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Abstract

Classical planning aims to find a sequence of actions that
guarantees goal achievement from an initial state. The
representative framework of classical planning is based
on propositional logic. Due to the weak expressiveness of
propositional logic, many applications of interest cannot be
formalized as classical planning problems. Some extensions
such as numeric planning and generalized planning (GP) are
therefore proposed. Qualitative Numeric Planning (QNP)
is a decidable class of numeric and generalized extensions
and serves as a numeric abstraction of GP. However, QNP is
still far from being perfect and needs further improvement.
In this paper, we introduce another generalized version
of numeric planning, namely Generalized Linear Integer
Numeric planning (GLINP), which is a more suitable
abstract framework of GP than QNP. In addition, we develop
a general framework to synthesize solutions to GLINP
problems. Finally, we evaluate our approach on a number of
benchmarks, and experimental results justify the feasibility
and effectiveness of our proposed approach.

Introduction
Along the AI history, the planning community has focused
on classical planning that identifies a sequence of actions
that guarantees goal achievement from an initial state. The
representative framework of classical planning is based on
propositional logic. Due to the limited expressiveness of
propositional logic, many applications of interest cannot
be formalized as a classical planning problem. Therefore,
some extensions to classical planning are proposed. One
extension is numeric planning (Hoffmann 2003; Scala,
Haslum, and Thiébaux 2016), which involves not only
propositional variables but also numeric variables. Another
extension is generalized planning (GP) (Levesque 2005;
Srivastava, Immerman, and Zilberstein 2011), which solves
planning problems for possibly infinitely many initial states
rather than a single state. However, the above two extensions
are in general undecidable (Helmert 2002; Levesque 2005).

Srivastava et al. (2011) proposed a decidable class of
numeric and generalized extensions to classical planning,
namely qualitative numeric planning (QNP). (1) any formula
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is a simple numeric formula, i.e., a Boolean combination of
simple numeric literals that are of the form v > 0 or v = 0;
and (2) the value of variables is increased or decreased by
an arbitrary positive amount. Under these two restrictions,
the state space of a QNP problem can be compressed into a
finite one with size 2|V | where |V | is the number of numeric
variables, and thus QNP is decidable, more precisely,
EXPTIME-Complete (Bonet and Geffner 2020).

In general, GP is formalized by a representative frame-
work based on first-order logic (sometime involves the
transitive closure) (Hu and Levesque 2010; Srivastava,
Immerman, and Zilberstein 2011). The formalization there-
fore contains not only various numeric variables but also
a number of predicates. Hu and Levesque (2010) observed
that the solutions to many GP problems are to iteratively
execute a unified plan for similar objects satisfying the same
property. This was also observed in other literature (Winner
and Veloso 2003; Srivastava, Immerman, and Zilberstein
2011; Illanes and McIlraith 2019). The concept language
is able to capture the property of various objects. Although
QNPs do not allow predicate symbols, many GP problem
can be reformulated as a QNP problem by exploiting
concept language (Bonet and Geffner 2018).

As an abstract framework for GP, QNPs however have
several flaws. (1) QNPs do not support conditional effects
and only allow simple numeric formulas. As a result, QNPs
are less expressive so that they cannot formalize some
domains. (2) The solution to QNPs is a policy that is in fact
a loop structure of several conditional statements. Some
useful and skillful loop structures are hidden in a policy
and it is difficult to capture the intuition of the policy. (3)
The definition of the termination property of policies is
unintuitive and difficult to understand, requiring the notion
of fairness, that is, infinite occurrences of an action must
result in infinite occurrences of each one of its possible
(non-deterministic) outcomes.

To address the above deficits, we propose a generalized
version of numeric planning, namely generalized linear in-
teger numeric planning (GLINP), with the following merits.
(1) The initial and goal states and actions are represented in
linear integer arithmetic. The effects of actions are allowed
to be conditional. Thus, GLINP formalizes a wider range
of planning domains than QNP. (2) To capture the notion of
solutions to GLINP, we introduce an algorithmic-like struc-
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ture, namely planning programs, in which loop structures
explicitly occur. In addition, planning programs turn out to
be a more compact form of solutions than policies (Lang and
Zanuttini 2013). (3) The semantics of planning programs
is defined in terms of action sequences. Hence, we obtain
a clear definition of the termination property of planning
programs via the finiteness property of the action sequence.

In addition, we develop an inductive approach to
synthesizing planning programs. It firstly generates a rep-
resentative set of initial states together with their sequential
plans. Based on regular expression inference, it then infers a
skeleton of the planning programs that is a planning program
without conditions of branch and loop structures. Finally,
the conditions are completed according to the trace of each
state-plan pair. We further evaluate our approach on several
benchmarks originated from generalized planning and qual-
itative numeric planning. The experimental results justify
the feasibility and effectiveness of the proposed approach.

Preliminaries
In this section, we first introduce the concepts of linear
integer arithmetic with propositional logic (LIAP), and
regular expressions (regexes).

LIAP Let B be the set of Booleans constants {>,⊥} and Z
is the set of integers. Throughout this paper, we fix a set P
of propositional variables and a set V of numeric variables.
The sets of terms (Term) and formulas (Form) of LIAP are
defined recursively as:

e ∈ Term :: c | v | e+ e | e− e
φ ∈ Form :: > | ⊥ | p | e = e | e < e | ¬φ | φ ∧ φ

where c ∈ Z and v ∈ V .
The formula φ1 ∨ φ2 is the shorthand for ¬(¬φ1 ∧ ¬φ2),

e1 ≤ e2 for e1 = e2 ∨ e1 < e2, and e1 → e2 for
¬e1 ∨ e2. The length |φ| of a formula φ is the number of
occurrences of Boolean constants, integers, propositional
variables, numeric variables, arithmetic operators and
logical connectives in φ.

A state s of LIAP is a pair of mappings P → B and
V → Z. The notions v(s) and p(s) denote the value of nu-
meric variables v and propositional variables p in s, respec-
tively. Given a state s, we evaluate a term e into an integer
e(s) to which the expression simplifies when substituting
every numeric variable v with their respective value v(s).
The Boolean value φ(s) of a formula φ can be determined in
a similar way. A state s satisfies a formula φ, if φ(s) = >.
A formula φ entails another one ψ, denoted by φ |= ψ, if for
every state s satisfying φ, ψ(s) = >. A propositional vari-
able p is determined by a formula φ, if φ |= p or φ |= ¬p. A
numeric variable v has a maximum c under φ, if φ |= v ≤ c
and for every integer c′ s.t. v ≤ c′, we have c ≤ c′.
Regexes A string is a finite sequence of characters over an
alphabet ∆. We use |π| for the length of π and πi for the i-th
character of π. A substring of π is πiπi+1 · · ·πj , denoted by
πji , where 1 ≤ i ≤ j ≤ |π|. The substring πi1 is a prefix of
π while π|π|i is a suffix. A subsequence of π is πi1πi2 · · ·πij
where 1 ≤ i1 < i2 < · · · < ij ≤ |π|. We remark that a

substring is a subsequence, but not vice versa. For example,
aba is a subsequence of abbba, but it is not a substring.

