and∞·∞ =∞. The initial values of the aux-
iliary variables are defined as s1I [u

ξ] =
∑
v∈N w

ξ
vsI [v] and

s1I [u
−ξ] = −sI [uξ]. We have action a1 ∈ A1 for each a ∈ A

with pre(a1) = pre(ã), add(a1) = add(a), del(a1) = ∅, and
cost(a1) = cost(a). The simple effects on the original and
auxiliary variables are defined as the same as OVC, but neg-
ative effects are removed. For an action a ∈ Ac1, we replace
each linear effect v += ξ ∈ numc

1(a) with conditional ef-
fects ev+a and ev−a

cond(ev+a ) = 〈∅, {uξ > 0}〉,
eff(ev+a ) = 〈∅, ∅, {v +=∞}∪⋃

uϕ∈N c,1:wϕv>0

{uϕ +=∞}〉,

cond(ev−a ) = 〈∅, {u−ξ > 0}〉,

eff(ev−a ) = 〈∅, ∅,
⋃

uϕ∈N c,1:wϕv<0

{uϕ +=∞}〉.

The set of all numeric conditions is extended to Ψ1 = Ψ̃ ∪
{uξ > 0, u−ξ > 0 | v += ξ ∈ numc

1(a), a ∈ Ac1}. The
asymmetry of ev+a and ev−a comes from the fact that ϕ = −v
is a linear formula. Thus, in practice, v and uϕ = −v are
treated in the same way.

Our relaxation is similar to AIBR (Scala, Haslum, and
Thiébaux 2016) in that assignment effects are normalized to
additive effects and linear effects are divided into two condi-
tional infinite additive effects. Alternatively, A1 can be seen
as a special case of the effect-abstraction based relaxation
(Li et al. 2018), where linear effects are abstracted by inter-
vals (−∞, 0) and (0,∞).
Example 2. Using the task Π from Ex. 1, A1 is as follows:

A1 cond eff
a1
1 ∅ {x += 1, u3x += 3}

a1
2 {u3x > 0} {y += ∞, u2y += ∞}

Auxiliary variables u3x and u−3x are introduced, but u6x
is not introduced since u2y += 6x is a linear effect on an
auxiliary variable. With condition u3x > 0, in addition to
y += ∞, effect u2y += ∞ is introduced as linear expres-
sion 2y has a positive coefficient of y. In contrast, since no
linear expression has a negative coefficient on y, there is no
effect with condition u−3x > 0. Note that u−3x += −3 is
removed from num(a11) since it decreases the value of u−3x.

From the Relaxation to LM-Cut Heuristic
Since the first-order delete-relaxation employs conditional
effects, the classical LM-cut procedure cannot be directly
applied. Keyder, Hoffmann, and Haslum (2012) proposed
a decoupling method for LM-cut to handle conditional ef-
fects in classical planning. Since this LM-cut heuristic does
not dominate hmax in theory, Röger, Pommerening, and
Helmert (2014) proposed another LM-cut heuristic handling
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conditional effects, which dominates hmax. However, the
former empirically performs better than the latter (Röger,
Pommerening, and Helmert 2014). Therefore, we employ
the method proposed by Keyder, Hoffmann, and Haslum.

Let a1 be an action in A1 of the form

a1 =〈pre(a1), 〈add(a1), ∅, num1(a1), condeff(a1)〉〉.

We decouple this action into a set of actions with regular ef-
fects. The actions with the conditional effects removed, i.e.,
〈pre(a), 〈add(a), ∅, num1(a1)〉, are named core actions and
are denoted byA1

core. All conditional effects are transformed
into regular actions, i.e.,

∀〈cond(ea), eff(ea)〉 ∈ condeff(a1) :

ae,∞ = 〈pre(a) ∪ cond(ea), eff(ea)〉.

The set of these non-core actions is denoted by A1
cond. Note

that all effects of action ae,∞ are of the form u +=∞where
u ∈ N 1. The set of all actions of the transformed task is
A1

JG = A1
core ∪ A1

cond. All actions that originate from the
action a share the same label in terms of cost, i.e., reducing
the cost of a will change the cost of all derivative actions.

Next, we extend the action multiplicator to account for
the ‘plus infinity’ numeric effects: if an action a has the ef-
fect v += ∞, we define ma(s, ψ) = 1 for each numeric
condition ψ : v ≥ w.

