
On Speeding Up Methods for Identifying Redundant Actions in Plans

Jakub Med, Lukáš Chrpa
Faculty of Electrical Engineering, Czech Technical University in Prague

{medjaku1,chrpaluk}@fel.cvut.cz

Abstract

Satisficing planning aims at generating plans that are not nec-
essarily optimal. Often, minimising plan generation time neg-
atively affects quality of generated plans. Acquiring plans
quickly might be of critical importance in decision-making
systems that operate nearly in realtime. However, (very) sub-
optimal plans might be expensive to execute and more prone
to failures. Optimising plans after they are generated, in a
spare time, can improve their quality. This paper focuses on
speeding up the (Greedy) Action Elimination methods, which
are used for identifying and removing redundant actions from
plans in polynomial time. We present two enhancements of
these methods: Plan Action Landmarks, actions that are not
redundant in a given plan, and Action Cycles which are sub-
sequences of actions which if removed do not affect the state
trajectory after the last action of the cycle. We evaluate the
introduced methods on benchmark problems from the Agile
tracks of the International Planning Competition and on plans
generated by several state-of-the-art planners, successful in
the recent editions of the competition.

Introduction
Classical planning assumes a static, deterministic and fully
observable environment, where a solution plan amounts to a
sequence of actions transforming the environment from the
given initial state to a state satisfying the given goal.

In general, finding a solution plan is PSPACE-
complete (Bylander 1994). Bylander (1994) and Helmert
(2003) have shown that for some classes of classical plan-
ning problems, finding optimal plans is in a higher complex-
ity class than finding satisficing plans for the same problems.
Hence many planning engines generate satisficing (subopti-
mal) plans. Some planners (e.g. LAMA (Richter and West-
phal 2010)) incrementally improve solution plans as long as
they have time. Other planners (e.g. YAHSP (Vidal 2014))
aim to generate any solution plan as quickly as possible.

Minimising plan generation time, which might be es-
sential in (almost) real-time decision-making systems, of-
ten comes with low quality of generated plans. Executing
(very) low quality plans might be time and energy consum-
ing and prone to failures. A possible remedy for low qual-
ity plans is to optimise them in a post-processing step in

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a spare time. One class of optimisation techniques aims at
identifying redundant actions that can be safely removed
from plans. Another class of optimisation techniques aims
at (local) optimisation of action subsequences in plans. As
demonstrated by the ARAS system (Nakhost and Müller
2010a), it is effective to initially remove redundant actions,
which is computationally cheap, before trying more sophis-
ticated and more computationally demanding (local) opti-
misation techniques. BDPO2 (Siddiqui and Haslum 2015)
has shown that specialised post-planning plan optimisation
techniques are more effective than optimisation provided by
anytime satisficing planners (e.g. LAMA (Richter and West-
phal 2010)).

This paper focuses on plan optimisation by identifying
and removing sets of redundant actions. Specifically, this
paper aims at improving performance of the Action Elim-
ination (AE) (Nakhost and Müller 2010a) and the Greedy
Action Elimination (GAE) (Balyo, Chrpa, and Kilani 2014)
algorithms that look for redundant actions “by trial and er-
ror”. In a nutshell, they iterate through the plan trying to
remove the current action and its dependants which became
inapplicable – if the goal is still achieved without these ac-
tions, they are redundant and can be removed from the plan.
In this paper, we propose two enhancements of the (G)AE
algorithms. Firstly, we identify actions that cannot be part of
any set of redundant actions – we call such actions Plan Ac-
tion Landmarks. Hence, if (G)AE tries to remove Plan Ac-
tion Landmark, we can immediately infer that the goal will
not be achieved if such an action is removed and it is then
unnecessary to go through the rest of the plan. Secondly, we
identify whether redundant action candidates form Action
Cycles, that is, the state in the state trajectory positioned af-
ter the last of the actions will be the same even after these
actions are removed. If such a situation occurs, we know that
the goal will be achieved after removing the actions forming
an Action Cycle without having to go through the rest of
the plan. Both enhancements can be embedded into (G)AE,
aiming at improving its performance while maintaining the
same “power” (i.e., identify the same sets of redundant ac-
tions as the original (G)AE).

We evaluate the (G)AE enhancements on benchmarks
used in the Agile Tracks of the International Planning Com-
petition (IPC) 2014 and 2018. For a plan generation, we used
five state-of-the-art planners, successful in the recent IPCs.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

252

Preliminaries

In the upcoming paragraphs, we formally define classical
planning in the SAS+ formalism introduced by Bäckström
and Nebel (1995) while also taking conditional effects into
consideration.

Let V be a set of variables where each variable v ∈ V is
associated with its domain D(v). An assignment of a vari-
able v ∈ V is a pair (v, val), where val ∈ D(v) is its value.
Hereinafter, an assignment of a variable is also denoted as
a fact. A (partial) variable assignment p over V is a set of
assignments of individual variables from V , where vars(p)
is a set of all variables in p and p[v] represents the value of
v in p. A state is a complete variable assignment (over V).
We say that a (partial) variable assignment q holds in a (par-
tial) variable assignment p, denoted as p |= q, if and only if
vars(q) ⊆ vars(p) and for each v ∈ vars(q) it is the case
that q[v] = p[v].

An action is a triplet a = (pre(a), eff cond(a), C(a)),
where pre(a) is a partial variable assignment representing
a’s precondition, eff cond(a) represents a’s conditional ef-
fects and C(a) denotes the non-negative cost of a. In partic-
ular, eff cond(a) is a set of pairs (c, e), where e is a partial
assignment which stands for an effect and c is a partial as-
signment representing e’s condition.

We say that an action a is applicable in a state s if and
only if s |= pre(a). Furthermore, we say that an effect e :
(c, e) ∈ eff cond(a) is active in s if and only if s |= c. We
assume that each action a is well defined, i.e., for each state
s in which a is applicable, it is the case that there are no
two active effects for a and s assigning a different value to
the same variable. The set of (unconditional) effects of an
action a in state s, denoted as eff (a, s), is a partial variable
assignment such that for each variable v, eff (a, s)[v] = e[v]
iff e is an active effect for a and s and v ∈ vars(e), or
eff (a, s)[v] is undefined otherwise. The result of applying
a in s, denoted as γ(s, a), is a state s′ such that for each
variable v ∈ V , s′[v] = eff (a, s)[v] if v ∈ vars(eff (a, s))
while s′[v] = s[v] otherwise. If a is not applicable in s,
γ(s, a) is undefined. The notion of action application can be
extended to sequences of actions, i.e., γ(s, 〈a1, . . . , an〉) =
γ(γ(s, a1), 〈a2, . . . , an〉) and γ(s, 〈〉) = s.

