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Abstract

Robots operating in the real world must combine task plan-
ning for reasoning about what to do with motion planning
for reasoning about how to do it – this is known as task and
motion planning. One promising approach for task and mo-
tion planning is Logic Geometric Programming (LGP) which
integrates a logical layer and a geometric layer in an op-
timization formulation. The logical layer describes feasible
high-level actions at an abstract symbolic level, while the ge-
ometric layer uses continuous optimization methods to reason
about motion trajectories with geometric constraints. In this
paper we propose a new approach for solving task and motion
planning problems in the LGP formulation, that leverages
state-of-the-art diverse planning at the logical layer to explore
the space of feasible logical plans, and minimizes the number
of optimization problems to be solved on the continuous ge-
ometric layer. To this end, geometric infeasibility is fed back
into planning by identifying prefix conflicts and incorporating
this back into the planner through a novel multi-prefix forbid-
ding compilation. We further leverage diverse planning with a
new novelty criteria for selecting candidate plans based on the
prefix novelty, and a metareasoning approach which attempts
to extract only useful conflicts by leveraging the information
that is gathered in the course of solving the given problem.

Introduction
Robots operating in the real world, especially robotic manip-
ulators, must come up with plans that involve trajectories for
motion. However, motion planning by itself does not reason
about the logical aspects of the task at hand (LaValle 2006).
Combined task and motion planning (Garrett et al. 2021)
combines both symbolic planning about the task with trajec-
tory planning for the motions involved with the plan. Many
approaches to combined task and motion planning have been
developed (Srivastava et al. 2014; Bidot et al. 2017; Ferrer-
Mestres, Francès, and Geffner 2017; Garrett, Lozano-Pérez,
and Kaelbling 2020; Lagriffoul et al. 2014) over the years.

In this paper we specifically consider Logic-Geometric
Programming (LGP) (Toussaint 2015; Toussaint et al. 2018)
as a formalization of combined task and motion planning
which integrates logical planning into an optimization for-
mulation of geometric reasoning and trajectory optimiza-
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Figure 1: Example of a manipulation task solved by our al-
gorithm. The objective is to compute high-level actions and
a continuous motion that achieves the symbolic goal (on
block1 ball) (on block2 block1) (bottom right) from the ini-
tial configuration (top left). This requires combined logic
and geometric reasoning about tool-use, pushing and pick
& place actions with two robot manipulators.

tion. To solve an LGP problem we need to combine high-
level search over the logical actions with solving the geo-
metric and kinematic constraints that a given logical plan
imposes on the underlying path optimization problem.

However, logical plans are only a necessary condition for
a solution, but not a sufficient condition for geometric and
kinematic feasibility. For a given symbolic plan, the geomet-
ric solver will often discover that there is no feasible motion
to execute the plan, i.e. the plan is geometrically infeasible.
The information about geometric infeasibility needs to be
incorporated back into the logic level to propose alternative
symbolic plans. A key to efficiency of solving LGPs is to
reduce the number of geometric optimization problems that
are checked for feasibility at the geometric level.

In this paper, we propose a new interface between sym-
bolic planners and trajectory optimization via the identifi-
cation of prefixes of logical actions that are geometrically
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infeasible. A key contribution to this end is a new type of
compilation, called the multi-prefix forbidding compilation,
which can also be of independent interest in diverse plan-
ning. This interface enables a systematic interaction between
state-of-the-art symbolic planning and non-linear optimiza-
tion methods to efficiently solve LGPs.

Based on this framework we further propose a novel ex-
tension to leverage diverse planning, based on a prefix-based
novelty criteria, and a metareasoning scheme which better
guides the conflict extraction of infeasible prefixes.

Background
We begin by surveying the necessary background.

Classical Planning
The logical component of an LGP can be described as a clas-
sical planning problem encoded in SAS+ (Bäckström and
Nebel 1995). A SAS+ planning task is described by a tuple
Π = 〈V ,A, s0, g, cost〉, where V is a set of state variables
and A is a finite set of actions. Each state variable v ∈ V
has a finite domain D(v). A fact is a pair 〈v, ϑ〉 of variable
v ∈ V and its value ϑ ∈ D(v). By F we denote the set of
all facts. A (partial) assignment to the variables V is called
a (partial) state. We view a partial state p as a set of facts
with 〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. For a partial state
p, V(p) ⊆ V denotes the subset of state variables instan-
tiated by p. s0 is the initial state, and the partial state g is
the goal. Each action a is a pair 〈pre(a), eff (a)〉 of partial
states called preconditions and effects, and has an associ-
ated cost cost(a) ∈ R0+. An action a is applicable in a
state s if and only if pre(a) ⊆ s. The set of all applica-
ble actions in s is denoted by A(s). Applying a changes the
value of v ∈ V(eff (a)) to eff (a)[v]. The resulting state is
denoted by sJaK. An action sequence π = 〈a1 . . . aK〉 is a
valid plan if each action is applicable in the previous state
(sk = sk−1JakK, starting from s0), and the final state sat-
isfies the goal, that is g ⊆ sK . The set of all plans of the
planning task Π is denoted by PΠ. Given a sequence of ac-
tions π and a natural number k, we denote the prefix of π of
length k by π|k = 〈a1 . . . ak〉.