The LM-cut heuristic, hLM-cut
1 , is the same as in SCTs

but the JG is constructed based on A1
JG, where core-actions

and their conditional effects share the same label and action
cost. As in the original LM-cut, at each iteration, a non-zero
weight cut L is extracted from the JG, the heuristic value is
increased by W(L), and the cost of action a is reduced by
cost1(a). This procedure ensures cost-partitioning. The cost
function cost1 is defined so that the weights of edges in L
are reduced by W(L).

To show that LM-cut is admissible, we prove that the
weight of a cut in the JG is an admissible estimate of the
cost-partitioned task.

Theorem 1. Let ΠOVC be the OVC of a solvable LT with a
non-zero optimal cost. Let L be a directed cut in a JG of
the first-order delete-relaxation Π1

OVC, where the set of ac-
tions in the cut is given by lbl(L) = {a | (n1, n2; a) ∈ L}.
For action a, let the minimum of multiplicators in the cut be
mL
a = min(nψ,nψ′ ;a)∈L ma(s, ψ′) and cost1 is defined as

cost1(a) =

{
W(L)
mLa

if a ∈ lbl(L)

0 otherwise.

Let Π1
OVC,1 be a copy of Π1

OVC except that action a has cost
cost1(a). Then, the weight of the cut W(L) = mine∈L W(e)
is admissible for Π1

OVC,1.

Proof Sketch: The proof is an extension of the proof of
Thm.1 in Kuroiwa et al. (2021) to account for the ‘plus infin-
ity’ effects. This case resembles the case of regular LM-cut,
from the perspective of the ‘plus infinity’ action, the fact
v = ∞ is binary, and is either achieved or not. See the sup-
plementary material (SM) (Kuroiwa, Shleyfman, and Beck
2022) for details. �

Exploiting Second-Order Simple Effects
In the first-order delete-relaxation, all linear effects are re-
placed with ‘plus infinity‘ effects. However, it is possible to
obtain a tighter relaxation for particular types of linear ef-
fects, which we call second-order simple effects.

Motivating Example
In the task Π in Ex. 1, to achieve the goal condition 2y ≥ 30,
we need to apply a2 to increase 2y. In the first-order delete-
relaxation Π1

OVC in Ex. 2, we compile the goal condition to
u2y ≥ 30 and relax the effect of a2 to u2y += ∞ with
condition u3x > 0. Since sI [x] = 1, s1I [u

3x] = 3 > 0,
plan 〈a12〉 achieves the goal condition, and the optimal cost
is estimated by cost(a12) = 1.

In the following example, we introduce an approach that
provides a better estimation than the one given by Π1

OVC.
The idea is similar to the operator-counting approach (Pom-
merening et al. 2014). Since a1 increases x, a better approx-
imation first applies a1 several times and only then apply a2.
LetXa1 andXa2 be the number of applications of a1 and a2.
We minimize the costXa1cost(a1)+Xa2cost(a2) of achiev-
ing 2y ≥ 30. Since x is increased by a constant, we represent
the value of 2y as 0+2 ·Xa2 ·3(1+Xa1) = 6Xa2(1+Xa1).
The optimal cost to achieve the goal condition, 2y ≥ 30, is
the optimal solution of the following optimization problem:

min Xa1cost(a1) +Xa2cost(a2) (1)
s.t. 6Xa2(1 +Xa1) ≥ 30 (2)

Xa1 , Xa2 ∈ Z0+. (3)

This problem is a nonlinear integer programming problem,
which is computationally expensive to solve in general. In-
stead of directly solving the problem, we represent a lower
bound of the optimal cost of the problem as a closed-form
formula. First, we relax the integrality of variables Xa1 and
Xa2 . Then, we decompose the problem into two phases:
first, increase x using a1 to constant C > 0; then, increase y
using a2. In the second step, y is increased byC each time a2
is applied, and Constraint (2) is replaced with 6Xa2 ·C ≥ 30.
To minimize the objective, we need to minimize Xa2 , so
Xa2 = 5

C is the optimal solution. The problem is reformu-
lated as follows:

min Xa1cost(a1) +
5

C
cost(a2) (4)

s.t. 1 +Xa1 = C (5)
Xa1 ≥ 0, C > 0. (6)

