
The Power of Reformulation: From Validation to Planning in PDDL+

Francesco Percassi,1 Enrico Scala,2 Mauro Vallati 1

1 School of Computing and Engineering, University of Huddersfield, UK
2 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy

f.percassi@hud.ac.uk, enrico.scala@unibs.it, m.vallati@hud.ac.uk

Abstract

PDDL+ allows the formal specification of systems represent-
ing mixed discrete-continuous representation, under both dis-
crete and continuous dynamics. To support the validation of
PDDL+ tasks, that is currently performed by a very limited
number of tools, in this work we propose an approach for ex-
ploiting any domain-independent PDDL+ or PDDL2.1 plan-
ning engine for validating PDDL+ plans. We introduce a set
of translations that, given a PDDL+ plan and the correspond-
ing PDDL+ task, generate a new PDDL+ or PDDL2.1 whose
solvability is bound to the validity of the considered plan. We
empirically evaluate the usefulness of the proposed approach
on a range of PDDL+ benchmarks under an interpretation of
time that can be either continuous (through a PDDL+ transla-
tion) or discrete (through a PDDL+ or a PDDL2.1 translation).

Introduction
The nature of real-world applications often necessitates the
ability to represent and reason in terms of hybrid discrete/-
continuous changes. In automated planning, this necessity
lead to the design of a dedicated language called PDDL+
(Fox and Long 2006), that supports the compact encoding of
hybrid models involving mixed discrete/continuous effects,
processes, exogenous events, and continuous change. Hy-
brid PDDL+ problems are notoriously hard to cope with, due
to the intrinsic difficulties of reasoning with numeric vari-
ables (Helmert 2002), and time in an intertwined way.

The importance of validation for automated planning has
long been recognised in both domain-independent planning
(McCluskey and Porteous 1997) and in space applications
(Penix, Pecheur, and Havelund 1998). In real-world applica-
tions validation is a crucial process to assess the overall qual-
ity of a planning model as well as the correctness of the plan-
ning process as a whole (Bensalem, Havelund, and Orlandini
2014; McCluskey, Vaquero, and Vallati 2017). In particular,
plan validation plays a major role in real-world applications,
as it aims at checking if a given plan is executable and pro-
duces a final state where all the goal conditions are satisfied,
given a corresponding planning knowledge model.

The flagship tool for plan validation is VAL (Howey,
Long, and Fox 2004; Fox, Howey, and Long 2005), which
supports the validation of plans of a large number of PDDL

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning formalisms, e.g., PDDL2.1 (Fox and Long 2003),
PDDL3 (Gerevini et al. 2009) and PDDL+ (Fox and Long
2006). The exacerbated complexity of PDDL+ problems
is also reflected in the increased complexity of validating
PDDL+ solution plans against the corresponding PDDL+
knowledge models (Howey, Long, and Fox 2004). On top
of that, it is also arguable that the reliance on a single soft-
ware tool for validating complex hybrid plans from disparate
real-world applications lays itself open to faults due to po-
tential bugs or limited support of PDDL+ language features.
To mitigate the mentioned issues, one approach is to extend
the number of validating tools (see for instance INVAL1).
However, the development of such tools for PDDL+ is ex-
tremely time-consuming and demanding – and this is one of
the reasons why there is just one validation tool available.

A different line of research looked into the reformulation
of the validation task into theorem proving (Abdulaziz and
Lammich 2018). This has the advantage of reducing the pos-
sibility of bugs but is currently limited to classical planning
formalism. Arguably, there is a wide availability of planning
engines. Their exploitation as part of a validation frame-
work would be beneficial to tackle the issues mentioned
above related to the reliance on a single validation system.
In this work, we propose an innovative reformulation-based
methodology for validating PDDL+ plans, that allows one
to tap into the available pool of domain-independent plan-
ning engines. More specifically, we introduce a set of trans-
lations that, given a PDDL+ task and a solution plan, al-
lows one to generate a corresponding validating PDDL+ task
whose solvability is intrinsically related to the validity of
the considered solution plan against the PDDL+ model. In
this way, any planning engine that supports PDDL+ can also
be used to validate PDDL+ solutions, thus significantly ex-
tending the range of software tools available for the vali-
dation process. Further, according to the characteristics of
the planning engine, the validity of a solution can be tested
against different semantics. The use of engines that exploit
a discretisation-based approach to PDDL+, such as ENHSP
(Scala et al. 2016), allows demonstrating the validity of a
plan with respect to the discrete semantics, while the use
of engines capable of reasoning over a continuous timeline,
like SMTPLAN (Cashmore, Magazzeni, and Zehtabi 2020),

1https://github.com/patrikhaslum/INVAL

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

288

allows to test the validity with regards to the continuous se-
mantics. Further, leveraging the work by Percassi, Scala,
and Vallati (2021) to translate PDDL+ tasks into numeric
PDDL2.1 (level 2) tasks, we introduce an optimised trans-
lation that allows extending the pool of planning engines to
include those that support PDDL2.1. Our approach enables
the validation of domain models using non-polynomial dy-
namics, and the validation of plans under discrete semantics
(Percassi, Scala, and Vallati 2021). We are not aware of ap-
proaches that are capable of handling these two aspects.

Our empirical analysis assesses the merits of the pro-
posed approach and evaluates the usefulness of the intro-
duced translations over a large set of PDDL+ benchmarks
under both discrete and continuous semantics.

Background
In this section we report on the PDDL+ problem (Fox and
Long 2006). We specify our problems using propositional
formulas over numeric and Boolean conditions defined over
sets of numeric and Boolean variables. A numeric condi-
tion is of the form 〈ξ ./ 0〉 with ξ being a numeric expres-
sion, and ./∈ {≤, <,=, >,≥}. A Boolean condition is of
the form f = {>,⊥} with f being a Boolean variable.

A PDDL+ planning problem Π is the tuple
〈F,X, I,G,A,E, P 〉 in which each element is detailed
in the following. F and X are the Boolean and numeric
variables. Numeric variables take values from R. I is the
description of the initial state, expressed as a full assignment
to all variables in X and F . G is the description of the goal,
expressed as a formula. A and E are the sets of actions
and events, respectively. Actions and events are pairs 〈p, e〉
where p is a formula and e is a set of conditional effects of
the form c . e. Each conditional effect c . e is such that (i) c
is a formula and (ii) e is a set of Boolean assignments of the
form 〈f := {⊥,>}〉 or numeric assignments of the form
〈{asgn, inc, dec}, x, ξ〉 where ξ is a numeric expression.
P is a set of processes. A process is a pair 〈p, e′〉 where p
is a formula and e′ is a set of numeric continuous effects
expressed as pairs 〈x, ξ〉 where ξ is the net derivative of x.