Logic Geometric Program
A Logic-Geometric Program (LGP) (1) is an optimization
problem over both, logical decision variables and continu-
ous decision variables, where a) logical variables a1:K , s1:K

correspond to discrete actions and states in a sequential deci-
sion domain and b) continuous variables x(t) : t ∈ R→ Rn
correspond to a trajectory in a continuous space.

The continuous space Rn represents the configuration of
movable rigid objects and articulated joints, with initial con-
dition x0 ∈ Rn. The logical variables sk, ak are, respec-
tively, the symbolic state and action at step k, and can be
defined with a SAS+ planning task Π = 〈V ,A, s0, g, cost〉
(see above). a1:K is a short notation for 〈a1 . . . aK〉 (same
for s1:K). We define the successor function succ(s, a) =
sJaK. The continuous motion is divided into K phases
of fixed duration T ∈ R, where nonlinear constraints
hk(x, s0:k) : Rn → Rj (including equality constraints that

can be rewritten as h ≤ 0 and −h ≤ 0) and cost c(x, s0:k) :
Rn → R are defined by the history of symbolic states up to
k. Cost represents control effort (e.g. energy, acceleration,
force and torque) and nonlinear constraints model, for exam-
ple, collision avoidance, grasping, placement, and kinematic
constraints.

LGP min
x,s1:K ,a1:K ,K

K−1∑
k=0

∫ (k+1)T

kT

c(x(t), s0:k) dt (1a)

s.t. x(0) = x0, (1b)
∀k ∈ 0, . . . ,K :

hk(x(t), s0:k) ≤ 0, t ∈ [kT, (k + 1)T ], (1c)
ak ∈ A(sk−1), (1d)
sk = succ(sk−1, ak), (1e)

g ⊆ sK . (1f)

A solution to an LGP is a sequence of symbolic actions
a1:K (K ∈ N is also subject to optimization) that achieves
a symbolic goal g and a corresponding continuous path in
configuration space x(t) that fulfils the constraints h(·) and
minimizes the cost c(·) defined by the action sequence. For a
fixed action sequence a1:K the functions c(·), h(·) are con-
tinuous and piecewise differentiable, and the optimization
of the trajectory is a nonlinear program (NLP) (2), that we
denote with NLP(a1:K).

NLP(a1:K) : min
x

K−1∑
k=0

∫ (k+1)T

kT

c(x(t), s0:k) dt (2a)

s.t. x(0) = x0, (2b)
∀k ∈ 0, . . . ,K : (2c)

hk(x(t), s0:k) ≤ 0, t ∈ [kT, (k + 1)T ].

where s1:K is uniquely defined by a1:K and s0. A sequence
of actions a1:K is geometrically infeasible when NLP(a1:K)
is infeasible, i.e

@ x(t), t ∈ [0, TK] s.t. Eq. (2b) (2c). (3)

Multi-Bound Tree Search
The discrete variables of the LGP formulation in Eq. (1)
induce a search tree that contains sequences of symbolic
states, starting from s0. The leaf nodes where g ⊆ s are
potential candidates for a solution. Each node can be tested
for feasibility by solving the NLP induced by the sequence
of states from the root to the current node. In the standard
solver (Toussaint and Lopes 2017), the tree is explored in a
breadth first seach (BFS) order.

However, solving the continuous path problem is expen-
sive and the number of candidate NLPs is generally too high.
To alleviate this issue, Multi-Bound Tree Search (MBTS)
(Toussaint and Lopes 2017) first solves relaxed versions of
Eq. (2). The feasibility of each relaxed problem is a neces-
sary condition for the feasibility of the original NLP, i.e.,
acting as lower bounds, whilst being computationally faster.
Specifically, two bounds that consider only a subset of vari-
ables and constraints of the full path problem (2) were de-
fined:
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Figure 2: Overview of our approach. We combine a sym-
bolic planner that generates plans of actions, with a motion
planner to compute a trajectory. If a plan is not geometrically
feasible, we extract a conflict, namely a prefix of infeasible
actions, and reformulate the planning task.

The pose bound is a set of k = 1, ...,K independent opti-
mization problems, where problem k corresponds to the con-
figuration at the end of phase k and has variables x(t = kT ),
that are optimized independently.

The sequence bound is an optimization problem with
variables {x(t = kT ), ∀k = 1, ...,K}, that are optimized
jointly accounting for their interdependencies, but without
considering the continuous path between them, i.e. we only
evaluate the constraints at the beginning and end of each
phase. This sequence of discrete configurations is usually
called keyframes or mode-switches.

Iterative Logical Planning for LGP
We can now describe our approach for solving LGP, start-
ing with a high level description, which will be followed by
more details about each of our contributions. The flowchart
in Fig. 2 provides a graphical description, Algorithm 1,
which appears later, shows the pseudo-code for our ap-
proach, and Fig. 3 provides an example of the execution in a
simplified setting.

Our fundamental contribution in this paper is to use di-
verse planning on the logical component of an LGP prob-
lem, yielding a diverse sequence of logical plans. Specifi-
cally, we build upon and extend the iterative plan forbidding
approach (Katz and Sohrabi 2020) to generate this sequence
of logical plans. Each logical plan is then checked for ge-
ometric feasibility by calling a motion planner (we use the
trajectory optimization algorithm from (Toussaint 2015)).