Since C = 1 + Xa1 and cost(a1) = cost(a2) = 1, the ob-
jective is represented as Xa1cost(a1) + 5

1+Xa1
cost(a2) =

Xa1 + 5
1+Xa1

. Here the objective is a function of single vari-
able Xa1 , so we can compute the minimum using a basic
method in calculus. By differentiating the objective, we get
the derivative 1− 5

(1+Xa1 )
2 . The objective takes an extreme

value when the derivative is zero, i.e., Xa1 =
√

5 − 1 and
Xa1 = −

√
5 − 1. When Xa1 > 0, the derivative is positive

if Xa1 >
√

5 − 1 and negative if Xa2 <
√

5 − 1. There-
fore, the minimum value is achieved when Xa1 =

√
5 − 1.
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Substituting the equations, C =
√

5 and Xa2 =
√

5. Thus,
the lower bound on the cost to achieve the goal condition is
2
√

5− 1, which is better than the one estimated in Π1
OVC.

Second-Order Simple Effects
In the example, we compute a lower bound to achieve a nu-
meric condition using a linear effect in a closed-form. The
solution of the continuous relaxation of the non-linear opti-
mization problem (1)–(3) is possible only because the linear
effect can be changed at most by a constant, resulting in a
single quadratic inequality (2). Focusing on this point, we
define simple variables: as those that are changed only by
constants.

Definition 1 (Simple Variable). We say that a variable v is
simple if it can be changed by only simple effects. The set of
all simple variables of the task Π is denoted by N1.

We define a type of linear effect that use only simple vari-
ables.

Definition 2 (Second-Order Simple Effects (SOSE)). The
effect v += ξ ∈ numc

1(a) of action a is a SOSE if

1. all variables in ξ are simple variables; and
2. all actions that change variables in ξ do not change v.

The set of all SOSE of action a is denoted by num2(a).

In Ex. 1, variable x is simple since x is only changed by
action a1 with effect x += 1. Variable y is not simple as a2
has effect y += 3x, which is a SOSE since x is a simple
variable and a1 does not have effects on y.

The second condition in Def. 2 is necessary for comput-
ing the bound as in the motivating example; in the example,
we build Constraint (2) based on the idea that we should ap-
ply a1 first to increase x and then apply a2 to increase y to
achieve condition 2y ≥ 30. Now, suppose that a1 had effect
y += z and a2 had effect z += 3. We could no longer de-
termine which of a1 or a2 to apply first. Thus, we exclude
such a case by imposing the second condition to a SOSE.

For action a, we divide its numeric effects into three sets
num(a) = num1(a)∪num2(a)∪numc

1,2(a), where num1(a)
is the set of simple effects of the form v += c, num2(a) is
the set of SOSE of the form v += ξ, and numc

1,2(a) =
num(a) \ (num1(a) ∪ num2(a)) are all other effects.

A Relaxation Preserving SOSE
In the first-order delete-relaxation, we relaxed all linear ef-
fects by conditionally adding an infinity to the variable af-
fected by a positive linear formula. Now, we differenti-
ate between SOSE and non-SOSE linear effects. We de-
fine the second-order delete-relaxation of ΠOVC, Π2

OVC =

〈F ,N 2,A2, s2I , G̃〉 where N 2 = N ∪ N c,2. In N c,2, we
introduce auxiliary variables representing SOSE in addition
to variables in N c,1. Note that for a SOSE on an original
variable, i.e., v += ξ where v ∈ N , the corresponding aux-
iliary variables are already introduced in N c,1. Therefore,
we introduce uξ, u−ξ ∈ N c,2 for SOSE u += ξ where
u ∈ N c,1 is an auxiliary variable. Since variables in SOSE
ξ are changed by only simple effects, uξ is a simple variable
and changed by only simple effects. Thus, we do not add

auxiliary variables uφ, u−φ for linear effect uξ += φ since
such an effect does not exist.

For each a ∈ A, we introduce a2 ∈ A2, where pre(a2) =
pre(ã), in which original numeric conditions are replaced
with the OVC versions, add(a2) = add(a), del(a2) = ∅, and
cost(a2) = cost(a). Similarly to A1, simple effects on aux-
iliary variables are defined as the same as OVC, but negative
effects are removed. We divide the linear effects into three
cases: SOSE, non-SOSE, and auxiliary variables.