Let a = 〈p, e〉 be an action/event/process, we use pre(a)
to refer to the precondition p of a, and eff(a) to the effect e
of a. Moreover, in the following we will use a, ρ, and ε to
refer to a generic action, process, and event, respectively. In
order to make the notation more concise, Boolean conditions
and assignments of the form 〈f = ⊥〉 (〈f := ⊥〉) and 〈f =
>〉 (〈f := >〉) are shortened to f and ¬f , and conditional
effects of the form > . e are rewritten as e.

A PDDL+ plan πt is a pair 〈π, 〈ts, te〉〉 where: π =
〈a1, t1〉, ..., 〈an, tn〉 with ti ∈ Q is a sequence of time-
stamped actions; 〈ts, te〉, with ts, te ∈ Q and ts ≤ te, is
the envelope within which π is performed. We say that πt is
well-formed iff ∀ i, j ∈ [1..n] and i < j, then ti ≤ tj and
ts ≤ ti ≤ te hold. Hereinafter we consider just well-formed
plans.

Intuitively, a PDDL+ problem consists in finding plans
along a potentially infinite timeline, whilst conforming to a
number of processes and events that may change the state of
the world as time goes by. Both processes and events are ap-
plied as soon as their preconditions become satisfied (must

transitions); differently, actions are decisions that need to be
taken (may transitions).

Following Percassi, Scala, and Vallati (2021) and Shin
and Davis (2005), we formalise the PDDL+ semantics
through the notion of time points, histories and the projec-
tion of a plan given a domain. We assume the reader is fa-
miliar with well known notions of action/event applicability,
and use in the rest γ(s, ·) to denote the state resulting by
applying either an action/event (γ(s, a)) or a sequence of
action/events (γ(s, 〈a1, ..., an〉)) in a state s.

A time point T is a pair 〈t, n〉 where t ∈ R and n ∈ N.
Time points over R × N are ordered lexicographically. A
historyH over an interval I = [Ts, Te] maps each time point
in I into a situation. A “situation at time point T ” is the tuple
H(T) = 〈HA(T),Hs(T)〉, whereHA(T) is the sequence of
actions executed at time point T and Hs(T) is a state, i.e.,
an assignment to all variables in X and F at time point T .
We denote byHs(T)[v] andHs(T)[ξ] the value assumed by
v ∈ F ∪ X and by a numeric expression ξ, respectively, in
state s at time T . Etrigg(T) indicates the sequence of active
events in T . T is a significant time point (STP) of H over I
iff either at least an action is applied (HA(T) 6= 〈〉), a non
empty sequence of events is triggered (Etrigg(T) 6= 〈〉),2 at
least a process ρ has started or stopped, the precondition of
ρ becomes (un)satisfied, or there has been a discrete change
just before. A history H is monotonous over a real interval
It if there are no STPs in It.

The validity of plans can be determined both over a con-
tinuous or a discrete interpretation of time. Both require the
definition of a PDDL+ plan (discrete) projection.

Definition 1 (PDDL+ plan projection). We say that Hπ is a
projection of πt which starts in I iff Hπ induces a sequence
of STPs TH = 〈T0 = 〈ts, 0〉, ..., Tm = 〈te, nm〉〉 such
that Hπ is defined over I = [T0, Tm] with Hπs (T0) = I ,
HπA(Tm) = 〈〉, Etrigg(Tm) = 〈〉 and, for i ∈ [0..m], the
following rules hold:

R1 Etrigg(Ti) 6= 〈〉 iff Hπs (Ti+1) =
γ(Hπs (Ti), Etrigg(Ti)), HπA(Ti) = 〈〉, ti+1 = ti
and ni+1 = ni + 1;

R2 HπA(Ti) 6= 〈〉 iff Hπs (Ti+1) = γ(Hπs (Ti),HπA(Ti)),
Etrigg(Ti) = 〈〉, ti+1 = ti and ni+1 = ni + 1;

R3 for each 〈ai, ti〉, 〈aj , tj〉 ∈ π, with i < j and ti = tj
there exists Tk, Tz ∈ TH such that ai ∈ HπA(Tk) and
aj ∈ HπA(Tz) where tk = tz = ti and nk < nz;

R4 Hπ is monotonous over It = (ti, ti+1), iff ti+1 > ti
and for each t ∈ It and for each x ∈ X , we have that:

– Hπs (〈t, 0〉)[x] is continuous and differentiable;
– for each x ∈ X we have that:

dHπs (〈t, 0〉)[x]

dt
=

∑
〈x′,ξ〉∈eff(ρ), x′=x

ρ∈C(It)

Hπs (〈t, 0〉)[ξ]

2We assume that PDDL+ problems are event-deterministic (Fox
and Long 2006). Then, given a state in which multiple events are
triggered, we can sequence them arbitrarily always obtaining the
same outcome.

289

– for each x ∈ X we have that Hπs (〈ti+1, 0〉)[x] =
lim

t→t−i+1
Hπs (〈t, 0〉)[x], and values of unaffected vari-

ables persist up to ti+1 (frame-axiom).

Definition 2 (Valid PDDL+ plan). πt is valid plan for Π
iff Hπs (Tm) |= G and, for each a ∈ HπA(T) with T ∈ I ,
Hπs (T) |= pre(a).

For the PDDL+ plan discrete projection we make use of
a fixed discretisation step δ ∈ Q. δ implies that time points
can only be of the form 〈t = δ · n, n′〉 with n, n′ ∈ N.
We use H to indicate a history in the continuous context
while H to indicate a history in the discrete context. Under
a discretised semantics, the net derivative expressions are
discretised using ∆(ξ, δ) = ξ ·δ. For example, let 〈x, 1.5 ·y〉
(ẋ = 1.5 · y) and δ = 2 be a continuous numeric effect and
a discretisation parameter, the discretised expression of x is
equal to ∆(1.5 · y, δ) = 3 · y.

Definition 3 (PDDL+ plan discrete projection). We say that
Hπ is a discrete projection of πt which starts in I iff Hπ

induces the STPs TH = 〈T0 = 〈ts, 0〉, ..., Tm = 〈te, nm〉〉
where either ti+1 = ti + δ or ti+1 = ti and, for i ∈ [0..m],
we have R1–R3 as for Definition 1 and R4 substituted with
the following:

R4 for each pair of contiguous significant time points
Ti = 〈ti, ni〉, Ti+1 = 〈ti+1, 0〉 such that ti+1 = ti + δ,
the value of each numeric variable x ∈ X is updated as:

H
π
s (Ti+1)[x] = H

π
s (Ti)[x] +

∑
〈x′,ξ〉∈eff(ρ), x′=x

ρ∈{ρ∈P, Hπs (Ti)|=pre(ρ)}

H
π
s (Ti)[∆(ξ, δ)]

and values of unaffected variables remain unchanged
(frame-axiom).