A classical planning task is a quadruple T =
(V,A, I,G), where V is a set of variables, A is a set of ac-
tions, I is a complete variable assignment representing the
initial state and G is a partial variable assignment repre-
senting the goal. We say that a sequence of actions Π =
〈a1, . . . , an〉 is applicable in a state s if and only if γ(s,Π)
is defined. A plan is an applicable sequence of actions Π
such that γ(I,Π) |= G. The sequence of states visited dur-
ing the execution of a plan is called state trajectory. Each
state trajectory begins with the initial state I and contin-
ues with the n states si = γ(I, 〈a1, . . . , ai〉), i ≤ n. Each
plan Π = 〈a1, . . . , an〉 has a cost C(Π) which is defined as
C(Π) =

∑n
i=1 C(ai). We say that a plan Π is optimal if and

only if for each plan Π′ (for the same planning task) it holds
that C(Π) ≤ C(Π′).

Redundant Actions
Informally speaking, if a plan of some planning task con-
tains a set of redundant actions, a shorter action sequence
obtained by removing these actions from the former plan is
also a plan for that planning task. The shorter plan is called
reduction (Nakhost and Müller 2010b).

Definition 1. Let T be a planning task and Π be a plan
for T . We say that actions ax1 , . . . , axk

∈ Π represent a
set of redundant actions in Π if and only if Π′ = Π \
{ax1

, . . . , axk
} is a plan for T . We also say that Π′ is a re-

duction of Π.

Note that in Definition 1 we abuse the notation for set op-
erations as we actually operate with action indices referring
to their positions in plans rather than the actions themselves.
Hence, for example, the set subtraction operation will not
remove all occurrences of the actions from the plan but only
the actions on specific positions in the plan.

Also, we would like to emphasise that a subset of a set
of redundant actions is not necessarily a set of redundant
actions itself.

Consequently, for each plan, there is a finite amount of
reductions. Therefore we can determine the “best” one. A
plan Π′ for some task T is called a minimal reduction of Π,
also a plan for T , if and only if Π′ is a reduction of Π and
for each reduction Π′′ of Π it holds that C(Π′) ≤ C(Π′′).

It has been proven that finding a minimal reduction is NP-
complete (Nakhost and Müller 2010b) and can be found by
a technique based on MAXSAT (Balyo, Chrpa, and Kilani
2014). On the other hand, some reductions, albeit not neces-
sarily minimal, can be found in a polynomial time, which is
the aim of our paper.

(Greedy) Action Elimination
The idea for the Action Elimination (AE) algorithm has been
introduced by Fink and Yang (1992) and later rediscovered
and formulated by Nakhost and Müller (2010a). As shown in
Algorithm 1, AE is trying to remove actions from the plan
one by one (from a1 to an – see the for loop in Lines 3–
17). Then, the rest of the plan is checked such that actions
that become inapplicable are marked for removal while ac-
tions that are still applicable are applied (see the for loop in
Lines 8–13). If the resulting state (after processing the rest
of the plan) is a goal state, then the actions marked as “to be
removed” form a set of redundant actions and can be safely
removed from the plan.

For each action in the plan, the algorithm processes at
most n following actions, hence the asymptotic time com-
plexity of AE is O(n2).

The Greedy Action Elimination algorithm (Balyo, Chrpa,
and Kilani 2014) extends AE in such a way that by a mod-
ification of AE it finds the most expensive set of redundant
actions, removes it from the plan and repeats the process un-
til the modification of AE no longer finds a set of redundant
actions. The AE algorithm is modified such that Line 15 of
Algorithm 1 stores only the currently most expensive set of
redundant actions. The modification of AE can be called at
most n times and hence GAE runs in O(n3).

253

Algorithm 1: Action Elimination
Input : Planning task T = (V,A, I,G), a plan

Π = 〈a1, . . . , an〉 for T
Output: A reduction Π′

1 removed ← ∅;
2 s← I;
3 for i← 1 to n do
4 marks← ∅;
5 if i /∈ removed then
6 marks← marks ∪ {i};
7 s′ ← s;
8 for j ← i+ 1 to n do
9 if j /∈ removed then

10 if aj is not applicable in s′ then
11 marks← marks ∪ {j};
12 else
13 s′ ← γ(s′, aj);

14 if s′ |= G then
15 removed ← removed ∪ marks;
16 else
17 s← γ(s, ai);

18 Π′ ← 〈ai | ai ∈ Π, i /∈ removed〉;
19 return Π′;

Plan Action Landmarks
In the literature, landmarks are statements over facts or ac-
tions that must be true for each plan (Hoffmann, Porteous,
and Sebastia 2004). It has been shown that landmarks can
be leveraged for computing heuristics (Richter and Westphal
2010; Helmert and Domshlak 2009).

Inspired by the concept of Action Landmarks, we define a
notion Plan Action Landmark that represents an action that
is not part of any set of redundant actions in a given plan.
Hence, similarly to Action Landmarks, which are actions
that must be present in every plan, Plan Action Landmarks
cannot be removed from a given plan.
Definition 2. Let Π be a plan for a planning task T . Action
a ∈ Π is called a Plan Action Landmark for Π and T if
and only if there does not exist a set of redundant actions m
in Π such that a ∈ m.