1. Let v += ξ ∈ num2(ã) be a SOSE. To assure that the
value of v can only grow we replace this effect by v +=
uξ with condition uξ > 0. We also have v += u−ξ with
condition u−ξ > 0, which is also a SOSE. The set of all
numeric conditions is now defined as Ψ2 = Ψ1 ∪ {uξ >
0, u−ξ > 0 | u += ξ ∈ num2(ã), u ∈ N c,1, ã ∈ Ã}.

2. In the non-SOSE case, v += ξ ∈ numc
1,2(a), where v

is an original variable, as in A1, we add the conditional
effect v +=∞, in the case when uξ > 0.

3. By construction of OVC, each auxiliary variable uϕ =∑
v∈N w

ϕ
v v is affected by action a only if there is an

original variable v ∈ N that is affected by action a and
wϕv 6= 0. Let v += ξv ∈ numc

1(a) be such a linear effect.
For each auxiliary variable uϕ the effect

uϕ +=
∑

v+=ξv∈numc1(a)

wϕv ξv ∈ numc
1,2(ã),

is replaced by the effect uϕ +=∞ with condition uξv >
0, if wϕv > 0. In the case when wϕv < 0 the same effect is
replaced by uϕ +=∞ with condition u−ξv > 0.

Example 3. Using the task Π from Ex. 1, A2 is as follows:
A2 cond eff
a2
1 ∅ {x += 1, u3x += 3, u6x += 6}

a2
2

{u3x > 0} {y += u3x}
{u6x > 0} {u2y += u6x}

Since x is a simple variable, effects y += 3x and u2y +=
6x are SOSE and converted to y += u3x and u2y += u6x,
where u6x is an additional auxiliary variable. The set of aux-
iliary variables is N c,2 = {u2y, u3x, u−3x, u6x, u−6x}.

A Lower Bound on SOSE
Our goal now is to estimate from below the optimal cost
of achieving a numeric fact using first- and second-order
effects in a second-order delete-relaxation. To this end, in
Thm. 2 we introduce a set of local minima and show that
one of these local minima constitutes a global minimum that
can be used as a lower bound estimate.

We start with introducing an inequality that describes the
upper bound on the value that a numeric variable can achieve
given a predetermined set of actions. This inequality corre-
sponds to Constraint (2) in the example. Note also that this
inequality reasons about the best possible order of applica-
tion of a given set of actions while ignoring the precondi-
tions of these actions.
Lemma 1. Let Π2

OVC be the second-order relaxation of an
LT, with the set of actions A2. Suppose that numeric condi-
tion v ≥ w0 is achieved by sequence of actions π from state
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s, and v is changed by only simple effects and SOSE. By Xa

we denote the number of times action a appears in π. Then,

w0 ≤ s[v] +
∑

a∈π:v+=cav
∈num1(a)

cavXa+

∑
a∈π:v+=u
∈num2(a)

Xa

s[u] +
∑

â∈π:u+=câu
∈num1(â)

câuXâ

 .

(7)

Proof Sketch: We obtain (7) by concentrating only on action
effects that either affect the variable v directly or via SOSE.
We ignore preconditions, and recall that for an effect v +=
u to be SOSE all actions that change u cannot change v. We
reorder actions with the simple effects and SOSE that affect
the variable v in a manner that maximizes its resulting value.
The full proof by induction is provided in the SM.

The intuition for the claim is as follows: since v is affected
only by simple effects or SOSE, an order of application that
yields the maximal value for v is the following: increase the
simple variables in N 2

1 that affect v via SOSE, and then ap-
ply the actions that affect v directly. �

We now prove the main theoretical result of this paper:
a lower bound on the cost of achieving a numeric condition
via simple effects and SOSE. Intuitively, we obtain the lower
bound by solving an optimization problem similar to (1)–
(3). However, since the optimization problem we deal with
is not linear (cf. Constraint (7)), we compute three sets of
local minima on the cost of achieving a numeric fact and
then theoretically show that the global minimum must lie
within one of these sets. The size of these sets is at most
quadratic in the number of actions involved. In the following
subsection, we show how to exploit this global minimum in
the LM-cut heuristic.
Theorem 2. Let Π2