With reference to the rules R1–R4 of Defs. 1 and 3, R1
(R2) states that if at least an action (event) is executed (trig-
gered) in a significant time point 〈t, n〉, then there necessar-
ily exists a successor, i.e., 〈t, n+ 1〉, whose state associated
is calculated by simply applying the discrete effects of the
action(s) (event(s)). R3 is used to enforce how actions of a
PDDL+ plan π are projected over an history, preserving their
original ordering in case they share the same time-stamp in
π. R4 in Def. 1 is used to enforce how a numeric variable
change continuously over time according to the active pro-
cesses in those monotonous temporal intervals. R4 in Def.
3, is used to enforce how a numeric variables changes when
time advances for a discrete quantum of time δ.

Definition 4 (Valid PDDL+ plan under δ discretisation). πt
is a valid plan for Π under δ discretisation iff Hπ

s (Tm) |= G
and, for each T ∈ I such that Hπ

A(T) 6= 〈〉, then Hπs (T) |=
pre(a).

In this paper, we are interested in the validation problem.
That is, we are given a PDDL+ problem and a plan, and we
want to see whether such a plan is a valid solution plan for
the problem over a continuous timeline or under a discreti-
sation parameter δ.

Definition 5 ((Discrete) Validation Problem). Let Π be a
PDDL+ problem, πt be a plan for Π. The validation problem

aims at establishing whether πt is valid for Π. The discrete
validation problem aims at establishing whether πt is valid
for Π under δ ∈ Q discretisation.

PDDL2.1 is the fragment of PDDL+ where there is no
time; from a syntactical perspective, this is reflected in the
absence of events and processes. A PDDL2.1 problem sim-
ply looks for sequences of actions that are applicable in the
initial state and yields a state satisfying the goal. In the next
section, we briefly survey a technique that solves the PDDL+
problem through a translation into a PDDL2.1 specification.

Solving Discrete PDDL+ via Numeric Planning
As shown by Percassi, Scala, and Vallati (2021), a PDDL+
problem can be transformed into a numeric one using two
different translations, i.e., EXP and POLY. Such encodings
called ΠEXP and ΠPOLY can be used to seek discrete valid
PDDL+ plans. The key idea in both translations consists in
transforming all the processes and events into regular actions
and forcing the occurrence of such actions when the plan-
ner decides to move time forward. The glaring difference
between ΠEXP and ΠPOLY is in how the processes’ specifica-
tions are transferred into the actions. Indeed, ΠEXP devises
a single action with exponentially many conditional effects,
while ΠPOLY decomposes all processes in a polynomial num-
ber of actions. ΠPOLY turned out more effective than ΠEXP

(Percassi, Scala, and Vallati 2021), therefore we turn our
attention on this translation. We summarise the event-free
translation step.

Let Π = 〈F,X, I,G,A, ∅, P 〉 be an event-free PDDL+
problem, and let δ ∈ Q be a discretisation parameter, POLY
generates a new PDDL2.1 problem ΠPOLY = 〈F ∪ D ∪
{pause}, X∪Xcp, I, G∧¬pause, Ac∪AP ∪{start, end}, c〉
such that:

Xcp = {xcopy | x ∈ X}D =
⋃

ne∈eff(ρ)
ρ∈P

{donene}

Ac = {〈pre(a) ∧ ¬pause, eff(a)〉 | a ∈ A}

start = 〈¬pause, {pause} ∪
⋃
x∈X

{〈asgn, xcopy, x〉}〉

end = 〈
∧

done∈D

done ∧ pause, {¬pause} ∪
⋃

done∈D

{¬done}〉

AP =
⋃

ne:〈x, ξ〉∈eff(ρ)
ρ∈P

{〈pause ∧ ¬donene, {σ(pre(ρ), Xcp).

{〈inc, x,∆(δ, σ(ξ,Xcp)〉}} ∪ {donene}〉}

Whenever the passage of a discrete amount of time δ
has to be simulated within ΠPOLY, the sequence of actions
wait = 〈start, seq(AP), end〉 (seq(AP) is any permutation
of all AP actions) is enforced to be performed. A thorough
discussion of this discretising translation is referred to in the
work by Percassi, Scala, and Vallati (2021).

Validation via Translation
This section proposes a collection of translations for produc-
ing, given a PDDL+ task Π and a plan πt for Π, a new PDDL+
problem Ππt

V , where V denotes a specific translation. This

290

PDDL+ problem is built in such a way that finding a solution
for it is equivalent to answering the following question: is πt
valid for Π? Conversely, proving that Ππt

V is unsolvable is
equivalent to demonstrating that πt is invalid for Π.

We propose a basic translation first, namely V0, and then
two optimisations separately addressing two problems with
V0, namely VU and VD. After presenting these translations,
we will discuss how these can be concatenated with POLY
and EXP, obtaining a set of translations that generate a
PDDL2.1 task. This way the pool of validation systems can
be expanded even further; not only we can use PDDL+ plan-
ners, but also PDDL2.1 planners.

V0 translation Here, we present the simplest translation
for producing a PDDL+ validating task, namely V0. The idea
is to generate a new PDDL+ problem in which the actions
belonging to πt are the only executable ones. These actions
have to be performed according to what is prescribed by the
plan, that is, applying them in their respective time-stamps
and preserving their order of execution.

Let Π = 〈F,X, I,G,A,E, P 〉 be a PDDL+ problem, and
let πt = 〈π, 〈ts, te〉〉 be a plan for Π. V0 produces a new
validating PDDL+ problem Ππt

V0 = 〈F ∪ FA ∪ {T}, X ∪
{time}, I ∪ {a-d0, 〈time := ts〉, T}, G ∧ a-dn ∧ 〈time =
te〉, Aπ, E, P ∪ {ρtime}〉3 such that ρtime = 〈T, {〈time, 1〉}〉
and:

FA =

n=|π|⋃
i=0

{a-di}

Aπ =
⋃

〈ai,ti〉 in π

{〈pre(ai) ∧ a-di−1 ∧ ¬a-di ∧ 〈time = ti〉,

eff(ai) ∪ {a-di}〉}

Ππt
V0 contains a new process, i.e. ρtime. Such a process is al-

ways active and its only purpose is to progress time explic-
itly using the numeric variable time. Keeping track of the
elapsed time is necessary to perform the π actions at their
respective time-stamps.
V0 restricts the actions A of Π to Aπ of ΠV0 ; it indeed

only considers the actions in π. An action a in A is added
to Aπ iff it exists 〈ai, ti〉 in π such that a = ai (note that
there can be multiple occurrences of the same action in Aπ
if a appears more than once in the plan). If this condition
holds, then a is appropriately modified by extending its pre-
condition so that a can be performed only whenever time is
equal to ti (〈time = ti〉). Furthermore, these actions are ex-
tended in their preconditions and effects through the novel
FA predicates so that they can be performed by following
the prescribed order and executed at most once.

