
A Hybrid Genetic Algorithm for the Vehicle Routing
Problem with Roaming Delivery Locations

Quang Anh Pham, Minh Hoàng Hà *, Duy Manh Vu, Huy Hoang Nguyen,
ORLab, Faculty of Computer Science, Phenikaa University, Hanoi, Vietnam

hoang.haminh@phenikaa-uni.edu.vn

Abstract

The Vehicle Routing Problem with Roaming Delivery Loca-
tions (VRPRDL) is a variant of the Vehicle Routing Problem
(VRP) in which a customer can be present at many locations
during a working day and a time window is associated with
each location. The objective is to find a set of routes such that
(i) the total traveling cost is minimized, (ii) only one loca-
tion of each customer is visited within its time window, and
(iii) all capacity constraints are satisfied. To solve the prob-
lem, we introduce a hybrid genetic algorithm which relies
on problem-tailored solution representation, mutation, local
search operators, as well as a set covering component explor-
ing routes found during the search to find better solutions. We
also propose a new split procedure which is based on dynamic
programming to evaluate the fitness of chromosomes. Exper-
iments conducted on the benchmark instances clearly show
that our proposed algorithm outperforms existing approaches
in terms of stability and solution quality. We also improve 49
best known solutions of the literature.

Introduction
E-commerce is the process of purchasing or selling goods
electronically through online platforms or the Internet and
has grown rapidly, especially during the last decades. In
2020, retail e-commerce sales worldwide reached about 4.28
trillion US dollars, and e-retail revenues are estimated to hit
over 6.38 trillion US dollars in 2024 (Coppola 2021). This
rapid growth of e-commerce opens many challenges for last
mile logistics, creating a variety of variants of the Vehicle
Routing Problem (VRP), one of the most studied problems
in the field of Operations Research (Irnich, Toth, and Vigo
2014). In the traditional VRP-based transportation model,
customers are supposed to wait at home or a specific loca-
tion to receive their orders. However, in practice, they are
likely not in the same address during the planning horizon.
The customers can appear and get the orders in different lo-
cations, e.g., home, workplace, school, mall, church, and so
on. Therefore, we can deliver goods to a trunk of customer’s
car instead of the customer’s home. This helps complete the
delivery process for customers regardless of their current lo-
cation as long as they arrive there by their car. This service

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

option is referred to as “in-car” delivery or “trunk” delivery
which is provided by Amazon (Harbison 2018). Several auto
manufacturers also support this technology, such as Volvo
and General Motors (J. Hawkins 2018).

Recently, a new variant of the VRP called the Vehicle
Routing Problem with Roaming Delivery Locations (VR-
PRDL) is introduced for modeling this delivery strategy by
(Reyes, Savelsbergh, and Toriello 2017) who show that ap-
plying trunk delivery results in reducing the total traveling
distance compared to the home delivery. The VRPRDL is
formally defined as follows. Let G = {N , A} be a complete
directed graph with the set of vertices N = {0, 1, ..., n} and
the set of arcs A = {(i, j) : i, j ∈ N, i ̸= j}. Vertex 0
is the depot and other vertices represent locations at which
customers can appear. Each arc (i, j) ∈ A is associated with
a travel time tij and a cost cij . The triangle inequality is sat-
isfied for both the travel time and cost. We denote that P is
the set of customers requiring a delivery during the planning
period [0, T]. At the depot, there is a homogeneous fleet of
vehicles available for delivery tasks; each has a capacity of
Q. The delivery for customer p ∈ P is characterized by a
demand quantity dp and a geographical profile which spec-
ifies where and when a delivery can be made. Let Np ⊆ N
denote the cluster of locations that customer p will visit dur-
ing the planning horizon. Each location i ∈ Np has a non-
overlapping time window [ei, li] during which the customer
can be served. By duplicating locations to handle the case
where two customers can appear at the same location, we
may assume Np ∩Np′ = ∅ for two different customers p, p′
∈ P . For convenience, in this paper, the terms “customer”
and “cluster” is used exchangeably. We also define an ar-
tificial customer corresponding to the depot. This customer
is indexed as 0 and has demand d0 = 0 and set of locations
N0 = {0} with time window [e0, l0] = [0, T]. As defined in
(Reyes, Savelsbergh, and Toriello 2017), for customer p ap-
pearing at k locations, e.g., Np = {i1, i2, . . . , ik}, the time
windows associated with these locations considered in the
VRPRDL must satisfy the following attributes:

ei1 = 0, lik = T,

eij = lij−1
+ tij−1ij ∀j ∈ [2, k] (1)

These conditions are highly relevant to the real-world case
where a customer’s itinerary starts and ends at a location
(e.g., home), his/her vehicle moves from one place to an-

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

297

DEPOT

delivery path

customer path

Gym

Home

University

Workplace

Figure 1: Example of a VRPRDL solution

other, takes the same travel time as the delivery vehicles and
cannot be served during this period. It is worth mentioning
that one can consider inequality eij ≥ lij−1

+ tij−1ij instead
of equality (1) to model more general cases. This inequal-
ity can be handled by our proposed solution method without
any change.

The goal of the VRPRDL is to find a set of m feasible ve-
hicle routes with minimum total traveling cost serving each
customer at only one location such that: (i) a vehicle starts
and ends its route at the depot, (ii) a service at a location
must start within its time window, (iii) the total load of each
vehicle is not permitted to exceed its capacity Q, and (iv)
the duration of each route never exceeds T . As originally
defined in (Reyes, Savelsbergh, and Toriello 2017), the fleet
size is not restricted, thus m is considered as a decision vari-
able. Figure 1 illustrates a VRPRDL solution using two vehi-
cles that depart from a depot and serve five customers. Each
customer has a home location where he/she starts and ends
the daily itinerary.

The VRPRDL and its variants have received significant
attention from the literature since its first introduction in
(Reyes, Savelsbergh, and Toriello 2017). The first exact
method is a branch-and-price (B&P) algorithm proposed
by (Ozbaygin et al. 2017), which can solve optimally in-
stances of up to 60 customers and 237 locations within
a few minutes. An improved exact method called branch-
and-price-and-cut is introduced in (Tilk, Olkis, and Irnich
2021). It can find optimal solutions for most of existing in-
stances except seven 120-customer instances. In terms of
heuristic methods, a hybrid metaheuristic based on the prin-
ciple of Greedy Randomized Adaptive Search Procedure
(GRASP) and Large Neighborhood Search (LNS) is pro-
posed in (Reyes, Savelsbergh, and Toriello 2017). (Dumez,
Lehuédé, and Péton 2021) study the Vehicle Routing Prob-
lem with Delivery Options (VRPDO), which can be seen
as an extended version of the VRPRDL in several aspects.
First, deliveries in the VRPDO can take place at shared
delivery locations (SDLs), like lockers or pick-up points,
not only at home or in a car trunk as in the VRPRDL.
Second, when a customer orders a parcel in the VRPDO,

he/she chooses multiple delivery options, sorted by prefer-
ence level, and a constraint related to service quality must
be guaranteed. To solve the new problem, the authors design
a LNS with specific ruin and recreate operators combined
with numerous operators from the literature. In addition, a
set partitioning problem is periodically used to reassemble
routes with the aim of finding better solutions. When tested
on VRPRDL instances, the algorithm produces all provably
optimal solutions and improves some best-known results in
running times of less than 1 minute.