While even the basic scheme proposed above can outper-
form the baseline planning algorithms of Multi Bound Tree
Search (MBTS), we propose several improvements. First,
we exploit the fact that if the geometric feasibility check-
ing for a logical plan π failed, we can often extract a con-
flict, which is similar to conflicts in conflict-directed clause
learning (Silva and Sakallah 1999) or conflict-directed A∗
(Williams and Ragno 2007). In this paper, we address con-
flicts in the form of plan prefixes – that is, a sequence of
logical actions π which is applicable from the initial state at
the logical level, but has no feasible geometric trajectory.

To exploit such conflicts, we must do two things. First, we
must be able to efficiently extract a conflict from a logical
plan which is not geometrically feasible. Second, we must

forbid our logical planner from generating plans which con-
tain the identified conflict as a prefix. Both of these will be
discussed in detail later.

One strength of our algorithm is that it makes very little
assumptions (namely, that the problem can be formulated as
an LGP, which is very general and applicable to any problem
in robotic sequential manipulation with complex physics in-
teractions) and can be implemented based on two off-the-
shelf components.

• A motion optimization framework that formulates
NLP(a1:K) and provides a binary output {0, 1} (infea-
sible or feasible with the corresponding trajectory).

• A logic planner to solve a discrete planning problem.

Prefixes as Conflicts
To begin the detailed discussion of our approach, we discuss
why we choose to identify prefixes as conflicts, and not a
more general restriction on plans. The main reason for this is
that the logical planning task is merely an abstraction of the
LGP task, which completely ignores the geometric aspects
of the problem.

Theorem 1. Let Π be an LGP task (1), and let π be a se-
quence of logical actions, such that π is not geometrically
feasible from the initial state. Then any sequence of actions
π′ which contains π as a prefix is not geometrically feasible
from the initial state.

Proof sketch. Recall that a sequence π = 〈a1 . . . aK〉 of K
actions is not geometrically feasible if the nonlinear opti-
mization problem NLP(π) (2) is infeasible, Given a plan
π′ = 〈π, a′1 . . . a′J〉 that contains π as prefix, assume there
exists a geometric path x(t), t ∈ [0, (K+J)T ] that is feasi-
ble for NLP(〈π, a′1:J〉). This implies that x(t), t ∈ [0,KT ]
is also feasible, which contradicts that NLP(π) is infeasi-
ble, because variables and constraints in time interval t ∈
[0,KT ] are the same in NLP(〈π, a′1:J〉) and NLP(π).

For example, consider an LGP task in which the robot can
pick and place objects on a cluttered table. Suppose the start-
ing sequence 〈pick(B)〉 is feasible at the geometric level, but
〈pick(B), place(B)〉 is infeasible. Then it is safe to infer that
any action sequence beginning with 〈pick(B), place(B)〉
will be infeasible, as demonstrated in the previous theorem.

However, it is not safe to infer that 〈pick(B), place(B)〉
can never be applied. For example, it is possible that object
A is obstructing the place of objectB, and thus the sequence
of actions 〈pick(A), place(A), pick(B), place(B)〉 might be
geometrically feasible. Note that in this example, pick(A)
and place(B) form a causal link (Tate 1977), as pick(A)
supports place(B). However, this causal link does not ap-
pear at the logical level, but only at the geometric level. It is
not possible to infer a stronger conflict than prefixes without
a deeper analysis of the geometric feasibility – this is beyond
the scope of this paper, but will be explored in future work.

We remark that prefix forbidding is a general and sound
way to encode information from the geometric level back
into the symbolic level. It does not rely on hand-crafted ad-
ditional predicates or checks, and is therefore applicable to

281



(on T O1) (on T O2) (Free R) (Free L)

pick O1 L T

place O1 L B

pick O2 L T

place O2 L O1

1

pick O2 L T

place O2 L O1

pick O1 L T

place O1 L B

2

pick O1 R T

place O1 R B

pick O2 L T

place O2 L O1

3

pick O2 R T

place O2 R O1

4

Figure 3: Illustrative example of the execution of our algo-
rithm (with N=1 and eager conflict extraction). The scene
contains two movable objects O1, O2, a table T, a box B
and two robots R, L that can pick and place the objects. The
goal is (on B O1), (on O1 O2). In each iteration, the planner
has produced one plan (1,2,3,4, in this order) that has been
tested for feasibility. The motion planner returned the min-
imal prefix of infeasible actions (highlighted in red), that is
used to reformulate the planning task for the next iterations.
Plan number 4 (in green) is geometrically feasible.

any sequence of actions, independently of the underlying
physics or geometry model.

Forbidding Plans by Prefixes
Having explained why prefixes are an important part of this
approach, we now describe how we prevent our planner from
returning logical plans which begin with a given set of pre-
fixes. Our approach builds upon previous work (Katz et al.
2018), which has suggested a plan forbidding reformulation,
a way of constructing a planning task with a set of valid
plans being reduced by precisely the given plan. The sug-
gested construction follows the execution of the given plan
(sequence of actions) 〈a1 . . . aK〉 and allows to achieve the
(modified) goal only once an action different from ak was
applied at step k.

We modify this construction in two ways. First, instead of
forbidding 〈a1 . . . aK〉 as a plan, we forbid it as a prefix, so
that applying the starting sequence 〈a1 . . . aK〉 in the refor-
mulated task leads to a dead end. Thus, there are no plans
for the reformulation with the prefix 〈a1 . . . aK〉.