The set of regexes (Reg) is recursively defined as:

r ∈ Reg :: ε | a | r ◦ r | (r|r) | r∗

where ε denotes the empty string and a ∈ ∆.
The regex r1 ◦ r2 is called a concatenation regex, r1|r2

an alternation regex, and r∗ an iteration regex. We say r is
the generator of an iteration regex r∗.

The set of subregexes SubReg(r) of a regex r is
recursively defined as:

• SubReg(ε) = {ε} and SubReg(a) = {a} where a ∈ ∆;
• SubReg(r1◦r2) = {r1◦r2}∪SubReg(r1)∪SubReg(r2);
• SubReg(r1|r2) = {r1|r2} ∪ SubReg(r1) ∪ SubReg(r2);
• SubReg(r∗1) = {r∗1} ∪ SubReg(r1).

The set of strings L(r) accepted by a regex r is
recursively defined as:

• L(ε) = {ε} and L(a) = {a} where a ∈ ∆;
• L(r1 ◦ r2) = {s1s2 | s1 ∈ L(r1) and s2 ∈ L(r2)};
• L(r1|r2) = L(r1) ∪ L(r2);
• L(r∗1) = {s1 · · · sn | n ≥ 1 and s1, · · · , sn ∈ L(r1)}.

Generalized Linear Integer Numeric Planning
In this section, we first introduce concepts on Linear
Integer Numeric Planning (LINP) formalized in LIAP, and
then provide the definition of GLINP, and finally give an
algorithmic-like definition of solutions to GLINP problems.

Definition 1. A LINP domain D is a tuple 〈P ,V,A〉 where

• P: a finite set of propositional variables;
• V: a finite set of numeric variables;
• A: a finite set of actions defined by a pair 〈pre, eff〉

where pre ∈ Form denotes the precondition and eff is
an finite set of propositional and numeric effects.

A propositional effect is a tuple 〈φ, p, ψ〉 where p ∈ P
and φ, ψ ∈ Form. Intuitively, it means that if φ holds in
a state s, then the Boolean value of p becomes ψ(s) after
performing the action; otherwise, it remains unchanged. A
numeric effect is a tuple 〈φ, v, e〉 where φ ∈ Form, v ∈ V
and e ∈ Term. The meaning of numeric effects is similar to
that of propositional effect. We require that every action is
not self-contradictory, that is, it is impossible that there is
a propositional variable p (resp. numeric variable v) s.t. in
a state s, there are two effects e and e′ that both occur and
the value of p (resp. v) following e is different from e′. An
effect is unconditional, if φ = >.

An action a is executable in a state s, if s |= pre(a). The
successor state of applying an action a over s is written as
τ(s, a), which results from s by mapping p to φ(s) (i.e.,
p(τ(s, a)) = φ(s)) for every 〈φ, p, ψ〉 ∈ eff(a), and by
mapping v to e(s) (i.e., v(τ(s, a)) = e(s)) for all 〈φ, v, e〉 ∈
eff(a). We remark that τ(s, a) is well-defined even if a is
not executable in s. The resulting state of performing a finite
sequence [a1, · · · , an] of actions on s is recursively de-
fined by τ(s, [a1, · · · , an]) = τ(τ(s, [a1, · · · , an−1]), an)
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and τ(s, ε) = s where ε is an empty sequence. A se-
quence [a1, a2, · · · ] of actions is executable in a state s, if
s |= pre(a1) and τ(s, [a1 · · · ai]) |= pre(ai+1) for i ≥ 1.

A LINP problem is defined as a tuple 〈D, sI ,G〉 where
D is an LINP domain, sI is an initial state, and G ∈ Form
denotes a set of goal states. A solution to an LINP problem,
namely sequential plan, is a finite sequence [a1, · · · , an]
of actions such that performing these actions one by one
from sI leads to a goal state. More formally, [a1, · · · , an] is
executable in s, and τ(s, [a1, · · · , an]) |= G. We say (s, π)
a state-plan pair where π is a sequential plan for s. Given
a set Υ of state-plan pairs, we use S(Υ) for the set of states
and Π(Υ) for the set of plans.

Generalized LINP (GLINP) problems are an extension
to LINP problems that involve a possibly infinite number of
initial states which are represented by a LIAP-formula I.

Definition 2. A generalized LINP (GLINP) problem Σ is a
tuple 〈D, I,G〉, where

• D: an LINP domain 〈P ,V,A〉;
• I ∈ Form: a formula denoting a set of initial states;
• G ∈ Form: a formula denoting a set of goal states.

Each LINP problem 〈D, sI ,G〉 is an instance of an
GLINP problem 〈D, I,G〉 where sI is an initial state, that
is, sI |= I. It is easily verified that the existence of solutions
to GLINP is undecidable from the undecidability result for
LINP problems (Helmert 2002).

We then illustrate the GLINP problem with the Delivery
problem (Srivastava, Immerman, and Zilberstein 2011).

Example 1. A truck can load and unload a package, and
move to a dock or a company. Initially, all packages are at
the dock. The truck does not carry any package and its lo-
cation is uncertain. The goal of the truck is to first transport
all packages to the company, and then go to the dock.

The propositional variable atd denotes the truck is at the
dock. The numeric variable numd, numc and numt rep-
resents the number of packages at the dock, at the company
and on the truck, respectively. The numeric variable cap
denotes the capacity of the truck. The actions moved, loadd
and unloadd mean the truck moves to the dock, loads and
unloads a package at the dock, respectively. The meaning
of actions movec, loadc and unloadc are similar. Due to
space limit, we only give the preconditions and effects of
the actions moved, loadd and unloadd.

• P : {atd};
• V : {numd, numc, numt, cap};
• A : {moved,movec, loadd, unloadd, loadc, unloadc};
• pre(moved) : ¬atd;
• eff(moved) : {〈>, atd,>〉};
• pre(loadd) : atd ∧ numd > 0 ∧ numt < cap;
• eff(loadd) : {〈>, numd, numd − 1〉,

〈>, numt, numt + 1〉};
• pre(unloadd) : atd ∧ numt > 0;
• eff(unloadd) : {〈>, numd, numd + 1〉,

〈>, numt, numt − 1〉};
• I : numd > 0 ∧ numc = 0 ∧ numt = 0 ∧ cap > 0;
• G : atd ∧ numd = 0 ∧ numt = 0.

The solutions to GLINP problems are planning programs.
Definition 3. The set of planning programs (Prog) for an
LINP domain D = 〈P ,V,A〉 is recursively defined by

δ ∈ Prog :: ε | a | δ; δ | if φ then δ else δ fi | while φ do δ od

where a ∈ A and φ ∈ Form.
The construct δ1; δ2 is the sequential structure;

if φ then δ1 else δ2 fi is the branch structure and
while φ do δ od is the loop structure. We say φ is the condi-
tion of the branch structure if φ then δ1 else δ2 fi. Likewise,
φ is the condition of the loop structure while φ do δ od.
Definition 4. Let δ be a planning program. The length |δ|
of δ is recursively defined as:
• |ε| = 0 and |a| = 1 where a ∈ A;
• |δ1; δ2| = |δ1|+ |δ2|+ 1;
• |if φ then δ1 else δ2 fi| = |φ|+ |δ1|+ |δ2|+ 1;
• |while φ do δ1 od| = |φ|+ |δ1|+ 1.

where |φ| is the length of φ.
Definition 5. Let δ be a planning program. The depth #(δ)
of δ is recursively defined as:
• #(ε) = 0 and #(a) = 0 where a ∈ A;
• #(δ1; δ2) = max(#(δ1),#(δ2));
• #(if φ then δ1 else δ2 fi) = max(#(δ1),#(δ2));
• #(while φ do δ1 od) = 1 + #(δ1).