The VRPRDL can also be considered as a special case of
the Generalized Vehicle Routing Problem with Time Win-
dows (GVRPTW) in which the time windows can be over-
lapped and thus do not satisfy conditions (1). The GVRPTW
is introduced by (Moccia, Cordeau, and Laporte 2012) in
the context of a school bus routing problem. Also in this
work, an incremental tabu search is designed for solving
the problem. More recently, (Dumez et al. 2021) proposed
a LNS-based metaheuristic that can deal with many vari-
ants of the GVRPTW. This algorithm is an improved ver-
sion of the one introduced in (Dumez, Lehuédé, and Péton
2021) and has four configurations obtained from combin-
ing a large neighborhood search with two exact components:
the set partitioning and the Balas-Simonetti neighborhood
(Balas and Simonetti 2001). An adaptive mechanism is also
used for mixing these parts effectively. For convenience, we
denote this algorithm as LNS*. In total, four configurations
of LNS* find seven new best-known solutions on the VR-
PRDL instances. It is worth mentioning that, to solve the
VRPRDL instances, LNS* requires to have the fleet size ob-
tained from previous results in (Tilk, Olkis, and Irnich 2021)
to limit the number of vehicles. Finally, (Yuan et al. 2021)
introduce a Column Generation Based Heuristic (CGBH) to
deal with the GVRPTW. The method combines several com-
ponents including a construction heuristic, a route optimiza-
tion procedure, local search operators, and the generation
of negative reduced cost routes. The algorithm is compared
with the B&P of (Ozbaygin et al. 2017) and provides better
solutions on 19 VRPRDL instances. Similar to LNS*, the
number of available vehicles is required and fixed manually
so that CGBH can work on the VRPDRL instances.

In this paper, we propose an efficient hybrid genetic algo-
rithm to solve the VRPRDL. The new features of our algo-
rithm are as follows:

• We represent a VRPRDL solution as a sequence of all
the customers also called a giant tour, instead of routes
constituted by delivery locations. By this way, we can
efficiently narrow the search space around giant tours
including an appropriate number of visits. To evaluate
the fitness of chromosomes, we design a Split procedure
based on Dynamic Programming. Given a giant tour, our
Split procedure can determine trip delimiters as well as
select delivery locations for each customer to produce an
optimal solution for the VRPRDL.

• We adapt classical local search operators for improving
VRPRDL solutions. Several additional data structures
are used to speed up the evaluation of local search moves.

• We integrate the Split and local search procedures into

298

a hybrid genetic algorithm to solve the VRPRDL. This
algorithm also features a mutation component for pop-
ulation diversification and a set covering component for
exploring improved solutions based on a set of potential
routes generated during the search process. The computa-
tional results obtained on the benchmark instances from
the literature show that our metaheuristic outperforms ex-
isting algorithms in terms of stability and solution qual-
ity.

Solution Method
In this section, we describe our new metaheuristic named
HGA-SC for the VRPRDL. It is the combination of a well-
known hybrid genetic algorithm (HGA) and a set-covering
(SC) approach. Our method is inspired by the Hybrid Ge-
netic Search with Adaptive Diversity Control (HGSADC)
of (Vidal et al. 2014). Generally, HGSADC is a hybrid al-
gorithm combining the exploration capability of genetic al-
gorithms with efficient local search-based operators and di-
versity management mechanisms. The method divides its
population into two sub-populations corresponding to fea-
sible and infeasible solutions. In HGSADC, the population
diversity is considered as an objective to be optimized along
with solution quality through individual evaluations and se-
lections.

Compared with the original HGSADC, the diversity man-
agement mechanism of HGA-SC is simpler when we man-
age the population containing only feasible solutions. By ex-
periments, we observe that the diversity contribution has a
negligible impact on the HGA-SC performance. Hence, it
is not included in our evaluation of an individual. All the
remaining components of HGSADC are redesigned specif-
ically to solve the VRPRDL. In addition, our method con-
tains two new complementary components: a mutation for
diversification and a SC component for intensification.

The main steps of our HGA-SC are described in Algo-
rithm 1 where fit(S) presents the fitness (objective value)
of solution S. The stopping conditions of the algorithm are
controlled via the time budget Tmax and the maximal num-
ber of iterations without improvement ItNI . Set Ω denotes
the pool of vehicle routes obtained from solutions in popu-
lation Pop during the search process, and the size of Ω is
limited to the input parameter maxPool. Two parameters µ
and λ are used to control the minimum and maximum sizes
of the population. The variable iterNI keeps track of how
many iterations have passed since the last new best solu-
tion was found and iter denotes the current number of it-
erations. The algorithm starts by initializing route pool Ω,
population Pop, variables iter and iterNI , and recording
the best solution S∗. The main part of our algorithm is the
iterative process (Lines 4-26). In each iteration, genetic op-
erators are used to choose two parents from the population,
combine them to produce an offspring C, and mutate it ran-
domly (Lines 5-7). Offspring C is next educated by a local
search procedure and then added to the population (Lines
8-9). The routes of C are also extracted and inserted into
the route pool Ω at Line 10. The value of iterNI changes
according to whether the new best solution is found (Lines
12, 14 and 22). A survivor selection phase is triggered if the

Algorithm 1: HGA-SC
Input : µ, λ, pmut, ItNI , ItSC , Tmax, maxPool
Output: Best found solution S∗

1 Route pool Ω← ∅
2 Initialize population Pop ;
3 iter ← 0, iterNI ← 0, S∗ ← argmin

x∈Pop
fit(x)

4 while iterNI < ItNI and running time < Tmax do
5 Select parent solutions P1 and P2 from Pop
6 Generate offspring C from P1 and P2

7 Mutate offspring C with probability pmut

8 Educate offspring C
9 Insert C into population

10 Add routes of C to Ω
11 if fit(S∗) < min

x∈Pop
fit(x) then

12 iterNI ← 0, S∗ ← argmin
x∈Pop

fit(x)

13 else
14 iterNI ← iterNI + 1

15 if |Pop| > µ+ λ then
16 Select survivors

17 if iter % ItSC = 0 or |Ω| ≥ maxPool then
18 Obtain CSC from solving the SC problem with

route pool Ω
19 Remove duplicate requests in CSC

20 Educate CSC

21 if fit(CSC) < fit(S∗) then
22 iterNI ← 0
23 Add CSP to Pop

24 if |Ω| ≥ maxPool then
25 Ω← ∅

26 iter ← iter + 1

population size is greater than a given value (Lines 15-16).
Finally, after every ItSC iterations or when the size of route
pool exceeds maxPool, the SC phase is executed and the
pool Ω will be cleared (Lines 17-25). The algorithm stops
after ItNI iterations without improvement or when the time
budget Tmax is reached. We now discuss the main operators
of the algorithm in detail.