Second, we simultaneously forbid multiple prefixes.
While this effect can be achieved by sequential application
of forbidding a single prefix, the simultaneous forbidding
approach yields a much more compact compilation. The key
to the simultaneous forbidding approach is building a prefix
tree which contains all (non-dominated) prefixes. A prefix
π̃ is dominated by prefix π if π is a prefix of π̃, in which
case it is enough to forbid π and not π̃. We construct a tree
T = (N,E) where each node corresponds to a prefix, and
there is an edge from node π to node π′ if we can add one ac-
tion to π to yield π′. Given a set of prefixes, this tree can be
efficiently constructed by adding the nodes from each prefix
iteratively. Given a prefix tree, Definition 1 shows how to

construct a planning task that forbids exactly these prefixes.
Definition 1. Let Π = 〈V ,A, s0, g, cost〉 be a planning
task, T = (N,E) be a prefix tree with L ⊆ N being the
leaf nodes, and A(T ) be the set of operators that appear on
the prefixes in T . The task Π−T = 〈V ′,A′, s′0, g′, cost′〉 is
defined as follows.
• V ′ = V ∪ {v} ∪ {vs | s ∈ N}, with vs being binary

variables and v being a ternary variable,
• A′ = Ae ∪ A1 ∪ A2 ∪ A3, where
Ae = {ae | a ∈ A \ A(T )}, A1 = {a1 | a ∈ A},
A2 = {a2 | a ∈ A(T )}, and A3 = {a3

(s,t) | (s, t) ∈ E}
with

ae = 〈pre(a) ∪ {〈v, 1〉}, eff (a) ∪ {〈v, 0〉}〉
a1 = 〈pre(a) ∪ {〈v, 0〉}, eff (a)〉
a2 = 〈pre(a) ∪ {〈v, 1〉} ∪ {〈vs, 0〉 | (s, t) ∈ Ea},

eff (a) ∪ {〈v, 0〉}〉
a3

(s,t) = 〈pre(a(s,t)) ∪ {〈v, 1〉, 〈vs, 1〉},
eff (a(s,t)) ∪ {〈vs, 0〉, 〈vt, 1〉}〉 if t 6∈ L,

a3
(s,t) = 〈pre(a(s,t)) ∪ {〈v, 1〉, 〈vs, 1〉}, {〈v, 2〉}〉 if t ∈ L,

cost′(ae)=cost′(a1)=cost′(a2)=cost′(a3)=cost(a),
• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, s′0[vs0 ] = 1, and
s′0[vs] = 0 for all s ∈ N \ {s0}, and

• g′[v]=g[v] for all v∈V s.t. g[v] defined, and g′[v]=0.
The following theorem states the correctness of the com-

pilation.
Theorem 2. Let Π be a planning task, let P be a set of
prefixes and T be its prefix tree. If Π−T is the planning task
described in Definition 1, then there is a bijective mapping
between PΠ−

T
and {π ∈ PΠ | ∀k, π|k 6∈ P}.

Proof sketch. The proof is similar to the proof of Theorem
6 by Katz et al. (2018). The main difference between the
two reformulations is in the application of a3

(s,t) for t ∈ L,
which leads to a dead end state. Therefore, for any plan π for
Π with a prefix in P , a corresponding sequence of actions
r−1(π) is not a plan for Π−T .

Finally, we remark that the conflicts we extract can be
encoded as PDDL 3 trajectory constraints (Gerevini et al.
2009). These can be compiled away (Baier and McIlraith
2006), and the above-mentioned compilation is a special
case of such a compilation.

Feasibility Checking
Having described how the logical planning works, we now
explain in more detail how we perform geometric feasibil-
ity checking for a candidate logical plan, and how we can
extract a logical conflict in the process.

If π = 〈a1 . . . aK〉 was found to be geometrically fea-
sible, then we have found a solution to our LGP task and
can terminate. Otherwise, we can stop and return the con-
flict we have at hand 〈a1 . . . aK〉. We will refer to doing this
as lazy conflict extraction. Alternatively, we can also search
for a stronger conflict, in the form of a shorter prefix of π
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that is not geometrically feasible, which we refer to as eager
conflict extraction. Eager conflict extraction searches for the
strongest possible conflict we can extract from π, that is, the
shortest prefix π|k which is geometrically infeasible, i.e.

min k s.t. Feas(π|k) = 0 (4)

where Feas(π) is a binary function that returns 0 (if π is
infeasible) or 1 (if π is feasible). By Theorem 1, Feas(π|k) ≥
Feas(π|k+1). Therefore, we can find the strongest conflict
with a binary search for the length k of this prefix. Initially,
the lower bound l is initialized to 0, and the upper bound
u is initialized to K . The evaluation of the Feas(π|m), for
the midpoint m = b l+u2 c corresponds to checking with the
motion planner whether the prefix up to m is feasible.

As a side note, we can also evaluate the pose bound be-
fore the binary search operation. We first check whether
〈a1 . . . aK〉 has feasible geometric poses for k = 1 . . .K.
If the pose checking failed for some k, we can infer that
〈a1 . . . ak〉 is infeasible, and start binary search with u = k.