Example 1 (V0 translation). Let Π = 〈F,X, I,G,A, ∅, P 〉
be a PDDL+ problem without events encompassing one
Boolean variable, i.e., F = {f1}, two numeric vari-
ables, i.e., X = {x1, x2} and one process ρ1 =
〈x1 > 0, {〈x2, 1〉}〉 (i.e., P = {ρ1}). Furthermore, let
πt = 〈π, 〈0, 10〉〉 be a PDDL+ plan for Π, where π =
〈〈a1, 1〉, 〈a2, 5〉, 〈a3, 5〉, 〈a4, 10〉〉. Actions in π are such

3For lack of space the notation for the propositional variables
a-d and T are the contraction of a-done and TRUE, respectively.

that: {a1 = 〈f1, {¬f1}〉, a2 = 〈¬f1, {f1}〉, a3 = 〈〈x1 >
0〉, {〈inc, x1, 1〉}〉, a4 = 〈〈x1 < 0〉, {〈inc, x2, 1〉}〉} ⊂ A.
V0 produces the validating PDDL+ task

Ππt
V0 = 〈F ∪ {a-d0, a-d1, a-d2, a-d3, a-d4, T}, X ∪
{time}, I ∪ {a-d0, 〈time := 0〉, T}, G ∧
〈time = 10〉, {a′1, a′2, a′3, a′4}, ∅, {ρ1, 〈T, {〈time, 1〉}〉}〉
where:

a
′
1 =〈f1 ∧ a-d0 ∧ ¬a-d1 ∧ 〈time = 1〉, {¬f1, a-d1}〉

a
′
2 =〈¬f1 ∧ a-d1¬a-d2 ∧ 〈time = 5〉, {f1,¬a-d1}〉

a
′
3 =〈〈x1 > 0〉 ∧ a-d2 ∧ ¬a-d3 ∧ 〈time = 5〉, {〈inc, x1, 1〉, a-d3}〉

a
′
4 =〈〈x1 < 0〉 ∧ a-d3 ∧ ¬a-d4 ∧ 〈time = 10〉, {〈inc, x2, 1〉, a-d4}〉

Theorem 1 (Soundness and completeness of V0). Let Π =
〈F,X, I,G,A,E, P 〉 be a PDDL+ problem, let πt be a plan
for Π, and let Ππt

V0 be the validating task obtained by using
V0. It follows that πt is valid for Π iff Ππt

V0 admits a solution.

Proof Sketch. (⇒) Let πt = 〈π, 〈0, te〉〉 be a valid plan for
Π (assume w.l.o.g. ts = 0), and let π′t = 〈πV0 , 〈0, te〉〉 a
plan for Ππt

V0 where, for each 〈ai, ti〉 in π there is 〈a′i, ti〉 in
πV0 , where a′i ∈ Aπ is the corresponding action of ai ∈ A,
executed at time ti, compiled according to V0.

The extensions of Ππt
V0 w.r.t. Π do not affect the goal G

and the original preconditions of the actions A. The novel
process ρtime affects only the novel time numeric variable,
synchronising it with the actual time elapsed. The compiled
actions are copies of the original actions except for the time
condition in the preconditions, and the assignments over FA
variables. Let H and H′ be the PDDL+ plan projections of
πt and π′t, respectively and let τ and τ ′ be the sequences
of states associated to each STPs of H and H′, i.e., τ =
〈Hs(T0), ...,Hs(Tm)〉 and τ ′ = 〈H′s(T0), ...,H′s(Tm)〉.
Given the aforementioned premises, proceed by induction
over τ (τ ′), and show that (i) if the 〈ai, ti〉 actions of π are
applicable, so the corresponding ones 〈a′i, ti〉 are too (instan-
taneous transition), and (ii) numeric variables X change as
time passes in Ππt

V0 in the same way as they change when
time passes in Π (temporal transition). This also entails
reaching the goal.

(⇐) Let π′t = 〈πV0 , 〈0, te〉〉 be a valid plan for Ππt
V0 , and

let πt = 〈π, 〈0, te〉〉 a plan for Π built as follows: for each
〈a′i, ti〉 in πV0 there is 〈ai, ti〉 in π, where ai ∈ A is the origi-
nal action of a′i ∈ Aπ that can be obtained by removing from
a′i the conditions and assignments concerning time and a-d,
respectively. As noted in the opposite direction, the Ππt

V0 ex-
tension w.r.t. Π affects only the novel variables. Then, since
Π is a reduced version of Ππt

V0 , it is easy to notice that the
operators of π are still applicable if their correspondents of
πV0 are, and numeric variables change as time passes in Π
in the same way when time passes in Ππt

V0 .

This baseline has a weakness. The state-space induced by
V0 is dense of dead-ends, i.e., states beyond which there is
no solution. Indeed, all states where time > te are dead-ends
as they do not belong to the envelope 〈ts, te〉 prescribed by
the plan. Despite this, V0 allows their exploration.

291

The translations presented below, i.e., VU and VD, are
aimed to overcome this problem by explicitly avoiding these
dead-ends.

VU translation The main idea of the VU translation is
to avoid some dead-ends through an explicit constraint
on the numeric variable time. This constraint disallows
the occurrence of any process whenever time gets beyond
what is prescribed by the plan. More precisely, let Π =
〈F,X, I,G,A,E, P 〉 be a PDDL+ problem, and let πt =
〈π, 〈ts, te〉〉 be a plan for Π, VU produces a new validating
PDDL+ problem Ππt

VU
= 〈F ∪ FA ∪ {T}, X ∪ {time}, I ∪

{a-d0, 〈time := ts〉, T}, G∧a-dn∧〈time = te〉, Aπ, E, PU〉.
The ΠVU problem has a similar structure to what produced
using V0, with the following difference:

PU =
⋃

ρ∈P∪{ρtime}

{〈〈time < te〉 ∧ pre(ρ), eff(ρ)〉}

All processes in Π, including ρtime, are extended with the
same precondition, i.e., 〈time < te〉, so that, when time
flows beyond te, then the processes PU can not cause any
change. In other words, after te, the environment gets static.

VD translation Even with VU, it is still possible to do some
unnecessary search steps for our validation problem.