Solution Representation and Evaluation
In HGA-SC, each VRPRDL solution is implicitly repre-
sented by a permutation of customers (called giant tour),
instead of a set of routes in which each route is explicitly rep-
resented by a permutation of locations (also called complete
VRPRDL solution). Each giant tour is obtained by encod-
ing the sequence of the clusters visited in a tour excluding
the depot clusters N0 (trip delimiters). This way of repre-
sentation, first introduced in (Prins 2004) for VRP solutions,
is suitable for applying genetic operators without indicating
individual routes. A Split procedure based on dynamic pro-
gramming to solve a shortest path problem is then required
to find the complete solution for each giant tour. It optimally
re-inserts trip delimiters into the customer sequence and se-
lects the location to visit for each customer. Because the
number of customers is in general much less than the num-

299

Algorithm 2: Split procedure
Input : A permutation of customers:

T = (cus1, cus2, . . . , cus|P |)
Output: The minimal cost to serve all customers

cost|P |
1 Initialize costi ←∞ ∀i ∈ [1, |P |]
2 cost0 ← 0
3 for i = 1→ |P | do
4 load← 0
5 for j = i→ |P | do
6 load← load+ dcusj
7 if load > Q then
8 break

9 costj ← min
(
costj , costi−1 +

CALCOST(cusi, cusi+1, . . . , cusj)
)

Figure 2: Auxiliary weighted graph G′ with |P | = 4, Q =
10, dcus1 = dcus2 = dcus3 = 4 and dcus4 = 2

ber of locations, using giant tours with customers instead of
complete representation with trip delimiters and locations to
represent VRPRDL solutions allows to significantly narrow
the search space.

The Split procedure is presented in Algorithm 2. Given
a giant tour T = (cus1, cus2, . . . , cus|P |), it constructs
an auxiliary directed acyclic graph G′ with |P | + 1 nodes
indexed from 0 to |P |. Each subsequence of customers
(cusi, . . . , cusj) that can be considered as one route (the
total demand is not greater than Q) is modeled by an arc
(i−1, j) of graph G′. The cost of this arc is equal to the cost
of its corresponding route and computed by using the func-
tion CALCOST() which is described in detail below. Figure
2 depicts an example of graph G′ with four customers and
vehicle capacity Q = 10. Note that, some arcs are not in-
cluded due to the capacity constraint. For instance, the to-
tal demand of all customers is 14, exceeding the capacity
Q = 10. Therefore, arc (0, 4) is not present in graph G′. Fi-
nally, the Split algorithm solves the shortest path problem
from node 0 to node |P | using Bellman’s algorithm on the
generated graph G′. The output of this procedure is the min-
imal cost of VRPRDL solution corresponding to giant tour
T , equal to cost|P |.

We now describe function CALCOST() to compute the
cost of arc (i − 1, j) in G′ corresponding to customer se-
quence (cusi, cusi+1, . . . , cusj) in giant tour T satisfying
the condition

∑j
k=i dcusk ≤ Q. A trivial approach is to ver-

ify all feasible options by iterating over every location of
each customer to find the best solution. However, the com-

plexity of this approach is O(
∏j

k=i |Nk|), which is expo-
nential. To speed up the process, we reuse the Dynamic Pro-
gramming (DP) algorithm proposed in (Reyes, Savelsbergh,
and Toriello 2017).

The procedure works as follows. First, a state of the
DP is represented by a 3-tuple (p, τ, v), where p ∈
{start, cusi, . . . , cusj , end} implies the current visited
customer (start and end denote the artificial customers re-
lated to the depot), v ∈ Np is the location where customer p
is served, and τ ∈ [ev, lv] is the time when the vehicle leaves
location v. We define F (p, τ, v) is the mininal cost of a par-
tial route (start, . . . , p) that visits location v of customer p
at time τ . The DP performs the following recursive calls:

F (start, 0, 0) = 0 (2)

F (cusi, τ, v) = min
u∈Nstart

{
F (start, τ ′, u) + cuv

}
if eu ≤ τ ′ ≤ min(lu, τ − tuv) (3)

F (cusk, τ, v) = min
u∈Ncusk−1

{
F (cusk−1, τ

′, u) + cuv
}

if eu ≤ τ ′ ≤ min(lu, τ − tuv) ∀i < k ≤ j (4)

F (end, τ, 0) = min
u∈Ncusj

{
F (cusj , τ

′, u) + cu0
}

if eu ≤ τ ′ ≤ min(lu, τ − tuv) (5)

Finally, the result of function CALCOST() with input se-
quence (cusi, ..., cusj) is computed by

CALCOST(cusi, . . . , cusj) = min
τ∈[0,T]

F (end, τ, 0) (6)

As shown in (Reyes, Savelsbergh, and Toriello 2017),
thanks to the special structure of time windows in the VR-
PRDL 1, the complexity of the DP to compute the cost of
sequence (cusi, . . . , cusj) can be estimated as O

(
(j − i +

1)2 max
i≤k≤j

|Nk|2
)
. Let Nmax be the largest cluster and B be

the maximum number of customers in a route. The overall
complexity of our Split algorithm is computed as:

O(|P |
B∑

k=1

(k2|Nmax|2)) = O(|P ||Nmax|2
B∑

k=1

k2)

= O(|P ||Nmax|2B3) = O(|P |B3|Nmax|2) (7)

Furthermore, we observe that the customer sequence in iter-
ation j (Line 9) is created by adding only one more customer
cusj into the customer sequence in iteration j−1. Hence, at
each iteration of the loop in Line 5, we implement the func-
tion CALCOST() that allows it to reuse DP’s states from the
previous iteration. This acceleration allows the Split algo-
rithm to be done in O(|P |B2|Nmax|2).

Genetic Operators
During the generation of a new individual, three genetic op-
erators selection, crossover, and mutation are performed se-
quentially before the education phase. In the selection phase,
we select a pair of parents based on the Rank-based Roulette
Wheel Selection (RRWS) (Holland 1992), which provides a
consistent scale across the population and is unaffected by
super-individuals or fitness value distribution to avoid a risk
of premature convergence to a local optimum.