As the geometric feasibility checking is the most expen-
sive computational action we perform, we cache every pre-
fix we check and whether it is feasible or not. This cache is
helpful in speeding up feasibility checking, as different log-
ical plans might still share a common prefix. Additionally,
this cache serves as a dataset which captures the history of
computational actions performed so far, which will be use-
ful for (a) metareasoning about feasibility checking, and (b)
guiding our choice of which plan to check for feasibility next
when we use diverse planning. These are described in the
following sections.

Metareasoning for Conflict Extraction
So far we have described two approaches for conflict ex-
traction: lazy, which does not perform any reasoning to ex-
tract conflicts, and eager, which attempts to find the minimal
conflict. We now describe a middle-ground approach, which
tries to perform metareasoning (Russell and Wefald 1991) to
balance the cost (the computational effort spent on extract-
ing a conflict) and the reward (the benefits from having a
stronger conflict). As the most expensive operation in our al-
gorithm is geometric feasibility checking, we measure both
the reward and the cost in number of geometric feasibility
checks – either required to extract the conflict, or saved by
having the conflict.

We now describe the metareasoning problem we face in
deciding when to stop looking for a conflict, and the over-
all utility we can expect to obtain. Let τ = 〈a1 . . . ak〉 be
some sequence of actions. We will denote by r(τ) the re-
ward from adding the conflict τ . Of course, this is an un-
known quantity, and we will describe ways to estimate it
later. Recall that during the binary search for a minimal con-
flict, we have a logical plan π, and a range [l, u] such that π|u
is not geometrically feasible, while π|l is. Thus, we can de-
fine the metareasoning problem for a given plan π of length
|π| as a Markov Decision Process (MDP) (Bellman 1957)
with states Sπ = {〈l, u〉 | l ≤ u ∈ 0 . . . |π|} – that is, each
state describes the current range of the search.

The terminal states are those where the search has con-
verged, that is {〈l, l〉 | l ∈ 0 . . . |π|}. The reward in state

〈l, l〉 is the reward from adding the conflict π|l, that is r(π|l).
The reward from all other states is 0. As we are sure to reach
a terminal state, there is no need to introduce a discount fac-
tor (that is, γ = 1).

The possible actions at state 〈l, u〉 are either to stop
searching or continue searching. The decision to stop search-
ing yields a deterministic transition to the state 〈u, u〉 – that
is, we terminate and add the conflict π|u, obtaining reward
r(π|u).

Although the binary search always continues search by
checking the middle node (b(l + u)/2c), using the metarea-
soning MDP allows us to consider any of the nodes between
l and u as the next node to check. Thus, we have u − l + 1
possible actions – one for each node in the range.

Let us denote the probability of a sequence of actions τ
being geometrically feasible by pf (τ). Then by continuing
the search to node m (representing π|m), we reach the state
〈m,u〉 with probability pf (π|m), and state 〈l,m〉 with prob-
ability 1− pf (π|m).

Due to the structure of this MDP which lacks any loops,
we can compute the optimal values using simple dynamic
programming, starting with the terminal states, and comput-
ing the optimal value function for states with an increasing
gap between the lower and upper bound – that is, we com-
pute the value for states {〈l, l + 1〉 | l ∈ 1 . . . |π| − 1}, then
for {〈l, l + 2〉 | l ∈ 1 . . . |π| − 2}, and so on.

Of course, we still do not know the exact rewards or tran-
sition probabilities. In the following, we describe a data-
driven method to estimate these, which allows us to compute
an optimal policy for an approximate MDP.

Data-driven Estimation
Although computing r(τ) exactly is not tractable, it should
be commensurate with the number of logical plans which
would be pruned by introducing the conflict τ . While we do
not know this number, we can estimate the fraction of plans
that would be pruned by conflict τ by the fraction of plans
we have discovered which have τ as a prefix. Thus, we can
define the estimator

r̂(τ) :=
|{π′ | π′ ∈ C, τ is a prefix of π′}|

|C|
where C is the set of prefixes in our cache. As the number
of matching prefixes in the numerator might be 0 (especially
early on in the process), we actually add 1 to both numerator
and denominator.

The probability of a prefix being feasible or not can also
be estimated from the history of previous feasibility checks.
Recall that we cache every prefix we check for feasibility.
We use this cache to estimate pf . We follow a type system
approach (Lelis 2013) and define a set of simple features for
each prefix. Specifically, we use the length of the prefix as its
only feature, and keep track of how many feasibility checks
were performed for each prefix length, and how many of
these turned out to be feasible – the ratio between these is
our estimate of pf , denoted p̂f .

Combining r̂ and p̂f we can define our MDP. As our em-
pirical results will show, this approach results in reducing
the runtime of our solver.
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Diverse Logical Planning for LGP
So far, we discussed an incremental approach, which gener-
ates one new logical plan at every iteration, and then tests
that plan. We now explain how we can explore the space of
logical plans more rapidly. The key idea here is to gener-
ate multiple plans at each iteration, and then choose one of
them for geometric feasibility checking. Generating a set of
plans is done by applying the forbidding compilation (Def-
inition 1) iteratively, as done in previous diverse planning
approaches (Katz et al. 2018).