A loop structure is simple if its depth equals to 1; other-
wise, it is nested.

The action sequence of executing a program δ in a state
s is defined as follows:
Definition 6. Let D = 〈P ,V,A〉 be an LINP domain, δ a
program for D and s a state. The action sequence Θ(s, δ) of
executing δ in s is recursively defined as:
• Θ(s, ε) = ε.
• Θ(s, a) = a where a ∈ A.
• Θ(s, δ1; δ2) ={

Θ(s, δ1) ◦Θ(τ(s, δ1), δ2), if Θ(s, δ1) is finite;

Θ(s, δ1), otherwise.

• Θ(s, if φ then δ1 else δ2 fi)=

{
Θ(s, δ1), if φ(s) = >;

Θ(s, δ2), otherwise.
• Θ(s,while φ do δ1 od) =

Θ(s, δ1) ◦Θ(τ(s, δ1),while φ do δ1 od),

if φ(s) = > and Θ(s, δ1) is finite;

Θ(s, δ1), if φ(s) = > and Θ(s, δ1) is infinite;

ε, otherwise.

where τ(s, δ) is τ(s,Θ(s, δ)) when Θ(s, δ) is a finite se-
quence and Θ1 ◦ Θ2 is the concatenation of two sequences
Θ1 and Θ2.

Given a GLINP problem, we are interested in synthesiz-
ing a program δ satisfying the following three properties.
Definition 7. Let D = 〈P ,V,A〉 be an LINP domain, δ a
program for D and s a state. The program δ is
• terminating in s, iff Θ(s, δ) is finite;
• executable in s, iff Θ(s, δ) is executable in s;
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• φ-reaching in s, iff δ is terminating and executable in s
only if τ(s, δ) |= φ.

A planning program is a solution to a GLINP problem, if
it satisfies the above three properties for every initial state.

Definition 8. Let Σ = 〈D, I,G〉 be a GLINP problem. A
program δ is a solution to Σ, if δ is terminating, executable
and G-reaching in every initial state s.

The Main Framework
The notion of regexes is highly related to planning pro-
grams. Suppose that the alphabet ∆ is the set A of actions.
A sequence π of actions is a string over ∆. Each construct
of a regex corresponds to a structure of planning programs.
For example, the sequential structure δ1; δ2 corresponds
to the concatenation regex δ1 ◦ δ2. In addition, if the
condition of the branch structure if φ then δ1 else δ2 fi is
omitted, then it corresponds to δ1|δ2. Similarly, the loop
structure while φ do δ od corresponds to the iteration regex
δ∗. Hence, regexes can be considered as skeletons of the
planning programs. In the following, we do not differentiate
terminologies of planning and of regexes, and use them
interchangeably, e.g., sequences of actions and strings.

Inspired by the intimate connection between regexes and
planning programs, we develop an approach to synthesizing
planning programs from a set of state-plan pairs shown in
Figure 1, consisting of three procedures: (1) generate a set
Υ of state-plan pairs, including generating initial states s
by imposing some restrictions on propositional and numeric
variables and computing the corresponding solutions π by
the planner; (2) infer a skeleton of the planning program r
expressed as a regex according to the plans of Υ; and (3)
obtain a complete planning program δ by filling the missing
conditions in r according to Υ.

The main framework consists of four essential compo-
nents: GenStatePlanPairs, InfSkeleton, Complete
and Plan. The first three ones will be sequentially explained
in the following sections. The final procedure Plan can
be implemented by directly invoking existing numeric
planners, e.g., Metric-FF (Hoffmann 2003).

Generation of State-Plan Pairs
In this section, we introduce a method to generate a set of
initial states so as to facilitate identifying branch and loop
structures in the planning program.

Firstly, it can be observed that the occurrence of branch
structures is due to the uncertainty of Boolean values
of some propositional variables. For example, the initial
location of the truck is uncertain. If the truck is initially at
the company, then it has to go to the dock first. Conversely,
it directly starts transferring the packages.

Secondly, inference of a regex r with iteration operators
from one representative string was investigated in the area
of grammatical inference (Brāzma 1993; Kinber 2010). A
string π is representative for the regex r, if the generator
of any iteration subregex of r consecutively occurs in π at
least twice. We observe from most planning domains that
the sequential plan for the state s is representative, if s is

such that the values of some numeric variables are large
enough. For example, in the Delivery problem, suppose
that the capacity of the truck is more than 1. Currently, the
truck carrying no packages is at the dock and a number of
packages still are at the dock. In this case, the truck should
iteratively load the packages until reaching the capacity.

From the above two observations, we require the set S of
initial states to be conformed with the two principles: (1) for
every propositional variable p ∈ P that is not determined
by I, S must contain two states s1 and s2 in which Boolean
value of p are distinct, (i.e., p(s1) 6= p(s2)); and (2) for
every state s ∈ S and every numeric variable v ∈ V , if
v(s) has the maximum c under the initial formula I, then
v(s) = c, otherwise, v(s) ≥ bwhere b is a bound. We assign
the bound b an integer 3 and generate 3 initial states in this
procedure. Some initial states, which do not conform with
the above principles, will not be generated in this procedure.

Finally, the numeric planner computes the sequential plan
for each initial state.
Example 2. We continue with the Delivery
problem. A state s is represented by a vector
(atd(s), numd(s), numc(s), numt(s), cap(s)). The initial
formula I is numd > 0∧numc = 0∧numt = 0∧cap > 0.
Both numc and numt have the maximum 0 under I. How-
ever, neither numd nor cap has a maximum. The variable
atd is not determined by I. In light of the principles of initial
states, the procedure GenStatePlanPairs first generates
three initial states: s1 : (>, 8, 0, 0, 3), s2 : (⊥, 10, 0, 0, 4)
and s3 : (⊥, 9, 0, 0, 3). The numeric planner then computes
the plan πi for each state si as follows. For brevity, we
abbreviate loadd as L , unloadc as U , movec as C and
moved as D.
• π1 = [L,L,L,C, U, U, U,D,L, L, L,C, U, U, U,D,L,

L,C, U, U,D];
• π2 = [D,L,L, L, L,C, U, U, U, U,D,L, L, L, L,C, U,

U, U, U,D,L, L,C, U, U,D];
• π3 = [D,L,L, L,C, U, U, U,D,L, L, L,C, U, U, U,D,

L, L, L,C, U, U, U,D].