OVC be the second-order relaxation of an
LT, with the set of actions A2. Suppose that numeric condi-
tion v ≥ w0 is achieved from state s, and v is changed by
only simple effects and SOSE. The cost to achieve v ≥ w0 is
bounded from below by inf M1 ∪M2 ∪M3, where

M1 = {w0 − s[v]

c
cost(a) | v += c ∈ num1(a), a ∈ A2},

M2 = {w0 − s[v]

c+ s[u]
cost(a) |

v += u+ c ∈ num(a), s[u] > 0, a ∈ A2},
M3 = {mu

âu,a(s, v ≥ w0)cost(âu)+

mv
âu,a(s, v ≥ w0)cost(a) |

v += u ∈ num2(a), u += c ∈ num1(âu),

mu
âu,a(s, v ≥ w0) > 0, a ∈ A2}.

We specify the constants mu
âu,a

(s, v ≥ w0) and
mv
âu,a

(s, v ≥ w0) in the next subsection.
Proof Sketch: To obtain the required lower bound we use
Lem. 1 to formulate the following optimization problem:

min
Xa≥0:a∈A2

f =
∑
a∈A2

Xacost(a),

under Constraint (7) in Lem. 1 changed to equality assum-
ing that sequence of action π achieves v ≥ w0. Note that
Constraint (7) is the only constraint that is not of the form
Xa ≥ 0, and the change is valid, since a linear function
achieves its extrema on the boundaries of this set. This ob-
jective function corresponds to (1) in the example.

Since cost(a) ≥ 0 for each a ∈ A2 we can setXa = 0 for
each a that does not appear in the constraint. To solve this
optimization we use Lagrange multipliers. Unfortunately,
the direct application would require us a large number of
cases. Thus, to ease the proof we divide it into two sub-
problems. First, using Lagrange multipliers, we evaluate the
minimal cost of obtaining the value Cu for a simple variable
u

Cu = s[u] +
∑

â∈π:u+=câu
∈num1(â)

câuXâ

where Cu > s[u]. Intuitively, since u is a simple variable,
the minimal cost to achieve Cu is obtained by an action that
minimizes the ratio cost(âu)

câuu
, and constitutes

Cu − s[u]

câuu
cost(âu) = mâu(s, u ≥ Cu)cost(âu).

Then, we can declare Cu to be a variable that substitutes the
expression s[u] +

∑
â∈π:u+=câu
∈num1(â)

câuXâ, and once again use

Lagrange multipliers to compute the cost of the following
minimization problem

min
Xa≥0,Cu≥s[u]

Xacost(a) +
Cu − s[u]

câuu
cost(âu),

s.t. w0 − s[v] = Xa(ca + Cu),

for each action a with SOSE v += u + ca ∈ num(a). The
solutions to these problems are captured by the set M3, and
constitute local minima for pairs of simple and SOSE actions
that achieve ψ : v ≥ w0. To obtain the global optimum we
minimize over M3 together with M1 and M2, the potential
minima on the cost of achieving ψ using only simple effects
and only SOSE (without anything affecting the simple vari-
ables), respectively. �

LM-Cut for SOSE
Since the actions in A2 also employ conditional effects, we
once again use the decomposition method proposed by Key-
der, Hoffmann, and Haslum. We introduce A2

JG. As with
A1

JG, we assume that decomposed conditional effects and the
core-actions share label and cost in A2

JG.
Let ψ : v ≥ w0 be a numeric condition. Let a ∈ supp(ψ)

be an action that have SOSE v += u ∈ num2(a) and simple
effect v += cv ∈ num1(a) where cv ≥ 0. Let the set A2

u
be the set of all actions that have a simple effects on u, i.e.,
âu ∈ A2

u iff there is u += cu ∈ num1(âu) such that cu > 0.
Pairs of such actions are denoted 〈âu, a〉, and the second-
order supporters of a numeric condition ψ are given by

supp2(ψ) = {〈âu, a〉 | v += u ∈ num2(a), âu ∈ A2
u}.
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With Thm. 2, we can now extend the definition of ma(s, ψ)
for A2

JG, where ψ is a fact. As in the first-order delete-
relaxation, intuitively, ma(s, ψ) is the number of applica-
tions of action a to achieve ψ from state s. Similarly, to
achieve numeric condition ψ : v ≥ w0, action âu with sim-
ple effect u += cu is first applied mu

âu,a
(s, ψ) times to in-

crease the value of simple variable u, and then action a with
SOSE v += u is applied mv

âu,a
(s, ψ) times.