300

Algorithm 3: LS procedure
Input : A complete VRPRDL solution S, a list of

neighborhood operators N
Output: An improved solution Simp

1 Simp ← S, fit(Simp) = fit(S)
2 for p ∈ P do
3 for q ∈ π(p) do
4 for k = 1→ |N| do
5 S′ ← move(Simp, (p, q),Nk)
6 if fit(S′) < fit(Simp) then
7 Simp ← S′

8 break

A child C is then created by performing the Ordered
Crossover (OX) (Oliver, Smith, and Holland 1987) on two
parent solutions P1 and P2 obtained from the selection
phase. First, it takes a randomly selected sub-sequence of
parent P1, copies it into child C, and then after the last node
of this sub-sequence, appends circularly clusters in parent
P2 from the same position, skipping any inserted clusters.
This crossover operator is widely used in evolutionary algo-
rithms proposed to solve VRP variants (Prins 2004; Vidal
et al. 2014). Finally, with a given probability pmut, we per-
form a mutation component to increase the population di-
versity. This component randomly swaps nmut pairs of cus-
tomers in the giant tour.

Local Search for Education
To intensify the search in our HGA-SC, after an offspring is
generated by using the genetic operators, its complete VR-
PRDL solution obtained from Split algorithm is improved
through an education phase. In this process, a Local Search
(LS) procedure described in Algorithm 3 is repeatedly per-
formed until no better solution is found. It is worth mention-
ing that, only in (Yuan et al. 2021), LS operators are used in
the CG-based algorithm to deal with the VRPRDL. In HGA-
SC, we use more complex LS operators as well as special
data structures to speed up the move evaluation, which are
not proposed in (Yuan et al. 2021).

Given an incumbent solution S and a list of neighborhood
operators N . A neighborhood operator (or simply neigh-
bourhood) Nk ∈ N generates a range of neighboring solu-
tions by applying a unique type of move. First, the LS pro-
cedure loops through all the customers (Line 2) in random
order. Then, for each customer p, a set π(p) of neighbor cus-
tomers is traversed in an order sorted according to a specific
metric at Line 3. For each pair of customers (p, q) and neigh-
borhood operatorNk, the LS operator creates solution S′ by
applying a move inNk on solution Simp (Line 5). After this
modification, S′ must contain an arc that links a location of
cluster p with a location of cluster q. When an improvement
is detected, we stop checking the remaining operators in N
(Lines 6 to 8). This scheme is quite similar to composite
neighborhood technique which is widely used for explor-
ing LS neighborhoods to solve VRPs (Schröder et al. 2020).

σ(i-1) σ(i+2)

σ'(j-1) σ'(j) σ'(j+2)

σ(i) σ(i+1)

σ'(j+1)

Figure 3: An illustration of 2-opt* move
.

In the following, we describe in details the construction
of π(p), the selection of operators in N , and the evalu-
ation of LS moves. For convenience, we represent route
r in a VRPRDL solution as a sequence of visits σr =
[σr(1), σr(2), . . . , σr(|σr|)], where σr(i) is the ith visited
customer. We also denote locσr(i) ∈ Nσr(i) is the selected
delivery location of customer σr(i).

Neighborhood Structure. Designing an effective list of
neighborhoods N is critical to the performance of LS. The
possibility of finding a better solution increases with each
additional operator. However, this requires more running
time for exploring each new neighborhood. The balance be-
tween these two factors is very important for making an ef-
ficient LS procedure. In our HGA-SC, we use the following
three neighborhoods for constructing N :

• N1 (Swap and Relocate): This move swaps two disjoint
visit sequences containing from 0 to 2 consecutive cus-
tomers. During the process, it is permitted to reverse one
or both sequences. This neighborhood can be used on a
single route (intra-route) as well as two distinct routes
(inter-route).

• N2 (2-opt*): This move cuts two different routes into the
front and back parts, then reconnects the front part of the
first route with the back part of the second route, and vice
versa. The neighborhood is depicted in Figure 3).

• N3 (2-opt): In this move, a sequence of customers be-
tween two positions is inverted.

In (Yuan et al. 2021), the authors implement Swap and
Relocation moves which exchange the position of only two
customers and relocate a single customer to other positions,
respectively. Their LS operators are also not performed in
the intra-route fashion. Thus, they can be seen as a simple
version of our Swap and Relocate. In addition, they do not
design 2-opt* and 2-opt moves for the problem.

Similar to (Vidal et al. 2013), each customer σr(i) has
an ordered set π(σr(i)) that stores the neighbor customers
σr′(j) sorted by an increasing measure M(σr(i), σr′(j))
which is in general the travel cost between these two cus-
tomers. To adapt for VRPRDL where a customer has a set
of delivery locations, we propose the following mesure to
estimate the cost between two customers:

M(σr(i), σr′(j)) = min
u=locσr(i)

{cuv : v ∈ Nσr′ (j)} (8)

The above measure is dependent on the delivery location
locσr(i) of customer σr(i) in the current solution. This could
avoid changing the visit sequence before customer σr(i) in
route r. Therefore, using it in the formula for calculatingM

301

may be better than using the whole locations of its cluster.
The LS procedure privileges exploring the neighboring so-
lutions that contain pairs of customers with smaller values
M. More precisely, the search is biased towards moves that
are promising for reducing the total cost of the current solu-
tion. This technique is often referred to as granular search
(Toth and Vigo 2003), and applied successfully in many pre-
vious studies (e.g., (Vidal et al. 2014; Schneider and Löffler
2019)). The number of neighbor customers |π| is in general
limited to a given value to reduce the computation time. In
our algorithm, we use the full neighborhood size (|π| = |P |)
to achieve the best result.

Move Evaluations. For each local search move, we need
to check the feasibility and compute the objective value of
changed solution before making the next search decision
(i.e., update the solution or switch to other neighborhoods).
In general, these operations consume the largest part of run-
ning time of the algorithm. Thus, they need to be carefully
designed to speed up the LS operators. In HGA-SC, we em-
ploy additional data structures to efficiently check capacity
and time-window constraints, and fast compute the modified
cost of solutions after applying the LS moves. It is important
to note that during the LS process, a location can be replaced
by other locations in the same cluster. Therefore, the deliv-
ery locations before and after the move may be different.