In general, deciding whether an action a is a part of some
set of redundant actions in a plan Π is NP-complete. We can
non-deterministically find a reduction of Π without a and
validate its correctness in polynomial time, thus the problem
is in NP. NP-hardness can be straightforwardly derived from
the proof of Theorem 2 of Fink and Yang (1992) in which
they reduce the 3-SAT problem to the problem of existence
of a proper reduction of a plan. Hence, deciding whether
an action is a Plan Action Landmark is intractable (co-NP-
compete). On the other hand, identifying some Plan Action
Landmarks can be done in polynomial time. Our method for
Plan Action Landmark discovery is inspired by the back-
chaining method of (fact) Landmark discovery (Hoffmann,
Porteous, and Sebastia 2004). Our method is based on two

Algorithm 2: Plan Action Landmark Discovery
Input : Planning task T = (V,A, I,G), a plan

Π = 〈a1, . . . , an〉 for T
Output: Plan Action Landmarks

1 for p ∈ {(v, val) | v ∈ V, val ∈ D(v)} do
2 achievers[p]← ∅;
3 for p ∈ I do
4 achievers[p]← achievers[p] ∪ {0};
5 for i← 1 to n do
6 for p ∈ effmax(ai) do
7 achievers[p]← achievers[p] ∪ {i};

8 landmarks← ∅;
9 for p ∈ G do

10 if |achievers[p]| = 1 then
11 landmarks← landmarks ∪ achievers[p];

12 for i← n to 1 do
13 for p ∈ effmax(ai) do
14 achievers[p]← achievers[p] \ {i};
15 if i ∈ landmarks then
16 for p ∈ pre(ai) do
17 if |achievers[p]| = 1 then
18 landmarks←

landmarks ∪ achievers[p];

19 return landmarks \ {0};

claims. Firstly, actions that are the only achievers of goal
facts are Plan Action Landmarks. Secondly, if an action is
the only achiever of a fact for a Plan Action Landmark, the
action is also Plan Action Landmark. The claims are proven
in the following propositions. We denote as effmax(a) the
set of facts that can possibly be achieved by an action a, i.e.,
effmax(a) = {(v, val) | (c, e) ∈ eff cond(a), e[v] = val}.
Also, (partial) variable assignments will be, in this section,
represented as sets of facts.

Proposition 3. Let Π = 〈a1, . . . , an〉 be a plan for a
planning task T = (V,A, I,G) and ai be an action from
Π. If there exists p ∈ (G ∩ effmax(ai)) such that p /∈
(I ∪

⋃i−1
k=1 effmax(ak) ∪

⋃n
l=i+1 effmax(al)), then ai is a

Plan Action Landmark for Π and T .

Proof. Since p ∈ G, it has to become true at some point in
the state trajectory of Π. From the assumption, p is not true
in the initial state nor can be achieved by any action from Π
other than ai. Hence removing a set of actions including ai
from Π cannot result in a valid plan as p will no longer be-
come true (and the goal will not be achieved). Consequently,
ai is a Plan Action Landmark for Π and T .

Proposition 4. Let Π = 〈a1, . . . , an〉 be a plan for a plan-
ning task T = (V,A, I,G) and ai be an action from Π. If
there exist a Plan Action Landmark aj with j > i and p ∈
(pre(aj)∩effmax(ai)) such that p /∈ (I∪

⋃i−1
k=1 effmax(ak)∪

254

⋃j−1
l=i+1 effmax(al)), then ai is a Plan Action Landmark for

Π and T .

Proof. Since p ∈ pre(aj) and aj is a Plan Action Land-
mark, p has to become true at some point in the state trajec-
tory of 〈a1, . . . , aj−1〉. From the assumption, p is not true
in the initial state nor can be achieved by any action from
〈a1, . . . , aj−1〉 other than ai. Analogously to the proof of
Proposition 3, we can imply that removing ai would always
invalidate precondition of aj . Because aj cannot be removed
from Π (it is a Plan Action Landmark), ai is a Plan Action
Landmark for Π and T too.

Our method for Plan Action Landmarks discovery is de-
picted in Algorithm 2. Firstly, for each fact, we identify what
actions (including the initial state) can possibly achieve it
(Lines 3–7). Then, we look for actions that are the only
achievers of some goal fact (Lines 9–11). These actions are
according to Proposition 3 Plan Action Landmarks. Then,
we iterate backwards through Π while looking for actions
that are the only achievers of some precondition for a Plan
Action Landmark (Lines 12–18). According to Proposition 4
these actions are also Plan Action Landmarks. Algorithm 2
runs in linear time (assuming that the size of action pre-
conditions and effects is constant with respect to the plan
length).

Proposition 5. The algorithm 2 returns a set of Plan Action
Landmarks.

Proof. Lines 3–7 fill the achievers map such that at the end,
for each fact p, achievers[p] will contain the set of actions
from Π (including the initial state) that possibly achieves p.
Note that using effmax(a) for each action a means that the
sets achievers[p] are overapproximations of possible achiev-
ers of p (i.e., achievers[p] is a superset of a set of actual
achievers of p in Π).

Lines 9–11 identify Plan Action Landmarks as actions
that are the only possible achievers of some goal fact (ac-
cording to Proposition 3), i.e., for a goal fact p if achievers[p]
contains only one element, the action listed in achievers[p]
is a Plan Action Landmark.

The for loop in Lines 12–18 goes backwards through Π.
After the for loop in Lines 13–14, the achievers map con-
siders only achievers of facts up to aj−1 (including the ini-
tial state). Lines 15–18 identify Plan Action Landmarks as
actions that are the only possible achievers of some precon-
dition of aj which is a Plan Action Landmark (according to
Proposition 4). Again, if for some fact p ∈ pre(aj), where
aj is a Plan Action Landmark, achievers[p] contains only
one element, the action listed in achievers[p] is Plan Action
Landmark.

So far, the initial state was handled by algorithm as pos-
sible achiever (and as an action). Hence the initial state (if
present in landmarks) is removed in Line 18, so the returned
set of Plan Action Landmarks does not contain it (the initial
state is not an action and hence cannot technically be a Plan
Action Landmark).