Definition 3 (Second-Order Action Multiplicator). Given
state s, fact ψ and an action a, the multiplicator ma(s, ψ)
stays the same for propositional and simple numeric effects.
Thus, assume that condition ψ : v ≥ w0 can be achieved by
the SOSE v += u ∈ num2(a), where the full effect of a on
v is v += u + c ∈ num(a). We can extend the definition of
action multiplicator by

ma(s, ψ) =

{
w0−s[v]

c s[u] ≤ 0, c > 0
w0−s[v]
c+s[u] s[u] > 0, c ≥ 0

and supp(v ≥ w0) = {a ∈ A2 | v += c ∈ num1(a)} ∪
{a ∈ A2 | v += u+ c ∈ num2(a), s[u] > 0}. To obtain the
lower bound on achieving v ≥ w0, we also need to evaluate
the action pairs 〈âu, a〉, where a has the SOSE v += u ∈
num2(a), and âu ∈ A2

u has the simple effect u += cu ∈
num1(âu). In this case, the bound

mu
âu,a(s, ψ)cost(âu) + mv

âu,a(s, ψ)cost(a) =

2

√
(w0 − s[v])cost(a)cost(âu)

cu
− c+ s[u]

cu
cost(âu)

is described via two multiplicators

mu
âu,a(s, ψ) =

√
(w0 − s[v])cost(a)

cucost(âu)
− c+ s[u]

cu
,

mv
âu,a(s, ψ) =

√
(w0 − s[v])cost(âu)

cucost(a)
.

We use mu
âu,a

(s, ψ) = 0 if cost(âu) = 0 and mv
âu,a

(s, ψ) =

0 if cost(a) = 0.
Note that we use mv

âu,a
(s, ψ) = 1 if cost(âu) = 0 in

practice since a must be applied at least once. We also use
mu
âu,a

(s, ψ) = 1 if cost(a) = 0 and s[u] = 0 in prac-
tice since âu must be applied at least once. To complete
the adjustments to obtain the LM-cut heuristic, we define an
extension of the function to choose the representative pre-
conditions (pcf’) and the corresponding JG. We start with
the extension of hmax

cri (s, ψ) for SOSE. As in the original
hmax

cri (s, ψ), this heuristic for a given fact corresponds to its
distance from the n∅ in the JG. Formally, it is described as
recursive equations.
Definition 4 (Precondition Choice Heuristic). As in all other
max heuristics, we set hmax

cri,2(s, ψ) = 0 for s |= ψ, and
hmax

cri,2(s, F ) = maxψ∈F h
max
cri,2(s, ψ) for F ⊆ F ∪ Ψ2. For

other conditions ψ ∈ F ∪ Ψ2 we define hmax
cri,2(s, ψ) =

min{h̄max
cri,1(s, ψ), h̄max

cri,2(s, ψ)}. Where, we take the minimum
over the simple version of the hmax

cri heuristic
h̄max

cri,1(s, ψ) = min
a∈supp(ψ)

hmax
cri,2(s, pre(a)) + ma(s, ψ)cost(a),

and the SOSE achievers, if they exist. I.e., for ψ : v ≥ w0

h̄max
cri,2(s, ψ) =

min
〈âu,a〉∈supp2(ψ):muâu,a(s,ψ)>0

hmax
cri,2(s, pre(a) ∪ pre(âu))

+ mu
âu,a(s, ψ)cost(âu) + mv

âu,a(s, ψ)cost(a).

If the formula is undefined for ψ we set h̄max
cri,2(s, ψ) =∞.

For each action pair 〈âu, a〉 ∈ supp2(ψ) we define the
precondition choice function as the union of preconditions

pcf(s, âu, a) ∈ arg max
ψ∈pre(âu)∪pre(a)

hmax
cri,2 (s, ψ).