Inference of Skeletons of Planning Programs
In this section, we introduce the procedure InfSkeleton
that aims to guess a suitable skeleton of the planning
programs expressed by a regex with iteration and alterna-
tion subregexes. The main insight behind the procedure
illustrated in Algorithm 1, is to infer a regex based on a
set of strings. It consists of three steps: (1) identification of
iteration subregexes, (2) alignment of iteration subregexes,
and (3) identification of alternation subregexes.

Identification of Iteration Subregexes
The first step is to fold each representative plan π ∈ Π into a
regex without alternation t (Lines 1 - 8). It starts from the
original alphabet ∆ = A (Line 3), and infers a regex t′

with iteration subregexes over ∆ accepting π (Line 4). If
the current regex t′ is different from the previous one t, then
it means that new iteration subregexes are found in this itera-
tion. These subregexes are considered as new single charac-
ters and are used to enlarge the alphabet ∆. The regex t′ can
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Σ : a GLINP problem GenStatePlanPairs

Plan

InfSkeleton Complete δ : a planning program

s : an inital state π : a sequential plan

Υ : a set of
state-plan pairs

r : a skeleton of the
planning program

Figure 1: The Main Framework

Algorithm 1: InfSkeleton(Σ,Υ)

Input: Σ: the planning problem 〈D, I,G〉 where
D = 〈P,V,A〉
Υ: the finite set of state-plan pairs

Output: r: a skeleton of the planning programs
1 R← ∅ and ∆∗ ← ∅
2 foreach π ∈ Π(Υ) do
3 t← π and ∆← A
4 (t′,∆′)← FoldString(t,∆)
5 while t 6= t′ do
6 ∆← ∆ ∪∆′ and t← t′

7 (t′,∆′)← FoldString(t,∆)

8 R← R ∪ {t} and ∆∗ ← ∆∗ ∪∆

9 foreach t ∈ R do
10 foreach misalgined subregex of t with the form

(u1u2)∗u1 do
11 Replace every occurrence of (u1u2)∗u1 in t by

u1(u2u1)∗

12 (ξ1, · · · , ξl)←the sequence of non-extensible
13 common strings of R over ∆∗

14 Compute each i-th individual components ηi,j of tj s.t.
tj = η1,j ◦ ξ1 ◦ · · · ◦ ηl,j ◦ ξl ◦ ηl+1,j for 1 ≤ i ≤ l + 1
and 1 ≤ j ≤ k

15 ηi ← ηi,1| · · · |ηi,k for 1 ≤ i ≤ l + 1
16 r ← η1 ◦ ξ1 ◦ η2 ◦ ξ2 ◦ · · · ◦ ηl ◦ ξl ◦ ηl+1

17 Simplify r

be considered as a string over the new alphabet ∆. The above
computation will continue until no new iteration subregexes
are identified. Generating a regex t′ with iteration sub-
regexes u∗ for a regex t is done by the process FoldString.
It recognizes the iteration subregex u∗ when the substring u
over ∆ consecutively occurs in t at least twice, and then re-
places all of the longest substrings u · · ·u in t by u∗. After
the above computation, the regex t is grouped into the set R
and the alphabet ∆∗ is enlarged by ∆ (Line 8).
Example 3. We continue with Example 2. We first infer
the regex t1 for the string π1. The construction is shown
in Table 1. At the first iteration, the alphabet ∆ is the set
of action symbols of the Delivery problem. The process
FoldString discovers two iteration subregexes L∗ and
U∗ since L occurs in the first 3 characters of π1 and U
occurs from the 5-th to 7-th characters. It generates t1 as
L∗CU∗DL∗CU∗D. At the second iteration, the alphabet ∆
is extended by the above two iteration regexes L∗ and U∗.
As t1 repeats L∗CU∗D twice, (L∗CU∗D)∗ is identified
and t1 becomes (L∗CU∗D)∗. At the third iteration, no itera-
tion subregexes are found. Hence, the process of identifying

Iter. t ∆
1 L∗CU∗DL∗CU∗D A ∪ {L∗, U∗}
2 (L∗CU∗D)∗ A ∪ {L∗, U∗, (L∗CU∗D)∗}
3 (L∗CU∗D)∗ A ∪ {L∗, U∗, (L∗CU∗D)∗}

Table 1: The process of identifying iteration subregexes of
π1 where t denotes the resulting regex at each iteration and
∆ denotes the extended alphabet of each iteration.

iteration subregexes terminates and t1 remains unchanged.
Similarly, we obtain t2 = t3 = (DL∗CU∗)∗D.

Since t2 and t3 are identical, we get that R =
{(L∗CU∗D)∗, (DL∗CU∗)∗D}.

Alignment of Iteration Subregexes
In the above example, t2 has an equivalent regex
t′2 = D(L∗CU∗D)∗. Compared to t2, the regex t′2 is
more similar to t1 since t1 and t′2 have a common subregex
(L∗CU∗D)∗. In order to synthesize a good skeleton of the
program from the set R of regexes, it is necessary to adjust
some regexes of R such that every regex of R has more
common subregexes with the others. In the following, we
give the definition of misalignment of subregexes.

Definition 9. Let R be a set of regexes and t ∈ R. A sub-
regex of t is misaligned w.r.t. R, if the following hold:

1. it is of the form (u1u2)∗u1 where u1 and u2 are sub-
regexes of t;

2. (u2u1)∗ is a subregex of some t′ ∈ R where t 6= t′;
3. every regex t′ ∈ R s.t. t 6= t′ has no subregex (u1u2)∗.

In case of misalignment of a subregex of t, t can be
transformed into another one t′ via replacing each occur-
rence of (u1u2)∗u1 in t by u1(u2u1)∗. Condition (1) says
that the above transformation preserves equivalence, i.e.,
L(t) = L(t′). Conditions (2) requires that (u2u1)∗ occurs
in other regexes and Condition (3) means that (u1u2)∗ does
not. The regex t′ therefore has more common subregexes
with the other regexs of R than t.

We do not consider replacing the occurrence of subregex
of the form u1(u2u1)∗ by (u1u2)∗u1 in every regex of R.
The reason is as follows. Suppose that a string π contains
the substring π′ = u1◦u2◦· · ·◦u1◦u2◦u1 where u1 and u2

are strings. Two regexes (u1u2)∗u1 and u1(u2u1)∗ accept
the above substring. However, the process FoldString
identifies the subregex (u1u2)∗ rather than (u2u1)∗ since it
scans π from left to right.

The alignment procedure, sketched in Lines 9 - 11 of Al-
gorithm 1, simply replaces every occurrence of misaligned
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subregexes of the form (u1u2)∗u1 in ti by u1(u2u1)∗ for
every regex t of R.

Example 4. We continue with Example 3. The set R
contains two regexes: t1 = (L∗CU∗D)∗ and t2 =
(DL∗CU∗)∗D. Clearly, only the second one itself is a mis-
aligned subregex (DL∗CU∗)∗D. We then transform t2 into
an equivalent regex t′2 = D(L∗CU∗D)∗.

Identification of Alternation Subregexes
Finally, the procedure InfSkeleton merges all regexes
of R into a final regex r with the alternation connective
in light of the notions of common substrings and common
subsequences (Lines 12 - 16).