Algorithm 3: Action Elimination with Plan Action
Landmarks and Action Cycles

Input : Planning task T = (V,A, I,G), a plan
Π = 〈a1, . . . , an〉 for T

Output: A reduction Π′

1 removed ← ∅;
2 marks← ∅;
3 landmarks← Alg. 2(T,Π);
4 s← I;
5 for i← 1 to n do
6 if i /∈ removed and i /∈ landmarks then
7 marks← marks ∪ {i};
8 s′ ← s;
9 cycle← false;

10 violated ← false;
11 x← eff (ai, s

′);
12 for j ← i+ 1 to n do
13 if j /∈ removed then
14 if not violated and ∃(c, e) ∈

effcond(aj) : vars(c) ∩ vars(x) 6= ∅
then

15 violated = true;
16 if aj is not applicable in s′ then
17 if j /∈ landmarks then
18 marks← marks ∪ {j};
19 if not violated then
20 ∀v ∈ vars(eff (aj , s

′)) :
x[v]← eff (aj , s

′)[v];
21 if s′ |= x then
22 cycle← true;
23 break;

24 else
25 break;

26 else
27 if not violated and

∃(v, val) ∈ eff(aj , s′) : v ∈
vars(x), (v, val) /∈ x then

28 violated ← true;
29 s′ ← γ(s′, aj);

30 if cycle or s′ |= G then
31 removed ← removed ∪ marks;
32 else
33 s← γ(s, ai);
34 marks← ∅;
35 s← γ(s, ai);
36 Π′ ← 〈ai | ai ∈ Π, i /∈ removed〉;
37 return Π′;

Algorithm 2 is performed before AE or GAE. To lever-
age the information about Plan Action Landmarks, AE and
GAE can be easily modified. The condition in Line 5 of Al-
gorithm 1 would include also a check whether ai is not Plan
Action Landmark. Line 11 of Algorithm 1 would consist of

255

a check whether aj is a Plan Action Landmark and if so,
the for loop in Lines 8–13 will be terminated. Integration
of Plan Action Landmarks in AE and GAE does not change
their asymptotic time complexity.

Action Cycles
Chrpa, McCluskey, and Osborne (2012a) and (2012b) stud-
ied under which conditions pairs of inverse actions (i.e., ac-
tions that if consecutively applied results in the same state as
before their application) can be removed from plans while
maintaining their validity. Informally speaking, if actions
placed in between the inverse actions do not require facts
provided by the first inverse action or do not interfere with
effects of the second inverse action, the pair of inverse ac-
tions is redundant.

In this paper, we generalise this idea to any action se-
quence. An action sequence whose application leads to the
same state is redundant (form a set of redundant actions) if
being part of a plan. The AIRS (Anytime Iterative Refine-
ment of a Solution) system (Estrem and Krebsbach 2012),
for instance, is able to identify such situations. However, it
might be the case that such action sequences are interleaved
by other actions in plans. We introduce the notion of an Ac-
tion Cycle which represents a subsequence of actions in a
plan (not necessarily consecutive) that if removed from the
plan the part of the state trajectory after the last action from
that subsequence remains the same as for the original plan.
Definition 6. Let Π = 〈a1, . . . , an〉 be a plan for a planning
task T = (V,A, I,G) and 〈I, s1, . . . , sn〉 be the Π’s state
trajectory. An Action Cycle, C = 〈aι1 , . . . , aιm〉, is a sub-
sequence of actions from the plan Π (not necessarily consec-
utive) such that γ(sι1 , 〈aι1 , aι1+1, . . . , aιm−1, aιm〉 \ C) =
sιm .

Definition 6 provides a blueprint on how Action Cycles
can be identified within (G)AE. Instead of keeping only the
state s′ (see Algorithm 1), we will also keep another state
s′′. Before the j for loop of Alg. 1, we insert s′′ = γ(s, ai).
Then, we insert s′′ = γ(s′′, aj) in between Lines 9 and 10.
Finally, we modify the condition on Line 14 to “s′ |= G or
s′′ = s′”. By such an approach, we can identify all Action
Cycles (G)AE comes across. However, such an approach is
computationally demanding as we have to keep two states
(one for each trajectory) and compare them in each step.

We have, hence, proposed an “incomplete” approach that
tracks only variables that are modified by marked actions.
If the conditions of conditional effects of processed actions
(both actions forming an Action Cycle or interleaving ac-
tions) do not interfere with the variables modified by the ac-
tions in the Action Cycle, then the actions forming an Ac-
tion Cycle are redundant and can be safely removed from the
plan. The idea is formalised in the following proposition.
Proposition 7. Let Π = 〈a1, . . . , an〉 be a plan for a plan-
ning task T = (V,A, I,G) and 〈I, s1, . . . , sn〉 the Π’s state
trajectory. Let C = 〈aι1 , . . . , aιm〉 ⊆ Π be a subsequence
of actions from Π (not necessarily consecutive). Let xl (1 ≤
l ≤ m) be a (partial) variable assignment such that xl[v] =
eff(aιl , sιl−1)[v] iff v ∈ vars(eff(aιl , sιl−1)), xl[v] =
xl−1[v] iff l > 1 and v ∈ vars(xl−1)\vars(eff(aιl , sιl−1)),

or xl[v] is undefined otherwise. We assume the following
conditions hold:

• For each action ak with ι1 < k < ιm and k 6=
ι2, . . . , k 6= ιm−1, it holds that ak is applicable in
γ(I, 〈a1, . . . , ak−1〉 \ C)

• For each i, j with 1 ≤ i < m and ιi < j ≤ ιi+1, it holds
that ∀(c, e) ∈ effcond(aj) : vars(c) ∩ vars(xi) = ∅

If γ(I, 〈a1, . . . , aιm〉 \C) |= xm, then C is an Action Cycle
and also a set of redundant actions.

Proof sketch. The first assumption ensures that actions in-
terleaving with the actions forming the Action Cycle C re-
main applicable even if C is removed from the plan Π.
The (partial) variable assignment xi contains the latest val-
ues of the variables the sequence of actions 〈aι1 , . . . , aιi〉
achieves. Consequently, xi is defined only for variables that
〈aι1 , . . . , aιi〉might modify. The second assumption ensures
that conditional effects of all actions from 〈aιi+1, . . . , aιi+1

〉
are not affected by possibly different values of variables
from xi. That said, removing C from Π does not change the
outcome of conditional effects of the interleaving actions.