The main question here is how to choose which plan to
test next. Prefixes drive our approach, so it makes sense to
choose a plan which has the longest novel prefix, as even
if that plan fails there is a higher chance that we will ex-
tract a short conflict from that plan. Furthermore, choosing a
plan with a novel prefix encourages our approach to explore
the space of logical plans, thereby covering diverse high-
level approaches to the task that imply different nonlinear
programs for the continuous trajectory. Thus, we define the
novelty of a plan π with respect to a set of plans LP as

np(π, LP ) := −min{k | ∀π′ ∈ LP, π′|k 6= π|k}
We then choose to test the plan π which maximizes the

novelty with respect to the set of plans that were already
tested for geometric feasibility, breaking ties randomly. We
remark that this notion of novelty is different from previous
ones (Lipovetzky 2021; Tuisov and Katz 2021), and serves
as a greedy selection criterion for choosing the next plan.
It is not clear how to extend this idea into a metric which
would allow choosing multiple different plans which maxi-
mize mutual novelty – this could be explored in future work.

To summarize, Algorithm 1 describes our technique in
pseudo-code and Figure 3 shows an illustrative example of
the execution of our algorithm in a simplified setting. We can
now state the theorem proving that our approach is sound
and complete.
Theorem 3. If the underlying classical planner is sound and
complete and the motion planner always finds a feasible tra-
jectory if such a trajectory exists (2), then Algorithm 1 is
sound and complete.

Proof sketch. The proof follows from the fact that we only
identify prefixes which can not appear in the beginning of
geometrically feasible plans (Theorem 1), and from the cor-
rectness of the forbidding compilation (Theorem 2).

An important technical point is that some planners per-
form a relevance analysis, and discard actions or state vari-
ables which are thought to be useless or redundant. For ex-
ample, two actions might have the same logical effects, and
thus the planner might decide to keep only one of them.
However, the actions might lead to different geometric con-
straints, and it might be the case that one of them is feasible
while the other is not. Thus, such preprocessing techniques
must be disabled when solving the logical planning task.

Related Work
We now discuss some related work about combined task
and motion planning (TAMP). Perhaps the closest approach

Algorithm 1: Pseudo-code for Diverse LGP Planning

Input: LGP task ΠLGP
Parameters: N . number of plans to generate at each
iteration
Π := logical projection of ΠLGP
T := ∅ . set of tried plans
LP := ∅ . set of found logical plans
MC := ∅ . set of found conflicts
while not solved do

Πf := FORBID(Π, LP ∪MC) . Forbid found
plans and conflicts. See Sec. Forbidding Plans by Prefixes

LP := LP ∪ Diverse-Plan(Πf , N) . call diverse
logical planner to find N new plans.

π := SELECT(LP, T ) . select a plan to try. See Sec.
Diverse Logical Planning for LGP.

feasible, traj := MOTION-Feasible?(ΠLGP, π) .
Check π for geometric feasibility

if feasible then return π, traj . Return trajectory and
logical plan

else
T := T ∪ {π}
conflict := FIND-CONFLICT(π) . find a prefix

of π that is infeasible. See Sec. Feasibility Checking and
Sec. Metareasoning for Conflict Extraction

MC := MC ∪ {conflict}
end if

end while

to ours is the extensible planner-independent interface layer
between task and motion planners (Srivastava et al. 2014).
It combines a black-box task planner with a motion plan-
ner through reformulation. It calls a task planner on an ab-
stract task, and if it fails it encodes geometric information
about the cause of failure into the task planner with spe-
cial predefined predicates. Similarly, the method in (Dan-
tam et al. 2016) incrementally incorporates information
about the motion feasibility into the symbolic description
by using a constraint-based task planning formulation and
a Satisfiability Modulo theory (SMT) solver. Another re-
lated approach is PDDLStream (Garrett, Lozano-Pérez, and
Kaelbling 2020), which also combines symbolic planners
with motion planning. Specifically, PDDLStream uses con-
strained samplers (in configuration space) to discretize the
motion planning problem, and PDDL planning to solve the
combined problem. (Ferrer-Mestres, Francès, and Geffner
2017) argues that classical planners can solve task and mo-
tion planning problems through a precompilation of geomet-
ric information.

The above methods address a path finding formulation
of TAMP and use sample-based path planning, rather than
an optimization based formulation such as LGP that cou-
ples logic search with constrained optimization. Both for-
mulations have strengths and weaknesses in different situa-
tions, and in this paper we focus on efficiently solving the
optimization-based formulation. Further, in the above ap-
proaches, geometric information is fed back by explicitly en-
coding it in the logical layer, enriching the language of log-
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Figure 4: The goal in the blocks environment is to rearrange objects in the scene, for example, building a tower of 5 blocks. In
total, the scene contains 12 movable objects, that can be manipulated by two robots and placed on top of each other.

ical planning with additional predicates. This is in contrast
to our approach which keeps the “languages” of the two lay-
ers separate by translating geometric infeasibility constraints
into forbidden prefixes of logical actions.

Empirical Evaluation
Benchmarks
We use 3 different domains, all with 2 7-DOF robotic arms.

Blocks the robots can execute pick and place actions to con-
struct a specified tower of blocks, similarly to the classi-
cal blocksworld domain – except that the planner must
come up with motion plans as well. Robots can hold a
stack of blocks, move the boxes and place several objects
on top of other objects. See Fig. 4.

Hanoi the robots can execute pick and place actions, to
solve a tower of Hanoi problem with objects of equal size
and three tables. Only the top object of each tower can be
picked and at most one tower is allowed in each table.
From a symbolic point of view, this is harder than blocks
and requires longer action sequences, but the instances
we use have less movable objects in the scene.