A string ξ is a common substring of R, if ξ is a substring
of tj ∈ R for 1 ≤ j ≤ k where k is the number of regex
in R. Similarly, a string ξ is a common subsequence of R, if
ξ is a subsequence of tj ∈ R for 1 ≤ j ≤ k. The sequence
of non-extensible common strings of R is (ξ1, · · · , ξl) s.t.
ξ1 ◦ · · · ◦ ξl is the longest common subsequence of R,
and ξi is a non-extensible common substring of R (more
precisely, the concatenation (ξi−1)|ξi−1| ◦ ξi of the last
character of ξi−1 and ξi is not a common substring of R for
i > 1, and the concatenation ξi ◦ (ξi+1)1 of ξi and the first
character of ξi+1 is a not common substring of R for i < l).
It can be easily observed that each tj ∈ R is the form of
η1,j ◦ ξ1 ◦ · · · ηl,j ◦ ξl ◦ ηl+1,j where ηi,j may be an empty
string for 1 ≤ i ≤ l + 1 and 1 ≤ j ≤ k. Each ηi,j is called
the i-th individual component of tj . Meanwhile, each ξi is
called the common component of the R.

We remind that each regex t of R is a string over ∆∗.
The final regex r is obtained as follows. We firstly generate
the sequence of non-extensible common strings of R,
namely (ξ1, · · · , ξl), and each i-th individual component
of tj (Lines 12 and 13). We then obtain the regex ηi via
combining all of the i-th independent component of tj’s
with alternation connectives (i.e., ηi,1| · · · |ηi,k) for each
1 ≤ i ≤ l + 1 (Line 14). We concatenate the combination
of individual components ηi and the common component
ξi alternatively in an increasing order (Line 15). In the end,
some redundant subregexes in r are removed (Line 16) (e.g.,
u1|u2| · · · |uk−1|u2|uk is simplified as u1|u2| · · · |uk−1|uk).

Example 5. We continue with the Example 4. The
set R contains two regexes: t1 = (L∗CU∗D)∗ and
t′2 = D(L∗CU∗D)∗. The two regexes have only one
common component ξ1 = (L∗CU∗D)∗. The regex t1
contains an independent component η1,1 = ε. Similarly,
the only independent component η1,2 of t2 is D. So
η1 = η1,1|η1,2 = ε|D. By concatenating η1 and ξ1, we get
the final regex r = η1 ◦ ξ1 = (ε|D)(L∗CU∗D)∗.

The following theorem states that the procedure
InfSkeleton infers the regex r that accepts every string
π ∈ Π(Υ).

Theorem 1. Let Σ = 〈D, I,G〉 be a GLINP problem and Υ
a set of state-plan pairs. Then, InfSkeleton(Σ,Υ) outputs
a regex r accepting each π ∈ Π(Υ).

Proof sketch: For each πj ∈ Π(Υ), the FoldString process
iteratively replaces the consecutive occurrence of substring

Algorithm 2: Complete(r,Υ)

Input: r: a skeleton of the planning program
Υ: a set of state-plan pairs

Output: δ: a complete planning program
1 switch r do
2 case r1|r2 do
3 S+ ← ∅ and S− ← ∅
4 Υ1 ← ∅ and Υ2 ← ∅
5 foreach (s, π) ∈ Υ do
6 if π ∈ L(r1) then
7 S+ ← S+ ∪ {s}
8 Υ1 ← Υ1 ∪ {(s, π)}
9 else /* π ∈ L(r2) */

10 S− ← S− ∪ {s}
11 Υ2 ← Υ2 ∪ {(s, π)}

12 δ1 ← Complete(r1,Υ1)
13 δ2 ← Complete(r2,Υ2)

14 φ← SynFormula(S+, S−)
15 δ ← if φ then δ1 else δ2 fi
16 case r∗1 do
17 S+ ← ∅ and S− ← ∅
18 Υ1 ← ∅
19 foreach (s, π) ∈ Υ do
20 Split π into a sequence (π1, π2, · · · , πk) s.t.

each πi ∈ L(r1);
21 for i← 1 to k do
22 S+ ← S+ ∪ {s}
23 Υ1 ← Υ1 ∪ {(s, πi)}
24 s← τ(s, πi)

25 S− ← S− ∪ {s}
26 δ1 ← Complete(r1,Υ1)

27 φ← SynFormula(S+, S−)
28 δ ← while φ do δ1 od
29 case r1 ◦ r2 do
30 Υ1 ← ∅ and Υ2 ← ∅
31 foreach (s, π) ∈ Υ do
32 Split π into the prefix πi1 and suffix π|π|i+1 s.t.

πi1 ∈ L(r1) and π|π|i+1 ∈ L(r2)

33 Υ1 ← Υ1 ∪ {(s, πi1)}
34 Υ2 ← Υ2 ∪ {(τ(s, πi1), π

|π|
i+1)}

35 δ1 ← Complete(r1,Υ1)
36 δ2 ← Complete(r2,Υ2)
37 δ ← δ1; δ2
38 otherwise do /* r = ε or r = a */
39 δ ← r

u in πj by u∗, and obtain the regex tj . So each tj , which is
added into the set R, accepts πj . Then, the alignment step
preserves equivalence. In addition, each tj is divided into a
sequence of subregexes (i.e., η1,j ◦ ξ1 ◦ · · · ◦ ηl,j ◦ ξl ◦ ηl+1,j

where ηi,j is an individual component of tj and ξi is
a common component of the R). The final regex r is
η1 ◦ ξ1 ◦η2 ◦ ξ2 ◦ · · · ◦ηl ◦ ξl ◦ηl+1 where ηi = ηi,1| · · · |ηi,k.
Obviously, r accepts every πi ∈ Π(Υ).
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Completion of Planning Programs
In this section, we illustrate the procedure Complete which
takes a skeleton r and a set of state-plan pairs Υ as input,
and outputs a complete planning program δ.

The procedure Complete, illustrated in Algorithm 2, first
collects a set S+ of positive states and a set S− of negative
states from the set of state-plan pairs Υ for each condition
φ in a recursive way. A state s is a positive (resp. negative)
state of φ, if φ(s) = > (resp. φ(s) = ⊥). It then infers
these conditions via the algorithm SynFormula, proposed
by Udupa et al. (2013), which aims to generate candidate
formulas in an increasing size until it finds an expected
formula φ that is consistent with the two sets S+ and S−.

In the case where r = r1|r2 (Lines 2 - 15). This regex
corresponds to the branch structure if φ then δ1 else δ2 fi.
The sets Υ1 and Υ2 are two sets of state-plan pairs for
completing r1 and r2, respectively. For each (s, π) ∈ Υ,
if r1 accepts π, then the execution of π enters the branch
expressed by r1, and hence the state s is a positive state of
φ. The set S+ is enlarged by s, and the state-plan pair (s, π)
is added into Υ2 (Lines 6 - 8). Otherwise, the execution of
π goes to another branch described by r2. The state s is a
negative state of φ. The opposite case is similar (Lines 9 -
11). Then, we obtain the subprograms δ1 and δ2 by invoking
Complete(r1,Υ1) and Complete(r2,Υ2), respectively
(Lines 12 & 13). Finally, the algorithm SynFormula
constructs the condition φ based on S+ and S− (Line 14).