Consider a plan πt = 〈π = 〈〈a1, 0〉, 〈a2, 10〉〉, 〈0, 10〉〉
for a PDDL+ task Π. The action a2 executed at time 10
achieves the goal of Π, but its applicability is subordinated
to the execution of a1 at time 0. Given Ππt

VU
, the planner can

choose at time 0 whether to execute a1 or to explore states
with higher timings. Yet, this second choice will prevent the
execution of a2 at time 10, necessary to reach the goal.

The following translation, namely VD, prevents situations
like this by introducing fresh events that make everything
else inapplicable when some timing condition is reached.
This variant requires some notation. More precisely, let πt =
〈π = 〈〈a1, t1〉, ..., 〈an, tn〉〉, 〈ts, te〉〉 be a PDDL+ plan, and
let t ∈ Q, we indicate with π(t) the sub-sequence of π con-
taining all actions with time-stamp t, and ordered so as to
preserve the order given by π. π can therefore be reshaped
as a sequence of sub-sequences each containing actions with
identical time-stamp, i.e., π = π(t′1) · ... · π(t′m), where, if
ts < te, then m ∈ [2...n + 2], t′1 = ts and t′m = te. Note
that the sub-sequences placed at the extremes of π may be
empty if no action is executed at time ts and te. Let π(t′)
be a non empty sub-sequence of actions of π, last(π(t′))
denotes the position of the last action of π(t′) with respect
to π. Furthermore we define the set of sub-intervals induced
by πt as follows I(πt) =

⋃m−1
i=1 {〈t′i, t′i+1〉}. We clarify this

notations with an example.
Example 2 (Introductory notation). Let πt = 〈π =
〈〈a1, 1〉, 〈a2, 5〉, 〈a3, 5〉, 〈a4, 10〉〉, 〈0, 10〉〉 be a PDDL+
plan. π can be reshaped as π = π(0) · π(1) · π(5) · π(10),
where π(0) = 〈〉, π(1) = 〈〈a1, 1〉〉, π(5) =
〈〈a2, 5〉, 〈a3, 5〉〉 and π(10) = 〈〈a4, 10〉〉. We get that
last(π(0)) is undefined (π(0) = 〈〉), last(π(1)) = 1 (a1
is the last action of π(1) and the first of πt), last(π(5)) = 3
(a3 is the last action of π(5) and the third of πt) and
last(π(10)) = 4 (a4 is the last action of π(10) and the
fourth of πt). The sub-intervals of πt are thus defined as
I(πt) = {〈0, 1〉, 〈1, 5〉, 〈5, 10〉}.

Let Π = 〈F,X, I,G,A,E, P 〉 be a PDDL+ problem, and
let πt = 〈π, 〈ts, te〉〉 a plan for Π, VD produces a new
validating PDDL+ problem Ππt

VD
= 〈F ∪ FA ∪ {T}, X ∪

{time}, I ∪ {a-d0, 〈time := ts〉, T}, G ∧ a-dn ∧ 〈time =
te〉∧T, Aπ, E∪ED, PD∪{ρtime}〉. Ππt

VU
has a similar structure

to that produced using V0, with the following differences:

ED =
⋃

π(t′) in π
π(t′)6=〈〉∧t′ 6=te

{〈〈time > t′〉 ∧ ¬a-dlast(π(t′)) ∧ T, {¬T}〉}

PD =
⋃
ρ∈P

{〈pre(ρ) ∧ T, eff(ρ)〉}

The eventsE of Π are extended in Ππt
VD

with the set of novel
events ED. Each event ε ∈ ED refers to a non-empty sub-
sequence π(t′) of π and is triggered whenever time flows
beyond t′ without the last π(t′) action being performed, i.e.,
when the predicate a-dlast(πt′) is still false. Each triggered
event ε ∈ ED makes T false, making the goal unreachable
and every process unable to change the state of the world
(note that T is added to each process and it required to be
true in the goal G ∧ a-dn ∧ 〈time = te〉 ∧ T). The T variable
is also added to the precondition of each fresh event since an
event, when triggered, has to self-deactivate (Fox and Long
2006).

Composition of VU and VD VU and VD can be combined
in a new schema that incorporates both enhancements de-
noted with VUD = VU ◦ VD.

Example 3 (VUD translation - Continuing on Ex. 1). Let
Π be a PDDL+ task and let πt be a plan for Π as de-
fined in Example 1. VUD produces the validating PDDL+
task Ππt

VUD
= 〈F ∪ {a-d0, a-d1, a-d2, a-d3, a-d4, T}, X ∪

{time}, I∪{a-d0, 〈time := 0〉, T}, G∧a-dn∧〈time = 10〉∧
T, Aπ, ED, PUD〉.

We show how the events ED are generated. The sub-
sequences placed at the extremes of the plan, i.e., πt=0, and
πt=10, do not generate events as πt=0 = 〈〉while πt=10 6= 〈〉
but t = 10 = te, and then they are not considered in
generating ED. The sub-sequences πt=1 = 〈a1〉 6= 〈〉,
with last(πt=1) = 1, and πt=5 = 〈a2, a3〉 6= 〈〉, with
last(πt=5) = 3, generate two dead-ends events which are ε1D
and ε5D, respectively (where the superscript denotes the time-
stamps they refer to). According toED definition, we get that
ED = {ε1D, ε5D} where ε1D = 〈〈time > 1〉∧¬a-d1∧ T, {¬T}〉
and ε5D = 〈〈time > 5〉 ∧ ¬a-d3 ∧ T, {¬T}〉. Note that, by
construction of ED, πt=0 and πt=10 do not generate any un-
necessary events. In the first case, because, since no actions
are performed when ts = 0 ≤ time < 5, time can flow with-
out further preconditions, in the second case because time
can not flow beyond te = 10.

Finally, we get that PUD = {ρ′1, ρ′2, ρ′time} where ρ′1 =
〈〈time < 10〉∧〈x1 > 0〉∧T, {〈x2, 1〉}〉, ρ′2 = 〈〈time < 10〉∧
〈x2 > 0〉 ∧ T, {〈x1, x2〉, 〈x2, x21〉}〉 and ρ′time = 〈〈time <
10〉 ∧ T, {〈time, 1〉}〉.

Optimising PDDL+ to PDDL2.1 Translation
All schemata proposed so far can be concatenated with the
POLY translation from PDDL+ to PDDL2.1 presented by

292

Figure 1: Workflow for producing a numeric validating task.
The upper part describes the workflow for V ◦ POLY with
V ∈ {V0,VU,VD,VUD}, while the lower part describes the
workflow for POLYV . Ππt

V is a PDDL+ validating task while
Ππt
V◦POLY and Ππt

POLYV
are PDDL2.1 ones.