We adapt the technique introduced in (Vidal et al. 2014)
where a local search move can be considered as a separation
of routes into subsequences, which are then concatenated to
construct new routes. Let two routes r and r′ be represented
by two visit sequences σr = [σr(1), σr(2), .., σr(|σr|)] and
σr′ = [σr′(1), σr′(2), .., σr′(|σr′ |)], respectively. A swap
move, which exchanges the position of two visits σr(i) and
σr′(j), can yield following recombined sequences:

φ = [σ
r
(1), . . . , σ

r
(i − 1)] ⊕ [σ

r′
(j)] ⊕ [σ

r
(i + 1), . . . , σr(|σr|)] (9)

φ
′
= [σ

r′
(1), . . . , σ

r′
(j − 1)] ⊕ [σ

r
(i)] ⊕ [σ

r′
(j + 1), . . . , σ

r′
(|σr′ |)]

(10)

These generated sequences denote two new routes after ap-
plying the swap move on r and r′. Both of them contain a
concatenation of three subsequences. Here, ⊕ indicates the
concatenation operator.

For each such subsequence σ = [σ(1), σ(2), . . . , σ(|σ|)],
we compute the total travel time TT (σ), the earliest time
ET (σ) that the vehicle leaves the last customer σ(|σ|)’s lo-
cation in the subsequence, the latest time LT (σ) for starting
the service at the first customer σ(1), the total load TL(σ),
and the summation of travel costs TC(σ). We can directly
calculate these data for a sequence σ0 involving a single
customer p, as TT (σ0) = 0, ET (σ0) = elocp , LT (σ

0) =

llocp , TL(σ
0) = dlocp , and TC(σ0) = 0. By supposing

u = locσ(|σ|) and v = locσ′(1), the computations of the
same data for a concatenation of two sequences σ and σ′ are
shown in Equations 11 to 15.

TT (σ ⊕ σ′) = TT (σ) + tuv + TT (σ′) (11)

ET (σ ⊕ σ′) = max{ET (σ) + tuv + TT (σ′), ET (σ′)} (12)

LT (σ ⊕ σ′) = min{LT (σ), LT (σ′)− tuv − TT (σ)} (13)

TL(σ ⊕ σ′) = TL(σ) + TL(σ′) (14)

TC(σ ⊕ σ′) = TC(σ) + cuv + TC(σ′) (15)

Our proposed move evaluation procedure employs the
above equations to first prepare data on relevant consecutive
visit subsequences (and their reversal) in a route through a
preprocessing phase. These data can be used directly to com-
pute the cost improvement as well as validate the capacity
and time-window constraints in O(1) when we fix the de-
livery locations of all customers. However, if we allow to
modify the delivery locations of clusters during the process
of the LS moves, our algorithm can explore wider search
space and thus work better.

We now describe in detail how to efficiently evaluate a LS
move for the VRPRDL allowing the modification of delivery
locations in each cluster. First, for each inter-route neighbor-
hood operator, we restrict some specific customers to be able
to change their locations during the search as follows:
• N1 (Swap and Relocate): Only customers in the mov-

ing sequences or being adjacent to these sequences are
permitted to change their delivery locations. We slightly
modify the DP used in the function CALCOST() (Equa-
tions 2-5) by adjusting its initial state and result states.
For simplicity, let us make an example with the swap
move on two routes r and r′ yielding two new associ-
ated sequences φ and φ′ as described above (Equations
9-10). We perform the DP algorithm on two visit sub-
sequences [σr(i− 1), σr′(j), σr(i+1)] and [σr′(j− 1),
σr(i), σr′(j + 1)] with their changed initial state (Equa-
tion 2) respectively as follows:

F
(
start, ET (φ1), locstart

)
= C(φ1) (start = σr(i− 2)),

F
(
start, ET (φ′

1), locstart
)
= C(φ′

1) (start = σr′(j − 2))

in which φ1 =
[
σr(1), . . . , σr(i−2)

]
and φ′

1 =
[
σr′(1)

, . . . , σr′(j − 2)
]
. Similarly, the result states (the left

side of Equation 5) become (σr(i + 2), τ, locσr(i+2))(
for sub-sequence [σr(i − 1), σr′(j), σr(i + 1)]

)
, and

(σr′(j+2), τ, locσr′ (j+2))
(
for sub-sequence [σr′(j−1),

σr(i), σr′(j + 1)]
)
. The travel costs of two new afore-

mentioned sequences φ and φ′ are:

TC(φ) = min
τ∈[eu,LT (φ2)]

{
F (σr(i+ 2), τ, u) + TC(φ2)

}
TC(φ′) = min

τ ′∈[ev,LT (φ′
2)]

{
F (σr′(j + 2), τ ′, v) + TC(φ′

2)
}

where u = locσr(i+2), v = locσr′ (j+2), φ2 =
[
σr(i+2),

. . . , σr(|σr|)
]

and φ′
2 =

[
σr′(j + 2), . . . , σr′(|σr′ |)

]
.

As shown in the previous section, in the neighborhood
N1, the size of two swap sequences is in the range of
0-2 consecutive visits. Therefore, the maximum length
of a subsequence that allows its elements to change
their locations is bounded to 4, and the complexity of
each evaluation move in this case is O(42|Nmax|2) =
O(16|Nmax|2).

• N2 (2-opt*): In this neighborhood operator, we need to
split two different routes into front and back parts. The
four customers (dash circles in Figure 3) related to the
splitting positions are allowed to modify their delivery

302

locations. In other words, the LS procedure traverses
through all possible locations of two customers in each
reconnected arc (black dash line in Figure 3). The evalu-
ation of this move can be done in O(|Nmax|2).

For the intra-route LS moves on a route r, there is no
restriction on any customers. This means whenever eval-
uating a move performed on route r, we call function
CALCOST(σr) for the new visit sequence of r obtained af-
ter applying the move. We note that computing function
CALCOST() can be quite expensive. However, we observe
that, for the VRPRDL instances of the literature, the average
length of routes in solutions is not large. Thus, our imple-
mentation for the intra-route moves is still fast and efficient.

Population Management
The population size of our HGA-SC varies from µ to µ
+ λ. In the initialization phase, µ individuals are obtained
through randomly creating giant tours. The survivor selec-
tion phase is triggered when the size of population Pop ex-
ceeds the value µ + λ to remove weak and clone individuals
until retaining µ individuals. In (Vidal et al. 2014), once the
best found solution does not change in a specific number
of iterations, the population undergoes a Diversification
phase that keeps a portion of best individuals and inserts
randomly created individuals until the size of population
reaches µ. We do not use it in our algorithm because our
preliminary experiments show that this restart procedure is
quite time-consuming when solving the VRPRDL, leading
to tedious performance of the algorithm.