The (partial) variable assignment xm contains the lat-
est values of the variables the actions from C achieve. Let
s′ = γ(I, 〈a1, . . . , aιm〉 \ C) be the state obtained by ap-
plying actions from Π while skipping the actions from C
until the last action from C is considered. If s′ |= xm, then
the actions from C cannot change the value of any variable
from s′. Hence, s′ = γ(I, 〈a1, . . . , aιm〉), which means that
C is an Action Cycle (note that it is guaranteed that all ac-
tions interleaving with C have the same effects along both
trajectories; otherwise this would not necessary hold). Since
applying the rest of the plan Π in s′ straightforwardly results
in a goal state, C is also a set of redundant actions.

Proposition 7 provides guidelines for how Action Cycle
detection can be incorporated into the (G)AE algorithm. Al-
gorithm 3 presents an enhanced AE algorithm by consider-
ing Action Cycles and Plan Action Landmarks. As the latter
enhancement is straightforward (as mentioned in the previ-
ous section) we will elaborate in detail only for the Action
Cycle enhancement.

If marked actions form an Action Cycle during the it-
eration of AE, we know that these marked actions can be
safely removed without having to go through the rest of
the plan. Throughout the action marking process, we keep
track whether actions follow the “conditional effect inter-
ference” condition (i.e., variables for conditions are distinct
from those modified by the marked actions) – see Line 14.
Note that considering this condition also for marked actions
(the aιi actions from Proposition 7) is important as in the
algorithm we can use the state trajectory that does not con-
sider marked actions rather than the original state trajectory
(as considered in Proposition 7) since these state trajecto-
ries can differ only in values of variables from x. As long as
the condition is not violated we keep updating the (partial)
variable assignment x consisting of changes to the values the
marked actions would have done so far (Lines 19–20). If x is
entailed by the current state (without considering the marked

256

actions), we have found an Action Cycle (Lines 21–22) and
currently marked actions can be removed without the neces-
sity to go through the rest of the plan (Lines 30–31). Addi-
tionally, we require that interleaving actions do not change
the value of any variable from x (Line 27). Such a condi-
tion is not required to ensure soundness of the Action Cycle
detection process, on the other hand, its rationale is based
on our observation that actions interleaving Action Cycles
rarely change values of variables from x. Note that Algo-
rithm 3, in case either the “conditional effect interference”
or the “variable modification” condition is violated, contin-
ues like the standard AE (with Plan Action Landmarks).

Note that we do not explicitly check whether some
marked action invalidates a precondition of another action
(possibly interleaving an Action Cycle). This is done im-
plicitly by AE as it marks every action whose precondition
is not met in the current state. So, such an action is consid-
ered as a part of an Action Cycle until either it is confirmed
that the action is actually a part of an Action Cycle, or it is
disproved.

It can be observed that integration of Action Cycle detec-
tion in AE and GAE does not change their asymptotic time
complexity.

Example
Let us consider a simple example from the well known
Logistics domain. We have two trucks – trk1, trk2, two
packages – pkg1, pkg2 and three locations – A, B, C.
Initially, both trucks are at location A, packages pkg1,
pkg2 are at locations A and B, respectively. The goal
is to deliver both packages to C. We can observe that
an action sequence 〈drive(trk1,A,B), drive(trk2,A,B),
load(trk2,pkg2,B), drive(trk1,B,C), drive(trk2,B,C),
drive(trk1,C,A), load(trk1,pkg1,A), drive(trk1,A,C),
unload(trk1,pkg1,C), unload(trk2,pkg2,C)〉 is a plan. We
can observe that the load and unload actions are Plan Action
Landmarks since the unload actions are the only achievers
for the goals and the load actions are the only achievers
for the respective unload actions. Also, the drive actions
concerning trk2 are Plan Action Landmarks as are the only
achievers for the respective load and unload actions (con-
cerning the same truck). On the other hand, the drive actions
concerning trk1 are not Plan Action Landmarks because
they are not the only achievers for the respective load and
unload actions. The action subsequence 〈drive(trk1,A,B),
drive(trk1,B,C), drive(trk1,C,A)〉 forms an Action Cycle
and is redundant because trk1 after applying the actions
returns back to A and the interleaving actions concerning
trk2 are not influenced by them (in terms of Proposition 7).

Experiments
The aim of the experiments is to demonstrate that the pro-
posed enhancements generally improve performance of the
AE and GAE algorithms.

The proposed algorithms were implemented in C++ and
the translation from PDDL to the SAS (or FDR) represen-
tation was done by the Fast Downward translator (Helmert
2006). Experiments ran on a computer with processor In-

tel® Core™ i7-7700HQ CPU (2.8 GHz, L2 Cache 1 MB,
L3 Cache 6 MB) and 8 GB RAM (2133 MHz)1.

We used five state-of-the-art planners that were suc-
cessful in the recent IPCs. The considered planners are
Cerberus (Katz 2018), Freelunch-Madagascar (Balyo and
Gocht 2018), LAMA 2011 (Richter and Westphal 2010),
BFWS-Preference (Francès et al. 2018) and YAHSP3 (Vidal
2014). For generating plans, we have adopted the settings
from the Agile Tracks of the IPC, that is, one CPU core, 8
GB of RAM and 300 seconds of CPU time.

We considered all benchmarks from the Agile Tracks of
IPC 2014 and 2018 (800 planning tasks in total). The plan-
ners managed to generate 938 plans in total.

Results
The per domain results of the introduced enhancements of
AE and GAE (as well as their original versions) are pre-
sented in Table 1. In 7 out of 26 domains, no redundant ac-
tions were identified at all, in 4 domains (G)AE optimised
plans by more than 10% on average (in City Car by nearly
1/3), yielding overall optimisation rate of about 5% on av-
erage. Note that GAE outperforms AE in terms of “optimi-
sation power” rather marginally and the results support the
observation of Balyo, Chrpa, and Kilani (2014). Note that
comparing AE with GAE is not our primary concern in this
paper. On the other hand, the results of GAE can highlight
the “power” of the proposed enhancements more profoundly
than the results of AE.