Percassi, Scala, and Vallati (2021). As POLY is sound and
complete, exploiting Theorem 1, we can feed the validating
PDDL+ encoding (obtained by any of the previous transla-
tions) to POLY, and use the resulting PDDL2.1 formulation
to validate PDDL+ plans, too. That is, we can use a simpler
numeric planner to check whether a PDDL+ plan is valid or
not under discrete semantics by checking if the problem is
solvable or not. However, both the optimisations presented,
i.e., VU and VD, are not effective when the resulting formu-
lation is given to POLY. Indeed, the start action computed by
POLY completely obscures the given optimisations. In fact,
under VU, POLY makes useless the precondition added to the
processes: the action start does not require that time > te.
Similarly, under VD, POLY makes irrelevant the dead-end
events. Every ε ∈ ED, when triggered, makes the propo-
sitional variables T false; as above, start is not aware of T.

To overcome these limitations, we propose a variant of
POLY specifically designed for supporting validation; we
call such a translation POLYV . Such a variant is designed
to be combined with V0 for producing a PDDL2.1 problem
that mimics the optimisations in VUD. POLYV is based on the
encoding of POLY and extends it by taking the knowledge
about the validation problem into account. POLYV replaces
the initialisation action start of POLY with a set of actions
defined in such a way that one and only one of them can be
performed in each sub-interval induced by πt.

The set of start actions STARTI(πt) are defined as follows.

STARTI(πt) =
⋃

〈t′i,t
′
i+1〉∈I(πt)

{〈pre(start) ∧ Done(t′i) ∧ 〈time ≥ t′i〉∧

〈time < t′i+1〉, eff(start)〉}

Done(t′i) =

{
a-dlast(π(t′)) if π(t′) 6= 〈〉
T otherwise

STARTI(πt) encompasses a specific action start for each
temporal sub-interval 〈t′i, t′i+1〉 ∈ I(πt); such an action
can only be performed when (i) t′i ≤ time < t′i+1, and
(ii) when all the actions having the time-stamp equal to
t′i, i.e., those in π(t′i), have been performed. Let Π =
〈F,X, I,G,A, ∅, P 〉 be an event-free PDDL+ problem, and
let πt a PDDL+ plan for Π, POLYV produces a PDDL2.1 val-
idating task Ππt

POLYV
= 〈F ∪ D ∪ {pause, T} ∪ FA, X ∪

Xcopy ∪ {time}, I ∪ {a-d0, 〈time := ts〉, T}, G ∧ ¬pause ∧

a-dn ∧ 〈time = te〉 ∧ T, A′π ∪AP ∪ STARTI(πt) ∪{end}, c〉,
where A′π = {〈pre(a) ∧ ¬pause, eff(a)〉, a ∈ Aπ} and Aπ
is defined as V0.

Figure 1 compares the workflow to generate a PDDL2.1
problem using the naive concatenation V◦POLY where V ∈
{V0,VU,VD,VUD} (top) with the validation sensitive trans-
lation POLYV (bottom). As it is possible to observe, the main
difference is that the validation sensitive translation takes in
input the PDDL+ plan too, and uses this to split and precon-
dition the simulation through the above mechanism.

Experimental Analysis
Our experimental analysis aims at corroborating the pro-
posed approach for validating PDDL+ plans under discrete
and continuous semantics. As benchmarks, we used the do-
mains adopted by Percassi, Scala, and Vallati (2021) as they
include a large variety of planning problems, and we ex-
tended their benchmark set with two non-linear domains:
HVAC (Scala et al. 2016) and a modification of DESCENT
(Piotrowski et al. 2016). The translator and the bench-
mark suite can be found a https://bit.ly/30gMyNW. For each
benchmark domain, we collect between 10 and 20 instances.
We generated plans for the discrete case using a planning en-
gine while we used a semi-automated approach to generate
plans for the continuous case. This process led to a grand to-
tal of 104 valid plans for the discrete semantics with δ = 1.
For the continuous semantics experiment, we collected 50
valid plans. To generate invalid plans for the considered do-
mains, for both the continuous and the discrete setting, we
modified each of the 104/50 plans by randomly performing
one or more of the following modifications: (i) changing the
order of the actions; (ii) changing the wait time between two
subsequent actions, and (iii) changing actions’ parameters.
To challenge the validation process, we apply these modifi-
cations near the end of the plans.

We evaluate coverage as the number of instances that a
planning engine proves valid/invalid, and CPU-Time as the
time needed to provide an answer. Average CPU-time and
expanded nodes are calculated by considering instances cor-
rectly dealt with by all the compared approaches. Experi-
ments ran on an Intel i7-8565U CPU with 1.80GHz, up to
300 CPU-time seconds and 4 GB of RAM available.
Discrete Semantics Evaluation. We consider (i) uniform
cost search, hereinafter denoted with BLIND, (ii) A∗ with
the haibr heuristic (Scala et al. 2016), hereinafter denoted
with A∗(haibr), and (iii) METRIC-FF (Hoffmann 2003) with
default settings. BLIND is used on the formulation ob-
tained with V ∈

⋃
T ∈{0,U,UD}{VT ,VT ◦POLY} ∪ {POLYV},

A∗(haibr) on those obtained with V ∈ {V0,VU,VUD} while
METRIC-FF on those obtained with V ∈

⋃
T ∈{0,U,UD}{VT ◦

POLY} ∪ {POLYV}. That is, BLIND performed over PDDL+
and PDDL2.1 inputs, A∗(haibr) over PDDL+ translations
while METRIC-FF over PDDL2.1 ones.

Table 1 provides domain-by-domain overview of the re-
sults obtained by BLIND (upper table) and by A∗(haibr) and
METRIC-FF (lower). For BLIND, the table shows the av-
erage number of expanded nodes. Bold highlights the best
performer. Considering BLIND, the V0 compilation is not ef-

293

BLIND

Metric
V/I

Domain
(n. instances)

PDDL+ PDDL2.1
V0 VU VUD V0◦POLY VU◦POLY VUD ◦ POLY POLYV

Expanded
Nodes

LIN-CAR (10/10) 95/∞ 67/66 28/27 241/∞ 241/∞ 306/∞ 61/60
OT-CAR (19/19) 878/∞ 495/491 76/73 3663/∞ 3663/∞ 3700/∞ 231/224
LIN-GEN (10/10) 7534/∞ 7507/7500 1014/1013 136485/∞ 136485/∞ 136485/∞ 16009/15993
UTC (7/7) 1417/∞ 1041/1036 104/99 34852/∞ 34852/∞ 34852/∞ 2425/2219
BAXTER (17/17) 140/∞ 86/77 28/26 5755/∞ 5755/∞ 5734/∞ 821/759
ROVER (5/5) 622/∞ 609/603 160.0/158.0 4239/∞ 4239/∞ 4240/∞ 1066/1059
DESCENT† (20/20) 121/∞ 108/101 42/38 918/∞ 918/∞ 925/∞ 292/270
HVAC† (16/16) 2791/∞ 2151/2130 151/147.1 8466/∞ 8466/∞ 10597/∞ 374/368