In the case where r = r∗1 (Lines 16 - 28). This regex
corresponds to the loop structure while φ do δ1 od. For
each (s, π) ∈ Υ, if the sequential plan π is not an empty
plan, then there is a sequence (π1, π2, · · · , πk) s.t. their
concatenation is π and r1 accepts each πi (Line 20). In
other words, the program expressed by r1 is executed
k times, where the action sequence of the i-th execu-
tion is πi. It is easily observed that the execution of the
loop structure enters the body δ1 in the following states:
s, τ(s, π1), · · · , τ(s, π1 · · ·πk−1). So the above states
are positive states of the condition φ and are added into
S+ (Line 22). Meanwhile, the following state-plan pairs
(s, π1), (τ(s, π1), π2), · · · , (τ(s, π1 · · ·πk−1), πk) are put
into Υ1 (Line 23). When the loop is completed, the execu-
tion is out of the loop and terminates in the state τ(s, π). We
consider this state as a negative state of φ which is added
into S− (Line 25). Then, the subprogram δ1 is obtained
according to r1 and Υ1 (Line 26). Finally, the condition φ
is also synthesized based on S+ and S− (Line 27).

In the case where r = r1 ◦ r2 (Lines 29 - 37). This regex
corresponds to the sequential structure δ1; δ2. For each
(s, π) ∈ Υ, there are a prefix πi1 of π and a suffix π|π|i+1 s.t.
r1 accepts the former and r2 accepts the latter (Line 32). We
collect the state-plan pair (s, πi1) and (τ(s, πi1), π

|π|
i+1) for Υ1

and Υ2, respectively (Lines 33 and 34). Finally, the subpro-
grams δ1 and δ2 are constructed recursively (Lines 35 & 36).

Example 6. In Example 5, the procedure InfSkeleton
infers the regex r as (ε|D)(L∗CU∗D)∗. To be clear, we first
present the corresponding skeleton of the program via trans-
lating concatenation (resp. alternation/iteration) subregexes
to sequential (resp. branch/loop) structure with φi.

if φ1 then ε else moved fi;
while φ2 do

while φ3 do loadd od;
movec;
while φ4 do unloadc od;
moved

od
The skeleton is a sequential structure δ1; δ2 where the

skeleton of δ1 is “if φ1 then ε else moved fi” and δ2 is a
nested loop structure with the condition φ2. The program
contains four conditions φ1, φ2, φ3 and φ4. To distinguish
the set of positive states for various conditions, we use S+

i
for the the set of positive states for φi and the definition of
S−i is similar. We collect S+

i and S−i for each condition φi
according to the three state-plan pairs: (s1, π1), (s2, π2) and
(s3, π3) where s1 : (>, 8, 0, 0, 3), s2 : (⊥, 10, 0, 0, 4) and
s3 : (⊥, 9, 0, 0, 3).

Consider the plan π1 for s1. Clearly, ε ∈ L(ε|D) and
π1 ∈ L((L∗CU∗D)∗). So (s1, ε) ∈ Υ1 and (s1, π1) ∈ Υ2.
Similarly, we get that Υ1 = {(s1, ε), (s2, D), (s3, D)} and
Υ2 = {(s1, π1), (s′2, (π2)

|π2|
2 ), (s′3, (π3)

|π3|
3 )} where s′2 is

(>, 10, 0, 0, 4) and s′3 is (>, 9, 0, 0, 3).
We start to synthesize the condition φ1 from Υ1. It is

easily verified that S+
1 = {s1} and S−1 = {s2, s3}. The

algorithm SynFormula deduces that φ1 is atd.
We now synthesize the condition φ2 from Υ2. By

tracking the trace of performing π1 (resp. (π2)
|π2|
2 /(π3)

|π3|
3 )

on s1 (resp. s′2/s
′
3), we get that S+

2 = {(>, 8, 0, 0, 3),
(>, 10, 0, 0, 4),(>, 9, 0, 0, 0, 3),(>, 5, 3, 0, 3),(>, 6, 4, 0, 4),
(>, 6, 3, 0, 3), (>, 2, 6, 0, 3), (>, 2, 8, 0, 4), (>, 3, 6, 0, 3)}
and S−2 = {(>, 0, 8, 0, 3), (>, 0, 10, 0, 4), (>, 0, 9, 0, 3)}.
The algorithm SynFormula synthesizes φ2 as numd ≥ 1.
During the process of synthesizing φ2, the conditions φ3

and φ4 of the two inner loops of δ2 are also constructed as
numd ≥ 1 ∧ cap > numt and numt ≥ 1 respectively.

The entire planning program is as follows:
if atd then ε else moved fi;
while numd ≥ 1 do

while numd ≥ 1 ∧ cap > numt do loadd od;
movec;
while numt ≥ 1 do unloadc od;
moved

od
The following theorem states that the procedure

Complete synthesizes a correct program for every state
s ∈ S(Υ).
Theorem 2. Let Σ = 〈D, I,G〉. Let r be a skeleton of
a planning program of D and Υ a set of state-plan pairs
where r accepts each plan π with π ∈ Π(Υ). Then,
Complete(r,Υ) outputs a program δ that is terminating, ex-
ecutable and G-reaching in every state s ∈ S(Υ).

Proof. We firstly prove that π = Θ(s, δ) for (s, π) ∈ Υ. We
prove by induction on δ.

• δ = ε or δ = a: Suppose that δ = ε. Since r accepts π,
π = ε, and hence Θ(s, δ) = ε = π. Similarly, Θ(s, a) =
[a] = π when δ = a.
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• δ = δ1; δ2: It follows that r = r1 ◦ r2 where ri cor-
responds to the program δi for i = 1, 2. Since r ac-
cepts π, there is an index i s.t. r1 accepts πi1 and r2 ac-
cepts π|π|i+1. According to the procedure Complete (Al-

gorithm 2), (s, πi1) ∈ Υ1 and (τ(s, πi1), π
|π|
i+1) ∈ Υ2.

By the inductive assumption, the procedure Complete
synthesizes two programs δ1 and δ2 s.t. πi1 = Θ(s, δ1)

and π|π|i+1 = Θ(τ(s, πi1), δ2). Hence, π = πi1 ◦ π
|π|
i+1 =

Θ(s, δ1) ◦Θ(τ(s, πi1), δ2) = Θ(s, δ1; δ2).
• δ = if φ then δ1 else δ2 fi: It follows that r = r1|r2

where ri corresponds to the program δi for i = 1, 2.
Suppose that φ(s) = >. Thus, Θ(s, δ) = Θ(s, δ1).
Since the procedure SynFormula constructs the condi-
tion φ consistent with S+ and S−. So s ∈ S+ and
(s, π) ∈ Υ1. By the inductive assumption, the procedure
Complete synthesizes a program δ1 s.t. π = Θ(s, δ1).
Hence, π = Θ(s, δ). The case where φ(s) = ⊥ can be
similarly proved.