Set Covering Approach
In (Dumez, Lehuédé, and Péton 2021; Dumez et al. 2021), a
Set Covering (SC) operator is added to the LNS-based meta-
heuristics to efficiently intensify the search. We also reuse
this idea for our HGA-SC. As far as we know, this paper
is the first attempt to use the SC component in genetic al-
gorithms to solve VRP variants. Other related studies only
consider the SC and GA as two separate parts (Alvarenga,
Mateus, and De Tomi 2007), or exploit the SC for computing
the fitness function (Walteros, Medaglia, and Riaño 2015).

As described above, Ω is the route pool that is generated
by extracting feasible routes from each offspring during the
search. We can reassemble the routes in Ω to create a better
solution via solving a SC formulation, which uses several
variables and parameters as follows:
• vr: parameters representing the cost of route r ∈ Ω.
• βr: binary variables equal to 1 if route r ∈ Ω is selected

in the new solution, and 0 otherwise.
• αp

r : binary parameters equal to 1 if route r ∈ Ω visits
customer p ∈ P , and 0 otherwise.

The SC problem can be mathematically formulated as:

min
∑
r∈Ω

vrβr (16)

s.t.
∑
r∈Ω

αp
rβr ≥ 1 ∀p ∈ P (17)

βr ∈ {0, 1} ∀r ∈ Ω (18)

The objective (16) minimizes the total travel cost. Con-
straints (17) ensure that each customer must be visited at
least once. They can make a customer be visited many times,
thus leading to infeasible VRPRDL solutions. To deal with
this issue, we employ a simple greedy procedure to remove
redundant customer nodes. We refer the readers to (Dumez,
Lehuédé, and Péton 2021; Dumez et al. 2021) for more in-
formation. We also note that this approach only works if
both travel times and costs satisfy the triangle inequality,
which is always true for the VRPRDL instances.

During the process of managing the route pool, a hashing
data structure is implemented for detecting duplicate routes.
A route is considered as duplicate if it contains the same
node set as an existing one. Between two routes containing
the same node set, we retain only the one of lower cost. Ad-
ditionally, when the size of Ω exceeds its limit, we remove
all of its elements. This partially contributes to keeping the
running time of the SC component reasonable and diversify-
ing the search.

Computational Experiments
The HGA-SC is implemented in C++ and run on an AMD
Ryzen 7 3700X @ 3.60GHz and 16.0 GB RAM under Win-
dow 10. We use CPLEX 12.10 for solving the SC problem.
We conduct our experiments on four sets of VRPRDL and
VRPHRDL instances proposed in (Ozbaygin et al. 2017).
In these instances, the number of customers varies from 15
to 120 and each customer appears at most 6 locations. All
instances and detailed results are available online1.

Comparison Results
The best solutions for the available VRPRDL instances are
found by LNS* in (Dumez et al. 2021) and CGBH in (Yuan
et al. 2021). We now compare the results obtained by HGA-
SC with those provided by CGBH and the best configura-
tion among four versions of LNS*. To solve the VRPRDL
instances, both LNS* and CGBH need a fixed integer as in-
put representing the maximal number of vehicles that can
be used. This value for each instance is set manually (for
CGBH) or to the number of routes in the corresponding so-
lution obtained from the branch-and-price-and-cut of (Tilk,
Olkis, and Irnich 2021) (for LNS*). Two algorithms LNS*
and CGGH are tested on an Intel Xeon X5650 at 2.57 GHz,
and an Intel(R) Core(TM) i5–6200U CPU at 2.30 GHz,
respectively. According to Passmark Software2, these ma-
chines have single-thread rating performance approximately
twice as weak as our processor.

Preliminary experiments suggest the following termina-
tion conditions of our algorithm can lead to a good trade-off
between the solution quality and speed: ItNI is set to 5000
and Tmax is set to 1800 seconds for instances with 120 cus-
tomers and 360 seconds for smaller instances. We then cali-
brate the remaining parameters of HGA-SC by using the au-
tomatic configuration package IRACE (López-Ibáñez et al.
2016). Table 1 shows the tested and selected parameter val-
ues. For each instance, similarly to LNS* in (Dumez et al.

1http://orlab.com.vn/home/download
2https://www.cpubenchmark.net

303

Parameters Set or range of values Selected values
µ {20, 40} 40
λ {20, 40, 80} 80

pmut [0.5, 1.0] 0.8
nmut [2, 10] 10
ItSC {1000, 1500, 2000} 2000

maxPool {30000} 30000

Table 1: Parameter tuning results

Set #Ins n Method gap gap∗ max max∗ time
B1 30 15-60 CGBH – 0.00 – 0.00 1.91

LNS* 0.00 0.00 0.01 0.00 60.00
HGA-SC 0.00 0.00 0.00 0.00 142.00

B1 10 120 CGBH – 0.06 – 0.22 62.12
LNS* 0.05 0.00 0.25 0.00 360.00

HGA-SC 0.01 0.00 0.03 0.00 1696.56
B2 30 15-60 CGBH – 0.00 – 0.05 6.28

LNS* 0.02 0.00 0.55 0.00 60.00
HGA-SC 0.00 0.00 0.00 0.00 158.08

B2 10 120 CGBH – 0.37 – 1.39 241.00
LNS* 0.48 0.20 2.43 1.47 360.00

HGA-SC 0.18 -0.04 0.98 0.00 1799.55
B3 20 40 CGBH – 0.01 – 0.15 3.27

LNS* 0.01 0.00 0.12 0.00 60.00
HGA-SC 0.00 0.00 0.00 0.00 168.08

B4 20 40 CGBH – – – – –
LNS* 0.14 0.01 1.21 0.21 60.00

HGA-SC 0.03 0.00 0.00 0.00 170.29

Table 2: Summary of comparison results

2021), we run our HGA-SC 5 times to investigate its stabil-
ity. Note that CGBH in (Yuan et al. 2021) is run only once
on each instance.

Table 2 summarizes the obtained comparison results for
each instance set. For two sets B1 and B2, we separate the
results into two parts: one for 120-customer instances and
the other for smaller instances. Because the 120-customer
instances significantly require more running time than other
instances and are thus much harder to solve, the separation
allows to observe more clearly the behavior of the algo-
rithms on the large instances. The headings of Table 2 in-
dicate the instance set (Column “Set”), the number of in-
stances in the set (Column “#Ins”), and the number of cus-
tomers in the instances (Column “n”). For each instance, we
compute the deviation in percentage of the average objective
value from the Best Known Solution (BKS) in the literature
denoted as gap, and the deviation in percentage of the best
solution found over 5 runs from the BKS denoted as gap∗.
Column “gap” shows the values averaged over all instances
of gap, while the corresponding values for gap∗ are reported
in Column “gap∗”. Note that, since CGBH runs only once
for each instance, the values “gap” of CGBH are not avail-
able and marked as “–”. We also do not report the results
of set B4 for CGBH due to their unavailability. The maxi-
mum values of gap and gap∗ over all instances are shown
in Columns max and max∗, respectively. The last column
“time” reports the average computation time in seconds to
find the results for each method.