Push the robots can pick and place blocks and balls, and
pick sticks and use them as a tool to push balls. The goal
is to move balls and blocks to a desired symbolic state,
for example, stacking blocks and placing the ball on top.
See Fig. 1.

For each domain, we generate different problems (e.g
blocks-{0,1,2,3,4,5}) by modifying the goal and the num-
ber of objects, increasing the complexity in the logical and
geometric levels. Our benchmark contains 6 problems in
the domain blocks, 3 in Hanoi and 11 in Push. A subset
of these problems, together with the solutions computed
by our framework, are shown in the supplementary video
https://youtu.be/7Ev6zNbqdjo.

LGP Formulation
Logic The LGP formulation uses a minimal logical de-
scription that encodes only the structure of the kinematic tree
and the type of physical interactions (whether stable grasp or
pushing). Examples of predicates and actions are: on(A B),
busy(gripper) and (pick A gripper T), (push A stick table).

Geometry Collision avoidance, reachability, physical in-
teractions and placement constraints are modelled in the
geometric level. Grasping model: Instead of force-based
grasp constraints we use simplified geometric constraints,
namely that a point near the endeffector’s grasp palm

touches the object surface. In practice, for boxes this typi-
cally implies the existence of a stable grasp, which is then
represented as a stable relative transformation until place-
ment. Pushing model: We introduce decision variables for
the force and point-of-attack between two interacting objects
to model pushing. Motion and forces are then constrained by
physics equations (Toussaint, Ha, and Driess 2020).

Baselines
We compare our new approach “Diverse Logical Planning”
against three variations of Multibound Tree search MBTS-
{0,1,2}. MBTS-0 does not perform geometric checks in in-
termediate symbolic nodes, i.e. it waits until a full candi-
date symbolic plan is found. MBTS-1 and MBTS-2 check,
respectively, the pose and sequence bound before expanding
a symbolic node in the BFS search.

Geometric checks during node expansion (MBTS-1,
MBTS-2) prune partial plans that are infeasible, which re-
duces the branching factor of the search and future node ex-
pansions, but increases computational time spent in solving
NLPs of action sequences that do not lead to the goal.

The scope of this paper is to improve the logic search
specifically in the LGP framework, so that the formula-
tion can be applied to settings that require longer action se-
quences and challenging symbolic reasoning. Therefore, we
do not compare to other methods in task and motion plan-
ning, e.g. (Garrett, Lozano-Pérez, and Kaelbling 2020), that
use different underlying problem formulations and methods.

Results
We use the first iteration of LAMA (Richter and Westphal
2010) as our underlying classical planner. We ran a set of
experiments comparing several versions of our approach to
the baselines – all experiments were run on an AMD Ryzen
9 5980HS CPU with a 600 second time limit per run. Results
are shown in Tab. 1. We omit problems hanoi-2 and blocks-
5, that were not solved by any algorithm or baseline.

Comparison to baseline Hypothesis: “Our basic novel
approach (N=1, eager conflict extraction) will be faster and
solve more problems than any of the MBTS baselines”.

Our method with “N = 1, eager” solves more problems
(18 vs 12 out of 20) and is faster (16 vs 2) than all the base-
lines MBTS-{0,1,2}. In Table 1, we only report MBTS-0, that
shows better performance than the other baselines.

MBTS-0 does not solve problems that require long ac-
tion sequences or where the branching factor of the tree
is very high (for example, the domain blocks contains 12
movable objects). Due to the logically-uniformed behaviour
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MBTS-0 N=1 eager N=4 eager N=4 meta

time pose seq time pose seq time pose seq time pose seq

blocks-0 19.41.0 12.00.0 3.00.0 43.71.8 19.90.9 6.50.5 41.84.3 17.51.9 6.50.9 41.34.4 17.51.9 2.80.6
blocks-1 - - - 44.81.3 18.00.0 5.00.0 44.05.6 17.12.3 4.80.9 46.56.4 17.12.3 1.70.3
blocks-2 - - - 82.610.5 17.00.0 4.00.0 60.48.6 12.61.1 2.40.5 70.911.8 12.61.1 1.40.2
blocks-3 - - - 1115.8 17.01.0 3.40.4 10419.7 21.72.8 5.41.1 80.212.0 20.83.1 2.10.4
blocks-4 - - - 20033.1 27.18.2 6.12.8 16017.0 19.33.1 3.31.1 13922.6 17.82.7 1.30.2
hanoi-0 10.40.4 13.00.0 4.00.0 7.00.2 7.00.0 3.00.0 10.01.9 8.00.9 3.70.8 9.11.8 8.61.1 2.90.5
hanoi-1 34.70.7 34.00.0 6.00.0 27.00.6 17.00.0 8.00.0 18.73.1 13.51.0 5.10.6 13.82.2 14.01.0 3.40.4
push-1 41.90.8 55.80.2 1.00.0 17.10.4 14.00.0 4.00.0 24.41.4 17.31.1 5.30.5 24.91.7 18.71.2 3.80.4
push-2 50.01.0 64.00.0 1.00.0 49.50.9 37.00.0 13.20.1 37.11.1 23.20.9 7.20.4 34.31.6 24.30.8 3.20.2
push-3 27.70.9 38.00.0 1.00.0 14.40.2 11.00.0 3.00.0 26.13.2 17.92.0 5.80.9 21.11.8 17.31.8 2.90.3
push-4 75.91.5 1040.0 2.00.0 71.37.8 41.22.8 15.21.5 32.64.1 20.32.2 5.91.0 30.62.7 21.32.4 3.10.4
push-5 1111.6 1440.1 1.00.0 20.40.3 17.00.0 5.00.0 30.82.5 23.72.2 7.40.9 29.42.4 24.42.3 3.20.4
push-6 1171.5 1420.0 1.00.0 64.51.2 50.00.0 17.10.1 45.41.0 29.20.7 9.20.4 45.11.2 31.81.2 4.60.3
push-7 - - - 68.64.6 51.33.5 19.01.6 79.15.4 52.64.0 18.01.6 70.42.6 53.02.7 7.40.5
push-8 78.31.2 92.00.0 1.00.0 17.00.4 13.00.0 3.00.0 32.43.6 26.03.0 7.81.1 32.83.7 28.23.6 4.10.6
push-9 24840.1 42367.2 2.50.5 63.31.3 45.00.0 16.00.0 46.26.2 32.53.7 10.41.4 49.811.9 39.79.5 5.31.7
push-10 12.70.5 16.00.0 1.00.0 12.80.5 9.00.0 3.00.0 13.81.6 10.41.3 3.30.6 13.21.4 10.51.3 1.60.2
push-11 - - - 61.19.3 25.52.3 10.71.4 26.02.0 13.40.5 3.80.4 30.55.4 16.72.5 2.60.6