• δ = while φ do δ1 od: It follows that r = r∗1 where
r1 corresponds to the program δ1. The case where π =
ε is easier. Suppose that π 6= ε. Since r accepts π,
there is a sequence of substrings (π1, π2, · · · , πk) s.t.
π1 ◦ π2 ◦ · · · ◦ πk = π and πi ∈ L(r1) for 1 ≤ i ≤ k.
According to the procedure Complete, (s, π1) ∈ Υ1 and
(τ(s, π1 ◦ · · · ◦ πi), πi+1) ∈ Υ1 for 1 ≤ i < k. By
the inductive assumption, the procedure Complete syn-
thesizes a program δ1 s.t. π1 = Θ(s, δ1) and πi+1 =
Θ(τ(s, π1 ◦ · · · ◦ πi), δ1) for 1 ≤ i < k. In addition,
s ∈ S+, τ(s, π1 ◦ πi) ∈ S+, and τ(s, π1 ◦ πk) ∈ S−.
So s+ |= φ for s+ ∈ S+ and s− |= ¬φ for s− ∈ S−.
By Definition 6, we get that Θ(s,while φ do δ1 od) =
Θ(s, δ1) ◦ · · · ◦ Θ(τ(s, π1 ◦ · · · ◦ πk−1), δ1). Hence,
π = Θ(s,while φ do δ1 od).

Since π is also a solution to the LINP problem 〈D, s,G〉
for (s, π) ∈ Π, π is finite and executable in s, and τ(s, π) |=
G. This, together with the fact that π = Θ(s, δ), imply δ is a
terminating, executable and G-reaching in s.

Theorems 1 and 2 together guarantees that the synthe-
sized planning program is suitable for the given initial states.
Furthermore, the planning program is also correct for all of
the initial states in practice, which will be verified in the
experimental evaluation. This is because that the procedure
GenStatePlanPairs generates the initial states according
to the two principles so that the procedure InfSkeleton is
able to extract the branch and loop structures of the program
from their corresponding sequential plans. In addition, we
have developed a method for verifying correctness of plan-
ning programs and identified a class of planning programs
of which correctness verification becomes decidable. All do-
mains with only unconditional effects considered in this pa-
per are in this class, and their programs are verified in an au-
tomated way. For other domains, we verify their correctness
manually. However, due to the space limit, we do not present
the work about the automated verification of planning pro-
gram in this paper, which will be clarified in future work.

Domain RegexSkeleton QNP2FOND

#(δ) |δ| t |p| t
Arith 1 13 0.097 - -
Chop 1 5 0.028 5 0.039

ClearBlock 1 7 0.027 15 0.088
Corner-A 1 11 0.048 29 0.226
Corner-R 1 13 0.064 - -
Delivery 2 31 5.161 229 65.31
D-Return 1 41 0.215 - -

D-Return-R 2 52 325.2 - -
Gripper 2 31 5.571 201 112.9
Hall-A 1 37 0.135 - -
Hall-R 1 45 0.166 - -
NestVar 1 13 0.030 48 0.501

NestVar8 1 541 6.315 TO TO
MNestVar 2 11 0.034 - -
MNestVar8 8 287 311.8 - -
PlaceBlock 1 23 0.045 71 3.234

Rewards 2 11 0.046 28 0.232
Snow 1 21 0.037 115 3.822

Spanner 1 21 0.094 - -
TestOn 1 13 0.062 41 0.433
VisitAll 2 37 0.129 - -

VisitAll-R 2 51 0.232 - -

Table 2: Experimental results. “#δ”, “|δ|” and “|p|” are the
depth and the length of the planning program, and the length
of the policy, respectively; and “t” is the running time of
synthesizing the planning programs and the policy. “TO”
denotes timeout; “-” indicates that the problem cannot be
formalized in QNP.

Experimental Evaluation
We have implemented a prototype of the above approach,
namely RegexSkeleton, for synthesizing the planning
programs in Python using Z3 (de Moura and Bjørner 2008)
and Metric-FF (Hoffmann 2003). The experiments are run
on a machine with Intel Core i7-7700 3.60GHz CPU and
8GB RAM. The timeout period is set to 30 minutes.

We run RegexSkeleton on 22 domains that originate from
the work on GP and QNP (Levesque 2005; Bonet, Palacios,
and Geffner 2009; Bonet, Francès, and Geffner 2019;
Srivastava, Immerman, and Zilberstein 2011; Srivastava
et al. 2011; Bonet and Geffner 2020). We compare the
performance of RegexSkeleton with the state-of-the-art
QNP planner: QNP2FOND (Bonet and Geffner 2020) and
two numeric planners: Metric-FF (Hoffmann 2003) and
ENHSP (Scala, Haslum, and Thiébaux 2016). Although
there have been some implementations on synthesis of
GP so far, they do not support the problems with multiple
numeric variables. For instance, the methods proposed
in (Srivastava, Immerman, and Zilberstein 2011; Bonet,
Palacios, and Geffner 2009; Bonet and Geffner 2015;
Segovia-Aguas, Jiménez, and Jonsson 2018, 2019, 2021)
can not solve the problems with numeric variables and those
proposed in (Levesque 2005; Hu and Giacomo 2011) can
only solve the problems with only one numeric variable
while almost all GLINP domains have multiple variables.
Thus, we do not compare with their methods.
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Figure 2: The threshold of bound b for each domain when
RegexSkeleton outperforms Metric-FF and ENHSP in effi-
ciency, respectively.

We first compare RegexSkeleton to the QNP planner
QNP2FOND. The results for each domain are reported in
Table 2, from which we can make several observations.
(1) RegexSkeleton is able to solve all of 22 domains but
QNP2FOND only solves 9 domains. NestVar8 causes a
timeout for QNP2FOND and the other domains cannot be
formalized in QNP. Firstly, the initial formula of Spanner
and the goal formulas of Arith, VisitAll and Hall-A are
not simple numeric formulas. Furthermore, the effects
of MNestVar and MNestVar8 require assigning numeric
variables to a LIAP-formula. Finally, it is necessary to
formalize the effects of Hall-R, Corner-R, VisitAll-R and
D-Return-R by conditional effects. (2) For every domain
solved by QNP2FOND, RegexSkeleton obtains a more
compact solution, which verifies the succinctness results
between planning programs and policies. For example, the
sizes of policies for Delivery and Gripper is 229 and 201,
respectively. But those of planning programs are both 31.
(3) RegexSkeleton is more efficient than QNP2FOND for
all problems that can be formalized in QNP. In particular,
QNP2FOND solves Delivery and Gripper in approximately
65s and 112s, respectively, but fails to solve NestVar8,
while RegexSkeleton succeeds in synthesizing the planning
program to the above three problems within 7s. This is
because that RegexSkeleton firstly extracts the branch and
loop structures of the planning program and generates a
skeleton of the planning program which accelerates the
whole synthesis process. In contrast, the solution to QNPs is
of the policy form which is in fact a loop structure of several
conditional statements. It is difficult for policies to express
the loop structure whose body is a sequential plan and even
a loop structure. Hence, QNP2FOND does not analyze the
common pattern of the solution.