We can finally define the JG required for the cut estimates.
Definition 5 (Justification Graph). In the justification graph
(JG), for each numeric condition ψ ∈ Ψ2, we create node
nψ . There is an edge between each two nψ and nψ′ , if

{(nψ, nψ′ ; 〈a〉) : a ∈ supp(ψ′), ψ = pcf(s, a)}, or

{(nψ, nψ′ ; 〈âu, a〉) : 〈âu, a〉 ∈ supp2(ψ′)

ψ = pcf(s, âu, a),mu
âu,a(s, ψ′) > 0}.

The weight function W is defined as
(nψ, nψ′ ; 〈a〉) 7→ma(s, ψ) · cost(a)

(nψ, nψ′ ; 〈âu, a〉) 7→mu
âu,a(s, ψ) · cost(âu)

+ mv
âu,a(s, ψ) · cost(a).

For each edge we also define the function lbl that maps
edges to their corresponding labels (nψ, nψ′ ; 〈x〉) 7→ 〈x〉,
where each label can be seen as a set of either one or two ac-
tion labels. By abuse of notation, we say a ∈ lbl(L) if there
exists edge e in L such that a ∈ lbl(e). Given the JG, we can
now show that each cut in the graph that separates the ver-
tices n∅ and ng where g ∈ G corresponds to an admissible
estimate of an optimal plan.
Theorem 3. Let ΠOVC be the OVC of a solvable LT with a
non-zero optimal cost. Let L be a directed cut in a JG of
the second-order delete-relaxation Π2

OVC. For action a in L,
let the minimum weight of edges including a be WL(a) =
mine∈L:∃a∈lbl(e) W(e) and cost1 be defined as

cost1(a) =

{
W(L)
WL(a)

cost(a) if a ∈ lbl(L)

0 otherwise.

Let Π2
OVC,1 be a copy of Π2

OVC except that action a has cost
cost1(a). The weight of the cut W(L) = mine∈L W(e) is
admissible for Π2

OVC,1.
Proof Sketch: Using Thm. 2, we show that

min


min

(nψ,nψ′ ;a)∈L
ma(s, ψ′) · cost1(a),

min
(nψ,nψ′ ;〈âu,a〉)∈L

{
mu
âu,a(s, ψ′) · cost1(âu)

+mv
âu,a(s, ψ) · cost1(a)

}


is a lower bound on the optimal cost. Then, we show that
W(L) is less than or equal to the above lower bound. The in-
equalities follow directly from the definitions (see the SM).
�

We name the resulting heuristic hLM-cut
2 . By Thm. 1 in

Kuroiwa et al. (2021) we have the admissibility, and by Cor.
1 in the same source we know that it can be computed in
polynomial time.
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hblind hC,prop
IP hirmax hLM-cut

1 hLM-cut
2

All SOSE C T E C T E C T E C T E C T E
FO-COUNT (20) 4 5.0 91020 4 82.2 199864 4 10.6 67523 4 4.5 41250 4 2.1 9199
FO-COUNT-INV (20) 3 2.8 66830 3 43.2 131330 3 6.9 62426 3 3.4 43553 4 0.6 3464
FO-COUNT-RND (60) 14 9.4 145186 14 182.1 344968 14 27.3 150918 14 7.3 59166 14 0.4 1927
FO-SAILING (20) 2 61.3 2985973 1 828.9 2985973 2 101.6 2882949 2 80.6 2783270 4 44.6 1166002
FO-FARMLAND (50) 14 5.8 280507 12 96.2 439048 14 12.3 280501 14 10.3 280441 25 0.2 1018
Some SOSE
LIN-CAR-EXP (34) 26 31.7 3368599 25 433.2 3368599 27 46.1 2796052 27 38.3 2795713 27 45.2 2787432
LIN-CAR-EXP-UNIT (34) 23 25.1 2713351 21 351.0 2922774 25 38.4 2207347 25 35.5 2081447 29 34.9 1842544
No SOSE
TPP-METRIC (40) 5 1.9 40406 5 86.5 50564 5 2.7 23531 5 7.1 11256 5 8.0 11275
ROVER-METRIC (10) 4 4.4 154592 6 0.8 12 4 0.7 3147 6 0.0 30 6 0.0 30
ZENOTRAVEL-LINEAR (10) 4 17.5 393248 7 8.3 94 4 3.2 7726 9 0.1 114 9 0.1 114
LIN-CAR-POLY (34) 13 12.5 1749300 13 225.8 1749300 13 24.7 1508975 14 16.7 1478517 14 17.6 1478517
LIN-CAR-POLY-UNIT (34) 13 12.9 1776927 13 246.5 1833359 14 27.1 1566398 14 32.6 1544265 14 32.5 1544265
TOTAL (366) 125 - - 124 - - 129 - - 137 - - 155 - -

Table 1: Experimental comparison of the admissible heuristics for linear numeric planning. ‘C’ is the coverage, ‘T’ is the
search time in seconds, and ‘E’ is the number of expansions. ‘T’ and ‘E’ are averaged over instances solved by all methods.