Table 2 clearly shows the dominance of our algorithm re-
garding solution quality when it provides better results in
all criteria. The gap∗ values of HGA-SC are never greater
than 0.00, showing that our algorithm can produce all BKSs

found in the literature. More remarkably, we improve two
new best results for instances 34 and 39 of set B2. The rel-
atively high values of max∗ in case of LNS* and CGBH
(1.39 and 1.47, respectively) imply that these algorithms
have difficulty reaching BKSs when dealing with the largest
instances of set B2. With regard to stability, we only com-
pare HGA-SC and LNS* due to the availability of the results
on multiple runs. As can be seen, the gap values of HGA-SC
are always less than or equal to those of LNS*. The maximal
deviation values max are always less than 1% while these
values for LNS* can increase up to 2.43%. These demon-
strate that HGA-SC is significantly more stable than LNS*.

In terms of running time, our algorithm is clearly slower
than the others. However, we also recall that, to efficiently
solve the VRPRDL instances, LNS* and CGBH need a pre-
defined parameter input representing the maximal number of
vehicles that can be used. The parameter for each instance is
set manually (for CGGH) or taken from existing algorithms
(for LNS*). Because the number of vehicles required in so-
lutions of the VRPRDL instances is relatively large (approx-
imately 20 in the instances with 120 customers), this value
possibly allows both algorithms to narrow the search space,
and thus to reduce the runtime significantly. On the contrary,
our algorithm automatically determines an appropriate num-
ber of vehicles during the search. In many cases, we observe
that, because of time window constraints, the number of ve-
hicles in initial solutions is much larger than that in best-
known solutions, partly leading to more challenges for the
HGA-SC.

Sensitivity Analysis of Algorithm Components
In this section, we focus on analyzing the impact of our two
new proposed components mutation and set covering, which
are rarely applied in genetic algorithms to solve VRP vari-
ants. To achieve the goal, we evaluate three versions of the
HGA-SC obtained from performing the following modifica-
tions:
• HGA-SCbase: removing both mutation and SC compo-

nents.
• HGA-SCnoMut: removing only the mutation.
• HGA-SCnoSC : removing only the SC component.

For each version, we use the same setting of HGA-SC as
described in the previous section. Table 3 shows the compar-
ison between these configurations and HGA-SC on all sets
of instances. In this table, Columns “Set” and “#Ins” have
the same meaning as in Table 2. The selected comparison
criteria are the summations of gap and gap∗ values (see the
previous section) of each instance set in Columns “

∑
gap”

and “
∑

gap∗”, respectively. In Column “#BKS”, we present
another criterion, which is the number of instances that an
algorithm version can provide solutions better than or equal
to BKSs (without ones found in this paper).

As can be seen in Table 3, the results demonstrate the pos-
itive impact of the mutation and the SC components on the
performance of HGA-SC. When both components are omit-
ted, the algorithm performs the worst in all three criteria.
Using the mutation or SC separately makes the algorithms
perform better. And the combination of both components

304

Set #Ins Configuration
∑

gap
∑

gap∗ #BKS
B1 40 HGA-SCbase 1.34 1.18 37

HGA-SCnoMut 1.72 1.11 36
HGA-SCnoSC 1.51 1.41 36

HGA-SC 0.07 0.00 40
B2 40 HGA-SCbase 8.39 5.94 35

HGA-SCnoMut 6.28 5.86 36
HGA-SCnoSC 5.73 3.48 36

HGA-SC 1.84 -0.44 40
B3 20 HGA-SCbase 0.00 0.00 20

HGA-SCnoMut 0.00 0.00 20
HGA-SCnoSC 0.00 0.00 20

HGA-SC 0.00 0.00 20
B4 20 HGA-SCbase 1.63 0.21 19

HGA-SCnoMut 1.63 0.21 19
HGA-SCnoSC 0.18 0.00 20

HGA-SC 0.53 0.00 20

Table 3: Sensitivity analysis on the impact of mutation and
SC components

creates the best version of the algorithm. We believe this is
due to the better balance between diversification and inten-
sification of our metaheuristic when these components are
added.

Scalability Analysis of HGS-SC
In this section, we analyze the impact of the number of cus-
tomers, the number of locations, and the route length on the
performance of HGS-SC. In (Yuan et al. 2021), the authors
modified two instance sets B1 and B2 to create two new sets
called B1-var and B2-var, respectively by reducing the cus-
tomer demand and the travel times, then widening the time
windows. We make an additional experiment by running our
HGA-SC on 4 instance sets B1, B2, B1-var and B2-var with
only one stopping condition that limits the total number of
iterations to 7000. For each instance, our HGA-SC is run
once for a fair comparison with CGBH and five times for a
convenient comparison with other metaheuristics in the fu-
ture. Table 4 summarizes our results.

For each instance, we compute the deviations in per-
centage of the best solution found over 1 run (gap1) and
5 runs (gap5) from the BKS. The average values of gap1
and gap5 for each instance group are presented in Columns
“gap1” and “gap5”, respectively. The last three columns re-
port the calculated values in the 1-run configuration. Col-
umn “nbRou” shows the average number of used vehicles
in best found solutions. Column “time” represents the av-
erage running time in seconds of each method. To observe
the performance of HGA-SC and CGBH before and after
increasing the route length, the average computation time of
these methods on sets B1 and B2 is also reported in Column
“timeori”.

Results in Column “gap1” show that HGA-SC still pro-
duces better solutions than CGBH. In particular, on two sets
B1-var and B2-var with the 5-run configuration, we improve
47 solutions of CGBH and provide worse solutions in only 6
instances. The number of used vehicles in our final solutions
is even never larger than that of CGBH except instance 35 of

Set n Method gap1 gap5 nbRou time timeori
B1-var 15-60 HGA-SC -0.18 -0.22 2.97 290.39 177.08

CGBH 0.00 - 3.03 62.29 1.91
B1-var 120 HGA-SC -1.76 -2.27 6.00 3089.36 1688.71

CGBH 0.00 - 7.80 1258.60 62.12
B2-var 15-60 HGA-SC -0.47 -0.47 2.37 342.57 209.35

CGBH 0.00 - 2.63 135.36 6.28
B2-var 120 HGA-SC -2.10 -2.75 5.00 3678.24 2086.79

CGBH 0.00 - 6.20 2577.19 241.00

Table 4: Summary of results for the scalability analysis

set B1-var. This confirms again the high quality of solutions
found by our HGA-SC.