Total 827 1138 24.5 976 437 145 833 376 115 783 394 57.4

Table 1: Summary of the experimental results. We report the computational time in seconds (time), and the number of calls to
the motion planner for checking the pose bound (pose) and the sequence bound (seq), with the mean over 10 randomized runs
in black and standard deviation of the mean estimator in gray. Total is the sum of the columns (note that the sum for MBTS-0 is
over less problems). A dash “-” denotes that the problem was not solved in all 10 runs.

of Breadth First Search, it only finds few symbolic plans
(sometimes zero), none of them geometrically feasible. In-
stead, our method leverages state of the art symbolic plan-
ning to compute action sequences efficiently even in huge
symbolic spaces, and geometric information is encoded in-
crementally in the planning task through our prefix forbid-
ding reformulation.

Analysis of Diverse Planning Hypothesis: “Diverse
planning with novelty measure will improve over incremen-
tal plan generation”.

We compare “N=1, eager” (the planner produces a single
plan, that is evaluated by the motion planner) and “N=4, ea-
ger ” (the planner produces 4 plans in each iteration, that are
stored in a buffer; the motion planner evaluates the plan in
the buffer that maximizes our novelty criteria).
N = 4 reduces both the overall computational time and

the number of tested plans. Choosing a plan from a set of
candidates with our criteria is beneficial, as it enforces a
novelty-based exploration in the space of candidate logical
plans. The role of prefixes and orderings in an LGP is cap-
tured correctly by our novelty measure, which outperforms
classical plan similarity metrics like action set similarity (not
shown in Tab. 1 due to space constraints), which is inaccu-
rate in the context of LGP, where action ordering and prece-
dence can not be neglected.

Analysis of Conflict Extraction Hypothesis: “Metarea-
soning is faster than eager and lazy conflict extraction”.

For N=4, we compare three different methods for extract-
ing prefix conflicts: eager (finds minimal prefix using the
sequence bound) lazy-pose (enhacement of lazy that checks

only the pose bound to try to extract a conflict) and meta
(metareasoning approach for conflict extraction).

Our metareasoning approach delivers a speedup across
problems (meta is better in 12 vs eager 6). The lazy-pose
(not shown in Tab. 1 due to space constraints) sometimes
provides small infeasible prefixes with the pose bound, but
is slower than meta and eager. Finally, note that sequence
bounds of feasible NLPs are very fast to compute. This ex-
plains why in some problem eager is faster than meta even
if it performs more geometric checks in total.

Conclusions
This paper is the first to propose a systematic interface
between state-of-the-art symbolic planners and nonlinear
constrained path optimization methods to solve Logic-
Geometric Programs. A key idea of our approach is to ef-
ficiently identify geometric conflicts in the form of mini-
mal infeasible action prefixes, and incorporate this informa-
tion back into the symbolic planner through a multi-prefix
forbidding compilation. Based on this general interface, we
further developed a metareasoning strategy to minimize the
number of calls to the motion planner, and a new novelty
criteria for selecting plans from a set of candidates. Our ap-
proach systematically outperforms the baseline LGP solver,
solving more problems and faster, especially when the solu-
tion requires long action sequences.

As future work, symbolic and geometric heuristics could
be combined to guide the logical planner. Not only forbid-
ding a tree of prefixes, as presented here, but informing the
planner that some partial action sequences have been found
to be geometrically feasible in previous iterations.

286



Acknowledgements
This research was supported by the German-Israeli Founda-
tion for Scientific Research (GIF) grant I-1491-407.6/2019,
the German Research Foundation (DFG) under Germany’s
Excellence Strategy EXC 2002/1–390523135 “Science of
Intelligence”, and the International Max-Planck Research
School for Intelligent Systems (IMPRS-IS).

References
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