Experimental Evaluation
We experimentally compare hLM-cut

1 and hLM-cut
2 . We use

the blind heuristic (hblind), the repetition-based max heuris-
tic (hirmax) (Aldinger and Nebel 2017), and the delete-
relaxation heuristic ignoring numeric variables (hC,prop

IP ) (Pi-
acentini et al. 2018b,a) as baselines. hblind returns 0 if a state
is a goal node and mina∈A cost(a) otherwise. hirmax is ad-
missible in general numeric planning including linear nu-
meric planning. These heuristics do not exploit particular
structures of linear numeric planning, so our LM-cut heuris-
tics are the first admissible heuristics designed for linear nu-
meric planning. We execute A* (Hart, Nilsson, and Raphael
1968) with these heuristics and evaluate the performance.

We run the experiments on an Intel Xeon Gold 6148 pro-
cessor with a 30 minute time and 4 GB memory limit using
GNU parallel (Tange 2011). The heuristics are implemented
in Numeric Fast Downward (Aldinger and Nebel 2017) us-
ing C++11 with GCC 9.2, Python 2.7.5, and CPLEX 20.1.0.
For hLM-cut

1 and hLM-cut
2 , we use redundant constraints in the

same way as Scala et al. (2016a).
FO-COUNT, FO-COUNT-INV, FO-COUNT-RND, FO-

SAILING, and FO-FARMLAND are the extensions of the
SCT domains, where all linear effects are SOSE (Li et al.
2018). Since action costs depend on states in IPC domain
TPP-METRIC, which has no SOSE, we use its unit-cost ver-
sion. ROVER-METRIC and ZENOTRAVEL-LINEAR are in-
troduced by Leofante et al. (2020) and also have no SOSE.
The domains prefixed by LIN-CAR- are compiled from
PDDL+ domain LIN-CAR (Fox and Long 2006) using a re-
cently proposed method (Percassi, Scala, and Vallati 2021),
the details of which are described in the SM. Some linear
effects in LIN-CAR-EXP are SOSE, but cost(âu) = 0 for
each 〈âu, a〉 ∈ supp2(ψ), which results in mv

âu,a
(s, ψ) = 1

and does not make much difference between hLM-cut
1 and

hLM-cut
2 . Thus, we also use the unit cost versions suffixed by

-UNIT.
We compare coverage, the search time, and the number

of expansions in Table 1. hLM-cut
2 has the highest coverage in

all domains. In the domains with SOSE, hLM-cut
2 solves more

instances than hLM-cut
1 and substantially reduces the search

time and the number of expansions, which confirms that
our approach successfully exploits the second-order struc-
ture. In the domains without SOSE, compared to the base-
lines, hLM-cut

1 solves more instances in two domains and re-
duces the number of expansions in three domains. This re-
sult shows the benefit of using the LM-cut in linear numeric
planning even without SOSE. Note that hLM-cut

2 and hLM-cut
1

are theoretically the same in these domains and the differ-
ences come from the randomness of tie-breaking. When goal
conditions are all numeric, hC,prop

IP always returns zero while
hblind returns the minimum action-cost for non-goal states,
which is why hC,prop

IP expands more states than hblind in some
domains.

Conclusion
Extending the LM-cut heuristic, which is used in classical
planning and numeric planning with simple conditions, we
proposed the first admissible heuristics for linear numeric
planning. In the experiment, both variants perform better
than state-of-the-art baselines, and the one using the second-
order structure of linear effects has the higher coverage. The-
oretically, our heuristics estimate the optimal costs in the two
different relaxations of linear numeric planning. Developing
tighter heuristics based on the relaxations is a possible di-
rection for future work.
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