Plan Action Landmarks were identified in every domain,
ranging from 5.1% (Termes) to 100% (Organic Synthesis)
of actions in all plans. In 9 domains more than 80% of ac-
tions were identified as Plan Action Landmarks and on av-
erage, roughly 60% of actions in all plans were Plan Action
Landmarks. Note that if all actions in a plan are Plan Action
Landmarks (like in Organic Synthesis), then the plan is a
minimal reduction of the corresponding planning task. It can
be observed that Plan Action Landmarks can be identified in
the order of milliseconds at most (see Table 1). The results
also show that the use of Plan Action Landmarks improves
runtimes of both AE and GAE considerably (Plan Action
Landmark identification is included), in a few cases even by
a few orders of magnitude (e.g. Visitall, Openstacks). On top
of that, our results show that sometimes even small percent-
age of found Plan Action Landmarks may result in consid-
erable performance improvement (e.g. Barman or Settlers).

Action Cycles were detected on plans from 13 domains
(out of 26 domains we considered). This is one of the rea-
sons why the results are rather mixed and overall slightly
worse when compared to the original AE and GAE, re-
spectively. Higher percentage of identified Action Cycles to-
gether with higher optimisation rate often resulted in better
performance (e.g. Hiking) but there are some exceptions of
the rule (e.g. Transport). With regards to the complete Ac-
tion Cycle detection (see the Action Cycles section), it was
slower by more than 5% than our “incomplete” approach

1Our implementation and experimental data can be found here:
https://gitlab.com/ctu-fee-fras/public/speeding-up-redundant-
action-detection-icaps-2022

257

AE GAE
t-Pl Lm t-Lm Opt AC t t-C t-L t-CL Opt AC t t-C t-L t-CL

Agricola 18 2975.9 74.5 0.008 0.0 - 0.018 0.060 0.015 0.015 0.0 - 0.019 0.060 0.015 0.016
Barman 57 2203.5 19.5 0.022 8.2 91.24 11.453 10.519 2.279 1.361 8.3 94.0 141.776 131.841 32.849 17.173
Caldera 29 1571.7 97.8 0.013 2.2 0.0 0.061 0.068 0.019 0.017 2.2 0.0 0.124 0.131 0.025 0.026
Caldera (split) 12 156.2 51.1 0.004 8.3 0.0 0.038 0.046 0.018 0.020 8.3 0.0 0.075 0.091 0.033 0.036
Cave Diving 27 1923.1 63.7 0.002 0.5 0.0 0.005 0.008 0.005 0.005 0.5 0.0 0.007 0.010 0.006 0.006
City Car 28 1787.5 48.0 0.004 32.4 40.9 0.334 0.285 0.211 0.160 32.4 31.4 1.979 1.807 1.245 1.092
Data Network 34 2135.4 57.9 0.009 12.6 54.8 1.198 1.129 0.435 0.332 12.7 56.1 18.429 16.248 7.991 4.919
Flashfill 27 1326.0 61.8 0.024 0.0 - 0.182 0.184 0.121 0.117 0.0 - 0.178 0.180 0.113 0.117
Floortile 47 417.7 59.1 0.006 8.2 61.6 0.148 0.173 0.021 0.018 8.2 56.7 0.619 0.679 0.059 0.051
GED 68 2139.6 43.6 0.017 1.3 87.5 0.184 0.366 0.054 0.082 1.3 87.5 0.319 0.660 0.104 0.222
Hiking 47 2160.8 50.6 0.015 10.8 73.1 3.519 1.524 2.622 0.634 11.9 73.2 707.303 347.963 469.055 115.079
Child Snack 25 755.8 87.4 0.003 4.3 25.0 0.102 0.110 0.011 0.008 4.3 25.0 0.352 0.372 0.018 0.018
Maintenance 44 475.4 93.4 0.031 5.8 0.0 10.946 11.259 0.996 1.020 5.8 0.0 123.718 127.385 10.080 10.341
Nurikabe 20 948.0 91.1 0.009 0.0 - 0.423 0.436 0.081 0.083 0.0 - 0.434 0.443 0.084 0.087
Openstacks 53 4910.6 82.2 0.052 0.0 - 100.082 100.911 0.885 0.888 0.0 - 100.382 101.197 0.892 0.881
Org. Synth. 9 977.3 100.0 0.001 0.0 - 0.002 0.002 0.002 0.002 0.0 - 0.002 0.002 0.001 0.001
Org. Syn. (spl.) 21 1834.5 89.3 0.013 0.0 - 0.150 0.157 0.069 0.068 0.0 - 0.147 0.155 0.068 0.068
Parking 45 4444.0 64.8 0.014 0.3 100.0 0.078 0.151 0.040 0.039 0.3 100.0 0.095 0.173 0.041 0.042
Settlers 25 1993.7 26.2 0.153 11.3 48.8 10.053 10.073 2.396 2.212 11.7 45.7 65.368 63.643 16.527 14.807
Snake 26 1572.0 36.1 0.015 0.0 - 0.065 0.149 0.069 0.122 0.0 - 0.067 0.154 0.068 0.120
Spider 26 2001.4 63.4 0.031 0.3 0.0 0.487 0.831 0.246 0.243 0.3 0.0 0.552 0.942 0.272 0.275
Termes 31 1439.9 5.1 0.013 5.3 47.1 1.531 1.800 0.887 0.982 6.1 50.6 37.091 42.249 18.310 21.491
Tetris 37 3603.6 13.3 0.026 5.8 74.7 5.994 5.860 5.146 4.923 5.8 77.6 21.954 21.213 19.465 19.088
Thoughtful 69 1824.2 80.3 0.025 4.1 66.4 0.852 0.914 0.312 0.194 4.1 70.0 6.444 4.935 3.461 1.406
Transport 53 3020.9 39.5 0.020 8.1 86.8 4.848 4.911 0.716 0.409 8.1 88.0 146.769 135.495 35.334 15.401
Visitall 60 3063.6 85.8 0.308 0.2 0.0 3300.63 3370.48 67.394 68.747 0.2 0.0 21072.2 21515.1 454.287 457.724∑

938 51662.3 59.2 0.840 5.0 52.9 3453.38 3522.40 85.049 82.698 5.1 52.8 22446.4 22513.1 1070.40 680.487

Table 1: Per domain results (across all generated plans) for AE and GAE and their enhancements. “#” represents the number of
generated plans. “t-Pl” represents the total plan generation time (in seconds). “Lm” represents mean of the percentage of found
Plan Action Landmarks in plans. “t-Lm“ represents the total Plan Action Landmark identification time (in seconds). “Opt”
represents mean of the plan improvement percentage. “AC” represents the mean of percentage of identified Action Cycles w.r.t
all identified sets of redundant actions. Prefix “t-” represents the total optimisation time (in seconds). Suffixes “-L”, “-C” and
“-LC” represent Plan Action Landmark, Action Cycle and both enhancements together, respectively.