CPU-Time
(seconds)

LIN-CAR (10/10) 2.2/∞ 2.2/3.3 2.2/2.4 2.1/∞ 2.1/∞ 2.2/∞ 2.2/2.9
OT-CAR (19/19) 2.7/∞ 2.8/2.5 2.7/2.1 2.6/∞ 2.6/∞ 2.6/∞ 2.6/2.4
LIN-GEN (10/10) 2.1/∞ 2.2/2.4 2.0/2.0 3.1/∞ 3.1/∞ 3.1/∞ 2.4/2.4
UTC (7/7) 2.3/∞ 2.3/2.3 2.3/2.3 3.1/∞ 3.2/∞ 3.1/∞ 2.9/2.8
BAXTER (17/17) 2.0/∞ 2.0/2.1 2.0/2.0 2.2/∞ 2.2/∞ 2.2/∞ 2.2/2.3
ROVER (5/5) 1.9/∞ 1.9/2.5 1.9/1.9 2.0/∞ 2.0/∞ 2.0/∞ 2.0/2.3
DESCENT† (20/20) 1.8/∞ 1.8/1.9 1.8/1.8 1.9/∞ 1.9/∞ 1.9/∞ 1.9/2.3
HVAC† (16/16) 2.1/∞ 2.1/2.3 2.0/2.0 2.0/∞ 2.1/∞ 2.1/∞ 2.0/2.3

Coverage

LIN-CAR (10/10) 10/0 10/10 10/10 10/0 10/0 10/0 10/10
OT-CAR (19/19) 19/0 19/19 19/19 19/0 19/0 19/0 19/19
LIN-GEN (10/10) 10/0 10/10 10/10 10/0 10/0 10/0 10/10
UTC (7/7) 7/0 7/7 7/7 7/0 7/0 7/0 7/7
BAXTER (17/17) 17/0 17/17 17/17 17/0 17/0 17/0 17/17
ROVER (5/5) 5/0 5/5 5/5 5/0 5/0 5/0 5/5
DESCENT† (20/20) 20/0 20/20 20/20 20/0 20/0 20/0 20/20
HVAC† (16/16) 16/0 16/16 16/16 16/0 16/0 16/0 16/16
Σ 104/0 104/104 104/104 104/0 104/0 104/0 104/104

Planning Approach A∗(haibr) METRIC-FF

CPU-Time
(seconds)

LIN-CAR (10/10) 2.4/2.5 2.5/2.6 2.5/2.5 1.9/2.0 2.0/1.9 2.1/1.8 1.9/1.9
OT-CAR (19/19) 2.9/2.8 2.9/2.8 3.0/2.7 1.9/1.8 1.9/1.8 2.1/1.9 2.0/1.8
LIN-GEN (10/10) 5.0/4.0 5.3/4.2 5.3/4.3 19.4/17.4 22.8/20.3 22.6/20.8 23.4/20.5
UTC (7/7) 2.5/2.5 2.5/2.6 2.6/2.6 5.4/5.9 5.9/6.2 6.2/6.7 3.0/4.8
BAXTER (17/17) 2.0/2.0 2.1/2.1 2.1/2.1 1.5/1.5 1.5/1.5 1.5/1.5 1.5/1.5
ROVER (5/5) 2.5/2.7 2.5/2.7 2.7/2.8 2.5/2.6 2.4/2.8 ∞/∞ 2.2/2.6
DESCENT† (20/20) 2.5/2.7 2.5/2.5 2.6/2.6 na/na na/na na/na na/na
HVAC† (16/16) 3.0/2.6 2.9/2.6 3.0/2.6 na/na na/na na/na na/na

Coverage

LIN-CAR (10/10) 10/10 10/10 10/10 10/10 10/10 10/10 10/10
OT-CAR (19/19) 19/19 19/19 19/19 19/19 19/19 19/19 19/19
LIN-GEN (10/10) 10/10 10/10 10/10 10/10 10/10 10/10 10/10
UTC (7/7) 7/7 7/7 7/7 7/7 7/7 7/7 7/7
BAXTER (17/17) 17/17 17/17 17/17 17/17 17/17 17/17 17/17
ROVER (5/5) 5/5 5/5 5/5 5/5 5/5 0/0 5/5
DESCENT† (20/20) 20/20 20/20 20/20 na/na na/na na/na na/na
HVAC† (16/16) 16/16 16/16 16/16 na/na na/na na/na na/na
Σ 104/104 104/104 104/104 68/68 68/68 63/63 68/68

Table 1: Discrete validating results obtained by using BLIND, A∗(haibr) and METRIC-FF with the range of translations in place.
∞ indicates a timeout, while na indicates that the system does not support that domain. † denotes a non-linear domain.

fective in demonstrating that plans are not valid. This is due
to the uninformed nature of the search, which does not al-
low the detection of many dead-ends. VD and VUD overcome
such a limitation, bringing BLIND to demonstrate the inva-
lidity of all the invalid plans. Similarly, with PDDL2.1, only
the optimised POLYV translation is able to solve all the in-
stances. Concerning the average number of expanded nodes,
the VUD translation is the one that requires the minimum ef-
fort. The reduction of expansion w.r.t. the other translation is
generally significant, often up to an order of magnitude, but

not enough to get a substantial reduction of CPU-Time. This
discrepancy is because the VD translation leads to larger and
more complex instances, and in such small instances such
optimisation does not pay off that much. However, in do-
mains like LINEAR-GENERATOR (LIN-GEN) where the dif-
ference between the number of expanded nodes is on aver-
age of several thousands of nodes, it is possible to notice that
the use of VD reduces the CPU-Time by approximately 10%.
To better understand the behaviour of BLIND, Figure 2a eval-
uates the performance of different PDDL+ translations over

294

a set of increasingly larger instances on the HVAC domain. It
is easy to notice that the longer are the plans to validate, the
larger is the benefit in terms of CPU-Time. In other words,
when uniformed search approaches are used, and the plans
to validate are complex, it is better to use a more advanced
translation. These benefits are less evident in the presence
of heuristics effectively guiding the search, e.g., haibr, which
reduces the impact of advanced translations.