The results also show the scalability of HGA-SC. When
increasing the route length, the average runtime of HGA-SC
is almost double in the worst case (120-customer instances
of set B1-var), and reaches up to 3678.24 seconds which is
still adequate for daily or weekly planning. We also note
that, to solve two sets B1-var and B2-var, the average run-
time of CGBH is about 10-32 times longer than on the origi-
nal instance sets B1 and B2. Therefore, the route length has a
more serious impact on the performance of CGBH than that
of HGA-SC.

Conclusion
In this article, we develop a hybrid genetic algorithm called
HGA-SC to solve the VRPRDL problem, which has appli-
cations in scheduling the delivery services to the trunk of
cars. Our algorithm has several new features, such as an im-
plicit solution representation, a split procedure to fast evalu-
ate chromosomes, local search operators, a swap-based mu-
tation, and a set covering component. Experimental results
obtained on the VRPRDL benchmark instances of the litera-
ture are compared with the state-of-the-art results, showing a
good performance of our HGA-SC in terms of solution qual-
ity and stability. In addition, 49 new best known solutions
are first found in this paper. We also conduct a sensitivity
analysis to investigate the impact of two components muta-
tion and set covering, which are rarely applied in genetic al-
gorithms, on the algorithm performance. The results demon-
strate the importance of these features. Future research di-
rections include applying our metaheuristic to other prob-
lems with roaming delivery locations such as GVRPTW and
VRPDO. To solve the existing instances of these problems,
all components of HGA-SC need to be carefully redesigned
to deal with the cases where the fleet size is limited.

Acknowledgments
This work is finished during the research stay of the cor-
responding author (Minh Hoàng Hà) at the Vietnamese In-
stitute for Advanced Studies in Mathematics (VIASM). He
wishes to thank this institution for their kind hospitality and
support.

References
Alvarenga, G. B.; Mateus, G. R.; and De Tomi, G. 2007.
A genetic and set partitioning two-phase approach for the

305

vehicle routing problem with time windows. Computers &
Operations Research, 34(6): 1561–1584.
Balas, E.; and Simonetti, N. 2001. Linear Time Dynamic-
Programming Algorithms for New Classes of Restricted
TSPs: A Computational Study. INFORMS Journal on Com-
puting, 13(1): 56–75.
Coppola, D. 2021. E-commerce worldwide - statistics &
facts. https://www.statista.com/topics/871/online-shopping/
#dossier-chapter1. Accessed: 2021-11-03.
Dumez, D.; Lehuédé, F.; and Péton, O. 2021. A large
neighborhood search approach to the vehicle routing prob-
lem with delivery options. Transportation Research Part B:
Methodological, 144: 103 – 132.
Dumez, D.; Tilk, C.; Irnich, S.; Lehuédé, F.; and Péton, O.
2021. Hybridizing large neighborhood search and exact
methods for generalized vehicle routing problems with time
windows. EURO Journal on Transportation and Logistics,
10: 100040.
Harbison, C. 2018. Amazon Car Delivery: How to
Get Packages Delivered to Your Trunk with New Key
Service. https://www.newsweek.com/amazon-car-delivery-
key-trunk-how-cities-home-kit-where-service-899644. Ac-
cessed: 2021-11-03.
Holland, J. H. 1992. Adaptation in natural and artificial sys-
tems: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press.
Irnich, S.; Toth, P.; and Vigo, D. 2014. Chapter 1: The Fam-
ily of Vehicle Routing Problems, 1–33. MOS-SIAM Series
on Optimization.
J. Hawkins, A. 2018. Amazon will now deliver packages to
the trunk of your car. https://www.theverge.com/2018/4/24/
17261744/amazon-package-delivery-car-trunk-gm-volvo.
Accessed: 2021-11-03.
López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L. P.; Birat-
tari, M.; and Stützle, T. 2016. The irace package: Iterated
racing for automatic algorithm configuration. Operations
Research Perspectives, 3: 43–58.
Moccia, L.; Cordeau, J.-F.; and Laporte, G. 2012. An in-
cremental tabu search heuristic for the generalized vehicle
routing problem with time windows. Journal of the Opera-
tional Research Society, 63(2): 232–244.
Oliver, I.; Smith, D.; and Holland, J. R. 1987. Study of
permutation crossover operators on the traveling salesman
problem. In Genetic algorithms and their applications: pro-
ceedings of the second International Conference on Genetic
Algorithms: July 28-31, 1987 at the Massachusetts Institute
of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum
Associates, 1987.
Ozbaygin, G.; Karasan, O. E.; Savelsbergh, M.; and Yaman,
H. 2017. A branch-and-price algorithm for the vehicle rout-
ing problem with roaming delivery locations. Transporta-
tion Research Part B: Methodological, 100: 115–137.
Prins, C. 2004. A simple and effective evolutionary algo-
rithm for the vehicle routing problem. Computers & Opera-
tions Research, 31(12): 1985–2002.

Reyes, D.; Savelsbergh, M.; and Toriello, A. 2017. Vehi-
cle routing with roaming delivery locations. Transportation
Research Part C: Emerging Technologies, 80: 71–91.
Schneider, M.; and Löffler, M. 2019. Large composite
neighborhoods for the capacitated location-routing problem.
Transportation Science, 53(1): 301–318.
Schröder, C.; Gauthier, J.; Gschwind, T.; and Schneider, M.
2020. In-depth analysis of granular local search for capaci-
tated vehicle routing. Technical report, Working Paper DPO-
2020-03, Deutsche Post Chair—Optimization of Distribu-
tion.
Tilk, C.; Olkis, K.; and Irnich, S. 2021. The last-mile vehicle
routing problem with delivery options. OR Spectrum, 1–28.
Toth, P.; and Vigo, D. 2003. The granular tabu search and its
application to the vehicle-routing problem. Informs Journal
on Computing, 15(4): 333–346.
Vidal, T.; Crainic, T. G.; Gendreau, M.; and Prins, C. 2013.
A hybrid genetic algorithm with adaptive diversity manage-
ment for a large class of vehicle routing problems with time-
windows. Computers & Operations Research, 40(1): 475–
489.
Vidal, T.; Crainic, T. G.; Gendreau, M.; and Prins, C. 2014.
A unified solution framework for multi-attribute vehicle
routing problems. European Journal of Operational Re-
search, 234(3): 658–673.
Walteros, J. L.; Medaglia, A. L.; and Riaño, G. 2015. Hy-
brid algorithm for route design on bus rapid transit systems.
Transportation Science, 49(1): 66–84.
Yuan, Y.; Cattaruzza, D.; Ogier, M.; Semet, F.; and Vigo, D.
2021. A column generation based heuristic for the gener-
alized vehicle routing problem with time windows. Trans-
portation Research Part E: Logistics and Transportation Re-
view, 152: 102391.

306