(presented in Algorithm 3) in AE despite identifying 4%
more Action Cycles. Removing the condition on Line 27 of
Algorithm 3 resulted in about 2% slowdown with respect to
our “incomplete” approach (in AE). Note that the results of
these variants of Action Cycle detection are not listed in Ta-
ble 1.

The combination of both enhancements achieved the best
results overall (see Table 1) and, specifically, in 17 domains
for AE and 14 domains for GAE. We can therefore observe
that the use of Plan Action Landmarks can mitigate larger
overheads related to Action Cycle detection. In particular,
Plan Action Landmarks can often identify earlier that a set
of marked actions is not redundant saving some time that
would have been spent on trying to prove whether that set of
redundant actions is an Action Cycle.

We would like to emphasise that AE enhanced by both
Action Cycles and Plan Action Landmarks runs on average
in an order of tens of milliseconds per plan. Visitall is a no-
table exception as the number of actions in all plans is about
205000, i.e., about 3500 actions per plan, yielding the opti-
misation time being more than 1 second per plan. That said,
we can optimise plans in (almost) realtime while improving

their quality by about 5% on average.

Discussion
The use of Plan Action Landmarks has shown to be the most
efficient enhancement for both AE and GAE. Plan Action
Landmark discovery prior running AE and GAE is a “one-
time investment” of CPU time (albeit very small as the re-
sults indicate) as the use of Plan Action Landmarks does
not possess any time overheads. On top of that, Plan Action
Landmarks were discovered in every domain and hence they
can be considered as a general type of knowledge that can
be leveraged for early detection of actions that are not redun-
dant. We believe that Plan Action Landmarks can be lever-
aged in more sophisticated optimisation techniques such as
BDPO2 (Siddiqui and Haslum 2015) because they can pro-
vide valuable information on how important facts are being
achieved in plans and that, we believe, can be exploited for
more “targeted” optimisation.

The results of the Action Cycle enhancement are more
mixed. Action Cycle detection introduces overheads to the
original (G)AE, mostly, by maintaining the (partial) variable
assignment x. It hence comes with no surprise that if none

258

or a few Action Cycles are identified during the optimisation
process, the overheads will outweigh the benefits and cause
higher CPU time consumption than would have been spent
by the original optimisation method. On the other hand, Ac-
tion Cycles might be leveraged for optimising partial plans
in online planning as partial plans usually do not achieve the
goal and hence Action Cycles are only redundant actions
that can possibly be identified in these partial plans.

Combining both enhancements brought promising results
because of a synergy that exists between them. As men-
tioned above Plan Action Landmarks often mitigate over-
heads of the Action Cycle detection by early discovery that
the marked actions are not redundant (and hence cannot
form an Action Cycle). AE with both enhancements can be
used (almost) in realtime as the optimisation time is usually
in the order of at most tens of milliseconds while achieving
decent reductions in plan costs (5% on average).

Also, we can usually find out whether and how often
Action Cycles might be identified in a given domain by
analysing a small sample of plans. Therefore, we might be
able to predict whether Action Cycles will work well on a
given domain (and a given planner).

Related Work
Identifying and removing redundant actions, which is the fo-
cus of this paper, can be understood as a “pre-optimisation”
technique as it can be followed by more sophisticated op-
timisation techniques (as, for instance, shown in the ARAS
system (Nakhost and Müller 2010a)). A foundational work
of Fink and Yang (1992) studied redundant actions in to-
tally and partially ordered plans. In particular, they defined
four categories of redundant actions and provided complex-
ity results for each of the categories. One of the categories,
Greedily Justified actions, is a foundation for the Action
Elimination algorithm (Alg. 1) introduced by Nakhost and
Müller (2010a). Greedy Action Elimination, introduced by
Balyo, Chrpa, and Kilani (2014), is an extension of Action
Elimination aiming at removing the most expensive set of
redundant actions in each iteration. Chrpa, McCluskey, and
Osborne (2012b) proposed a technique for identifying re-
dundant pairs of inverse actions. Later the technique was
extended to consider “nested” pairs inverse actions (Chrpa,
McCluskey, and Osborne 2012a). Balyo, Chrpa, and Kilani
(2014) addressed the problem of finding a minimal reduction
(proven to be NP-complete (Nakhost and Müller 2010b)) by
compiling it to MaxSAT and have empirically shown that
(G)AE often find minimal reductions.

Other plan optimisation techniques usually involve iter-
ative identification of (very) suboptimal subsequences of
actions which are then optimised. Westerberg and Levine
(2001) proposed a technique based on Genetic Program-
ming, however, it is unclear how much CPU time the op-
timisation process consumes. AIRS (Estrem and Krebsbach
2012) identifies suboptimal subsequences of actions accord-
ing to a heuristic estimation. If the heuristic estimation indi-
cates that states might be closer than they are, then an opti-
mal planning technique is used to “connect” these states. Ba-
lyo, Barták, and Surynek (2012a,b) exploit a similar philos-
ophy for optimising parallel plans via SAT planning. Plan-

ning Neighborhood Graph Search, which is a part of the
ARAS system (Nakhost and Müller 2010a), expands a lim-
ited amount of nodes along the state trajectory. Then, by
applying Dijsktra‘s algorithm, it looks for a better quality
plan. Siddiqui and Haslum (2013) deorder plan into par-
tially ordered “blocks” which are then optimised. A follow
up work of Siddiqui and Haslum (2015) presents a system
called BDPO2 that incorporates sophisticated strategies for
selecting “windows” (extracted from “blocks”) that are op-
timised.