Turning our attention to A∗(haibr) and METRIC-FF (bot-
tom part of Table 1), it is interesting to observe that in most
of the domains that METRIC-FF supports, the use of the cor-
responding translations can lead to the best CPU-Time. The
notable exception is LIN-GEN where the significant size of
the plans (thousands of actions) is challenging to deal with
by METRIC-FF. In ROVER, the use of VUD ◦ POLY does not
allow METRIC-FF to demonstrate the validity/invalidity of
any of the plans: this is because that translation heavily re-
lies on events – whose translation into conditional effects
in PDDL2.1 can be challenging (Percassi, Scala, and Vallati
2021). On the contrary, the use of A∗(haibr) on the corre-
sponding PDDL+ translations lead to CPU-Time values that
consistently range between 1.8 and 2.8 seconds. By looking
at our raw data, we observed that regardless of the consid-
ered translation, A∗(haibr) always expands the same number
of nodes. Finally, we did a scalability experiment on LIN-
CAR, ROVER and LIN-GEN. We took the largest instances
and generate several validation problems with decreasing δ
(from 1 to 1/27), and verified that the given plan is valid
for each such discretisation. As it is possible to observe in
Figures 2b-2c-2d, BLIND has been, surprisingly, the config-
uration that scales better. Our intuition is that an increas-
ingly huge number of expansions needed to solve the valid-
ity tasks, coupled with a very constrained search space make
the use of heuristics and smart search enhancements detri-
mental. We also collect data for the other configurations (not
displayed in the figures for clarity reasons), while the opti-
misations did not affect the behaviour of A∗(haibr), BLIND
achieves such performance only when used in combination
with VUD. For example, validating the plan with the small-
est discretisation in LIN-GEN took about 15 seconds with
BLIND and V0, while only 1 second with BLIND and VUD.
Continuous Semantics Evaluation. Table 2 shows the
number of correct plans validated by systems adopting a
continuous semantics, i.e., VAL and SMTPLAN, over the
PDDL+ obtained by using V ∈ {V0,VU,VUD}. We did not
consider HVAC, DESCENT (not supported by the systems)
and UTC (we could not generate any valid plan). VAL is
faster and covers more plans than SMTPLAN as expected,
but crashes in BAXTER, while SMTPLAN does not. VAL
wrongly loops over a finite sequence of alternating events,
likely given by some numeric precision error. The optimi-
sations on validation through SMTPLAN gives mixed re-
sults. Finally, VAL always manages to prove the invalidity
of plans, while SMTPLAN fails since it is an incomplete
planning engine. To limit the exploration, and to guarantee
the exhaustion of the search space if the plan considered is
invalid, it would be necessary to provide to SMTPLAN a
horizon of happenings. However, how to set this bound is
not clear, especially since the validation problem under con-

(a) HVAC (b) LIN-CAR

(c) ROVER (d) LIN-GEN

Figure 2: (2a) CPU-Time for BLIND on HVAC (extended
benchmark set). (2b-2c-2d) Scalability analysis over LIN-
CAR, ROVER and LIN-GEN.∞ indicates a timeout.

tinuous semantics is undecidable (Fox and Long 2006).

Metric Domain
(n. instances) VAL

SMTPLAN
V0 VU VUD

Coverage

LIN-CAR (10/10) 10 10 10 10
OT-CAR (19/19) 16 0 0 0
LIN-GEN (10/10) 10 2 2 2
BAXTER (17/17) na 9 9 9
ROVER (5/5) 5 0 5 5

CPU-Time
(seconds)

LIN-CAR (10/10) 0.01 2.7 2.7 3.0
OT-CAR (19/19) 0.02 ∞ ∞ ∞
LIN-GEN (10/10) 0.01 2.7 2.5 2.4
BAXTER (17/17) na 3.5 4.3 4.3
ROVER (5/5) 0.01 ∞ 2.6 2.6

Table 2: Continuous validating results obtained by using
VAL and SMTPLAN over the range of translations in place.
∞ indicates a timeout; na an unsupported domain.

Conclusion
We presented a methodology for reformulating plan valida-
tion as planning, hence enabling the use of planning engines
as validators. We propose a set of translations to generate a
PDDL+ problem that has a solution iff the plan is valid w.r.t.
the considered model. Such translations can be used both un-
der continuous and discrete semantics. Further, starting from
known PDDL+ to PDDL2.1 translations, we present an opti-
mised variant allowing the use of PDDL2.1 engines to val-
idate PDDL+ plans under discrete semantics. Our empirical
analysis shows the suitability of the approach for both se-
mantics. Future work will focus on extending our approach
to different planning formalism, and on supporting PDDL+
knowledge engineering.

295

Acknowledgments
Francesco Percassi and Mauro Vallati were supported
by a UKRI Future Leaders Fellowship [grant number
MR/T041196/1].

References
Abdulaziz, M.; and Lammich, P. 2018. A Formally Verified
Validator for Classical Planning Problems and Solutions. In
IEEE 30th International Conference on Tools with Artificial
Intelligence, ICTAI 2018, 474–479. IEEE.
Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Inter-
national Journal on Software Tools for Technology Transfer,
16(1): 1–12.
Cashmore, M.; Magazzeni, D.; and Zehtabi, P. 2020. Plan-
ning for Hybrid Systems via Satisfiability Modulo Theories.
Journal of Artificial Intelligence Research, 67: 235–283.
Fox, M.; Howey, R.; and Long, D. 2005. Validating Plans
in the Context of Processes and Exogenous Events. In
Proceedings, The Twentieth National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Appli-
cations of Artificial Intelligence Conference, 1151–1156.
AAAI Press/The MIT Press.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. Journal of Artificial In-
telligence Research, 27: 235–297.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence, 173(5-6):
619–668.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proceed-
ings of the Sixth International Conference on Artificial In-
telligence Planning Systems, 44–53. AAAI.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research, 20: 291–341.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In 16th IEEE International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2004, 294–
301. IEEE Computer Society.
McCluskey, T. L.; and Porteous, J. M. 1997. Engineering
and Compiling Planning Domain Models to Promote Valid-
ity and Efficiency. Artificial Intelligence, 95(1): 1–65.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Proceedings of the Knowledge Cap-
ture Conference, K-CAP 2017, 14:1–14:8. ACM.
Penix, J.; Pecheur, C.; and Havelund, K. 1998. Using model
checking to validate AI planner domain models. In Proceed-
ings of the 23rd Annual Software Engineering Workshop,
NASA Goddard.

Percassi, F.; Scala, E.; and Vallati, M. 2021. Translations
from Discretised PDDL+ to Numeric Planning. In Pro-
ceedings of the Thirty-First International Conference on Au-
tomated Planning and Scheduling, ICAPS 2021, 252–261.
AAAI Press.
Piotrowski, W. M.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic Planning for Hybrid Systems.
In Proceeding of the Thirtieth AAAI Conference on Artificial
Intelligence, 4254–4255. AAAI Press.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proceedings of the Twenty-Second European Conference on
Artificial Intelligence, ECAI 2016, volume 285, 655–663.
IOS Press.
Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. Artificial Intelligence,
166(1-2): 194–253.

296