We now turn to compare RegexSkeleton to the two
state-of-the-art numeric planners: Metric-FF and ENHSP
on LINP problems with a different bound b. Given a
GLINP problem 〈D, I,G〉, we generate a LINP problem
〈D, sI ,G〉 where sI is an initial state s.t. if the numeric
variable v has no maximum under I, then v(sI) = b for
every v ∈ V . Metric-FF and ENHSP solve every problem
with different bound individually. With the growth of
the bound b, Metric-FF and ENHSP spend an increasing
amount of time in solving the LINP problem. In contrast,
RegexSkeleton learns a planning program from sequential

plans of some LINP problems with a small bound. Hence,
no matter how large the bound b is, the time in generating a
planning program by RegexSkeleton is steady. Furthermore,
RegexSkeleton outperforms Metric-FF and ENHSP in effi-
ciency when the bound b exceeds a certain threshold, which
is shown in Figure 2. For example, Metric-FF solves the
Arith problem slower than RegexSkeleton when the bound
b is greater than 515. Finally, we remark that Metric-FF and
ENHSP cannot solve the LINP problems even with small
bound. Metric-FF fails on MNestVar8 problem with bound
4 and ENHSP fails on Corner-R, D-Return-R, Hall-R and
VisitAll-R problems with bound 1. Hence, our approach is
a promising alternative to numeric planning.

Related Work
Levesque (2005) firstly proposed GP problem that aims to
generate a loopy plan to solve problems for infinitely many
states. He identified a class of GP problems, called one-
dimensional (1d) planning problems in (Hu and Levesque
2010), that contains only one numeric variable. Levesque’s
method is similar to our approach, which firstly searches a
plan without loop structure that works for the case where
the value of the variable is less than a small threshold, and
then try to roll the plan into a planning program via the
pattern match mechanism implemented in Prolog language.
Hu and Levesque (2010) proved that the plan existence
of 1d planning problems is decidable, more precisely, in
EXPSPACE (Hu and Giacomo 2011). Our approach pro-
vides an effective way of constructing planning programs
to GLINP with multiple variables while Levesque’s method
only suits GP problems with only one variable.

Srivastava, Immerman, and Zilberstein (2011) proposed a
method to generate a finite-state automata (FSA) plan based
on state abstraction using 3-valued logic (Sagiv, Reps, and
Wilhelm 2002). It starts from an extended sequential plan
π : [(s0, a0), · · · , (sn, an), (sn+1)] that is a sequence of
state-action pairs (si, ai) with a final state sn+1. Based
on the concrete plan, it generates an abstract sequential
plan π′ : [(S0, a0), · · · , (Sn, an), (Sn+1)] by generalizing
each concrete state si into an abstract one Si. If two pairs
(Sj , aj) and (Sk, ak) of π′ where j < k are identical, then
such repeated pairs mean some properties that are true in
Sj hold again in the successor abstract state Sk. Hence, a
cycle representing the repetition of the sequence of actions
[aj , · · · , ak−1] should be created in the FSA plan. The
solution generated by the Srivastava, Immerman, and Zil-
berstein’s approach does not guarantee goal achievement. In
order to measure the condition when the plan is guaranteed
to terminate and lead to the goal, namely applicability
condition, they devised an algorithm for computing such
condition of the FSA plan when the plan involves only sim-
ple loop structures (Srivastava, Immerman, and Zilberstein
2012). However, the FSA plan can not contain a nested loop
and is not applicable to every initial state. In contrast, the
planning programs we synthesize can involve nested loop
structures and the experimental results demonstrate that the
planning programs are correct for every initial state.

Bonet, Palacios, and Geffner (2009) developed an auto-
matic way for deriving a finite state controller (FSC) for
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a contingent planning problem. The experimental results
show that FSCs derived by this method are general in the
sense that they not only solve the original contingent plan-
ning problem but also many variations including changes in
the size of the problem. However, it is not clear which vari-
ation of the original problem the resulting FSC is capable of
solving. This was clarified by Bonet and Geffner (2015) via
providing a characterization of the common structure that
allows for policy generalization. Observations in an FSC
essentially corresponds to conditions of branch structures
and loop structures in a planning problem. Our approach
automatically synthesizes conditions but observations in
Bonet, Palacios, and Geffner’s method are user-provided.

Segovia-Aguas, Jiménez, and Jonsson (2018) encoded
a generalized planning problem with a finite set S of
initial states as a classical planning problem. The form
of their solutions are hierarchical finite state controllers,
allowing nested loops. Later, they extended their method
to synthesize planning programs (Segovia-Aguas, Jiménez,
and Jonsson 2019). The planning program they investigate
on, which uses goto statement rather than while statement
to denote the loop structure, is slightly different from ours.
The experimental results show that the planning program
synthesized by their approach is not applicable to other
initial states that are not mentioned in S. This is because
that their approach does not identify the common structure
of all solutions to all states of S. Segovia-Aguas, Jiménez,
and Jonsson (2021) further uses a heuristic search paradigm
to generate a planning program applicable to other initial
states not in S in practices. However, the above work cannot
handle numeric variables while our approach does.

Conformant planning, proposed by Goldman and Boddy
(1996), is the problem of finding a plan that guarantees goal
achievement in a finite-state nondeterministic domain. To
solve this class of problems, Nguyen et al. (2012) developed
a generate-and-complete approach similar to our approach.
It first finds a plan for a subproblem by utilizing a classical
planner and then tries to repair it to account for other initial
states. Our approach considers the planning problem with
infinite states while Nguyen et al.’s method only suits con-
formant planning problems that contains only finite states.

Golog, proposed by Levesque et al. (1997), is a high-level
logic programming language based on the situation calcu-
lus. It is very close to the planning program of our work. As
far as we know, there is little work on synthesis of Golog
programs, and most of the research focus on verification
(Claßen et al. 2014; Li and Liu 2015).

A majority of state-of-the-art approaches to inferring a
regex (Lee, So, and Oh 2016; Jain, Kinber, and Stephan
2017) requires negative strings, that is, the string not
accepted by the target regex. However, these approaches are
not suitable for our framework since we do not generate an
action sequence that is not an solution for any initial state.
Fernau (2009) developed an approach to regex inference
from only positive strings. Yet, this method only generate
regexes of depth at most 1. Another work, proposed by
Kinber (2010), can learn a regex of depth at most 2 from
one representative string. However, the learned regex con-
tains no alternation subregexes. Compared with the above

methods, our method does not rely on negative examples
and is able to infer the regex of depth more than 2 that
contains alternation subregexes.

Conclusion and Future Work
In this paper, we have proposed a generalized version of nu-
meric planning (GLINP), which is a more suitable abstract
framework of GP than QNP. Then, we have developed an
approach to synthesizing planning programs inductively
from a set of state-plan pairs. Finally, we have implemented
our approach and experimental results have justified the
feasibility and effectiveness of the approach.

Our approach have some limitations, and hence leading
to several avenues for future work. Firstly, in this paper, our
approach is able to solve a class of GLINP problems where
the goal is to decrease the values of some numeric variables.
Thus, we would like to extend our approach to handle
more complex GLINP problems. Secondly, the existence
of solutions to GLINP is in general undecidable. We will
identify the decidable fragment in future work.
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