Conclusion
In this paper, we proposed two improvements of the plan
optimisation algorithms – Action Elimination (Nakhost and
Müller 2010a) and Greedy Action Elimination (Balyo,
Chrpa, and Kilani 2014) – that aim at identifying and re-
moving sets of redundant actions from plans in polynomial
time. Firstly, we identify Plan Action Landmarks that are ac-
tions which are not part of any set of redundant actions and
thus they cannot be removed from the plan. Then, if (G)AE
tries to remove a Plan Action Landmark, then we immedi-
ately know that it and other actions considered for removal
cannot be removed. Secondly, we detect Action Cycles that
if removed the remaining state trajectory will not change.
Hence, if we know that the actions considered for removal
form an Action Cycle, we can safely remove them from the
plan without having to explore the rest of the plan.

We evaluated the proposed enhancements on all bench-
marks from the Agile Tracks of IPC 2014 and 2018. For gen-
erating plans we used five state-of-the-art planners, success-
ful in the recent editions of the IPC. The results have shown
that Plan Action Landmarks provide a considerable perfor-
mance improvement as they can be identified in all consid-
ered domains. Action Cycle detection was not that success-
ful overall as in half of the considered domains no Action
Cycles were identified. On the other hand, in domains such
as Hiking, where Action Cycles were often detected, the per-
formance improvement was much more apparent. Both en-
hancements together achieved the best results in 17 and 14
domains (out of 26) in AE and GAE, respectively. Also, AE
with both enhancements can operate in (almost) realtime,
yet optimising plans by about 5% on average.

For our future work, we would like to adapt our tech-
niques for more expressive forms of planning. For exam-
ple, temporal plans contain actions that are partially or-
dered and (possibly) applied simultaneously. Methods such
as (G)AE (including our enhancements) have to be adapted
to deal with partial ordering of actions and concurrency of
actions. To give another example, in non-deterministic plan-
ning, our techniques can be leveraged during generating
strong (cyclic) plans. In particular, generating strong (cyclic)
plans by “determinisation”, i.e., generating a deterministic
plan for each non-deterministic alternative, as, for exam-
ple, PRP does (Muise, McIlraith, and Beck 2012), provides
an interesting opportunity to leverage our plan optimisation
techniques. We would like to also investigate whether and
how some techniques (e.g. Action Cycles) can be leveraged
during the plan generation.

259

Acknowledgements
This research was funded by the Czech Science Founda-
tion (project no. 18-07252S) and by the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Comput. Intell., 11: 625–656.
Balyo, T.; Barták, R.; and Surynek, P. 2012a. On Improving
Plan Quality via Local Enhancements. In Borrajo, D.; Fel-
ner, A.; Korf, R. E.; Likhachev, M.; López, C. L.; Ruml, W.;
and Sturtevant, N. R., eds., Proceedings of the Fifth Annual
Symposium on Combinatorial Search, SOCS 2012, Niagara
Falls, Ontario, Canada, July 19-21, 2012, 154–156. AAAI
Press.
Balyo, T.; Barták, R.; and Surynek, P. 2012b. Shorten-
ing Plans by Local Re-planning. In IEEE 24th Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI 2012, Athens, Greece, November 7-9, 2012, 1022–1028.
IEEE Computer Society.
Balyo, T.; Chrpa, L.; and Kilani, A. 2014. On Different
Strategies for Eliminating Redundant Actions from Plans.
In Edelkamp, S.; and Barták, R., eds., Proceedings of the
Seventh Annual Symposium on Combinatorial Search, SOCS
2014, Prague, Czech Republic, August 15-17 2014, 10–18.
AAAI Press.
Balyo, T.; and Gocht, S. 2018. The Freelunch Planning Sys-
tem Entering IPC 2018. In Planner Abstracts for the Classi-
cal Tracks in the International Planning Competition 2018,
5–8.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artif. Intell., 69(1-2): 165–
204.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining Redundant Actions in Sequential Plans. In IEEE
24th International Conference on Tools with Artificial Intel-
ligence, ICTAI 2012, Athens, Greece, November 7-9, 2012,
484–491. IEEE Computer Society.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Opti-
mizing Plans through Analysis of Action Dependencies and
Independencies. In Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19,
2012, 338–342.
Estrem, S. J.; and Krebsbach, K. D. 2012. AIRS: Anytime It-
erative Refinement of a Solution. In Youngblood, G. M.; and
McCarthy, P. M., eds., Proceedings of the Twenty-Fifth In-
ternational Florida Artificial Intelligence Research Society
Conference, Marco Island, Florida, USA, May 23-25, 2012.
AAAI Press.
Fink, E.; and Yang, Q. 1992. Formalizing Plan Justications.
In Glasgow, J. I.; and Hadley, R. F., eds., Proceedings of
the Ninth Conference of the Canadian Society for Computa-
tional Studies of Intelligence, 9–14.

Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramı́rez, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Planner Abstracts
for the Classical Tracks in the International Planning Com-
petition 2018, 23–27.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artif. Intell., 143(2): 219–262.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009, 162–169. AAAI Press.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res., 22: 215–278.
Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Planner Abstracts for the
Classical Tracks in the International Planning Competition
2018, 47–50.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved Non-Deterministic Planning by Exploiting State Rel-
evance. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
Nakhost, H.; and Müller, M. 2010a. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Brafman, R. I.; Geffner, H.; Hoffmann,
J.; and Kautz, H. A., eds., Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010,
121–128. AAAI Press.
Nakhost, H.; and Müller, M. 2010b. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement - Extended Version. Technical Report TR 10-
01, Dept. of Computing Science. University of Alberta.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127–177.
Siddiqui, F. H.; and Haslum, P. 2013. Plan Quality Opti-
misation via Block Decomposition. In Rossi, F., ed., IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, Beijing, China, August 3-9,
2013, 2387–2393. IJCAI/AAAI Press.
Siddiqui, F. H.; and Haslum, P. 2015. Continuing Plan Qual-
ity Optimisation. J. Artif. Intell. Res., 54: 369–435.
Vidal, V. 2014. YAHSP3 and YAHSP3-MT in the 8th Inter-
national Planning Competition. In The 2014 International
Planning Competition - Deterministic Track, Description of
Participating Planners, 64–65.
Westerberg, C. H.; and Levine, J. 2001. Optimising Plans
using Genetic Programming. In Proceedings of ECP, 423–
428.

260

