
Optimising the Stability in Plan Repair via Compilation

Alessandro Saetti, Enrico Scala∗

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy
alessandro.saetti@unibs.it, enrico.scala@unibs.it

Abstract

Plan repair is the problem of solving a given planning prob-
lem by using a solution plan of a similar problem. This paper
presents the first approach where the repair has to be done op-
timally, i.e., we aim at finding a minimum distance plan from
the input plan; we do so by introducing a simple compilation
scheme that converts a classical planning problem into an-
other where optimal plans correspond to plans with the min-
imum distance from an input plan. Our experiments using a
number of planners show that such a simple approach can
solve many problems optimally and more effectively than re-
planning from scratch for a large number of cases. Also, the
approach proves competitive with LPG-adapt.

Introduction
Agents acting in real-worlds have to deal with uncertainty,
therefore any plan can become invalid at some point. An ap-
proach to address such a problem is to either anticipate all
possible contingencies at planning time (e.g., through con-
formant or contingent planning models (Smith and Weld
1998; Bonet 2010)), or deal with them as soon as some-
thing disruptive actually arises. When, however, there is no
model about the uncertainty, or the number of unexpected
situations is not bounded, it is nonetheless necessary to have
some mechanism to come up with a new course of actions. A
solution to such a problem is replanning. That is, as soon as
the agent recognises that its plan does not work anymore, it
formulates a new problem and plans from that point onward.

Although replanning can work well in some situation
(Yoon, Fern, and Givan 2007; Ruml et al. 2011) and try-
ing to reuse a plan is PSPACE-complete (Nebel and Koehler
1995), it is well known that trying to fix the current course of
actions can be much more effective in practice (Gerevini and
Serina 2010; Scala and Torasso 2014). Not only can the plan
be more easily recoverable, but also the number of modi-
fications to apply can be limited, therefore optimising the
stability of the system. The plan stability is important when
humans have already validated the planning activities un-
der execution and the effort required for such a validation is
considerable. In this case, stable plans reduce the cognitive

∗Corresponding author. Email: enrico.scala@unibs.it
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

load on human observers by ensuring coherence and con-
sistency of behaviours (Fox et al. 2006). Previous solutions
to such a problem have however no guarantees that the re-
covered plan is the most stable plan that can be computed
(Scala and Torasso 2015; Fox et al. 2006; Gerevini and Se-
rina 2010; Garrido, C., and Onaindia 2010; van der Krogt R.
and de Weerdt M. 2005; Goldman, Kuter, and Freedman
2020; Höller et al. 2018; Scala 2014). Following on this line
of research, in this paper we take the problem of stability as
the primary objective of the plan repair problem. In partic-
ular we present a compilation-based approach that, given a
planning problem and a plan, solves the plan repair problem
with the guarantee to find plans that are at the minimum dis-
tance w.r.t. the input plan. We do so by making heavy use
of a cost function that captures the implications of selecting
actions that do no belong to the input plan, and that captures
whenever the agent is not using actions in the input plan.
Our compilation produces a classical planning problem that
can be handled by any cost-sensitive planner.

To understand the practicability of our compilation, we
report on an extensive experimental analysis comparing var-
ious optimal and satisficing planners with and without our
compilation, over the planning problems from the 2018 edi-
tion of the planning competition, as well as with LPG-adapt,
a state-of-the-art system that natively repairs plans.

Background
Let F be a set of facts; an action a is a pair 〈pre, eff〉 where
pre is a formula over F indicating the precondition of a;
eff is a set of positive and negative literals over F denot-
ing the effects of a. With eff+ and eff− we indicate the
positive and the negative effects of a. A state s is a set
of facts from F with the meaning that if f ∈ s then f is
true in s, otherwise it is false. An action a is applicable in
s if and only if s |= pre(a). The execution of an action
a in s, denoted by s[a], generates a new state s′ such that
s′ = (s \ eff−(a)) ∪ eff+(a).

A classical planning problem P is the tuple
〈F,A, I,G, c〉, where F is a set of facts, A is a set of
actions defined over F , I ⊆ F is a state called the initial
state, G is a formula over F , c : A 7→ R≥0 is a function
associating non-negative costs to actions. A plan π is a
sequence of actions. The application of π = 〈a1, . . . , an〉 in
a state s0 gives the sequence of states s0[π] = 〈s0, . . . , sn〉

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

316

where si = si−1[ai] for all 1 ≤ i ≤ n. Plan π is said to be
a solution for P from I = s0 if and only if the sequence of
states I[π] = 〈s0, . . . , sn〉 is such that for all 1 ≤ i ≤ n we
have that si−1 |= pre(ai) and sn |= G. The cost of a plan π
is cost(π) =

∑
a∈π c(a). A plan π is said to be optimal if it

is a solution and there is no plan π′ such that π′ is a solution
for P and cost(π) > cost(π′).

In this work, we use a simple notion of plan distance,
which considers a plan more stable if it is closer to the in-
put plan in terms of number of different actions they con-
tain, while we ignore the action ordering in plans. This is the
same notion of plan distance proposed by Fox et al. (2006).
Formally, let π and π′ be two plans, the distance D between
π and π′ is defined asD(π, π′) = |π\π′|+|π′\π|. Operator
\ is defined so that π\π′ containsm−l instances of action a
iff π and π′ respectively contain m and l instances of a and
m > l; π \ π′ contains 0 instances of a otherwise.

A repair problem combines a planning problem and a plan
attempting to solve such a problem. Formally, a repair plan-
ning problem is the pair 〈P , π〉, where P is a planning prob-
lem and π is some sequence of actions from actions in P . A
plan solves the repair problem if and only if it solves P , too.
What differs from the planning problem is the notion of op-
timality. A plan is said to be optimal for a repair problem if
it is the one that minimises the distance from the input plan
π and solves P . That is: π∗ = arg minπ′ solves P D(π, π′).

Solving the Optimal Repairing Problem
This section presents a compilation that takes in input a re-
pair problem, and generates a novel classical problem whose
optimal solutions are optimal solutions for the repair plan-
ning problem. Our compilation creates a number of copies
for each action in the plan, and customises the cost func-
tion for keeping track of those actions undermining the opti-
mality of the solution. The compilation also makes use of a
number of additional, dummy predicates, whose purpose is
to monitor the already executed actions. In what follows, we
formally explain the compilation.

We use two functions to simplify notation. Function B
counts the number of occurrences of input action a Before
step i in the plan; formally, B : A × N → N. Function
M : A → N returns the number of repetitions of action a.
We call our compilation RESA (REpair for StAbility).

Definition 1 (RESA Compilation). Let P = 〈F,A, I,G, c〉
be a planning problem, and π = 〈a1, . . . , an〉 be a sequence
of actions in A. RESA takes in input P and π, and generates
a new planning problem P ′ = 〈F ′, A0 ∪ A1 ∪ A2 ∪ A3 ∪
{switch}, I ′, G′, c′〉 such that:

F ′ = F ∪ {w} ∪
⋃

i∈{1,...,n}

di ∪
⋃
a∈π

{pia | 0 ≤ i ≤M(a)}

I ′ = I ∪ {w} ∪
⋃
a∈π

p0a

A0 =
⋃
ai∈π

〈pre(a) ∧ w ∧ pB(a,i)
a ,

eff(a) ∪ {pB(a,i)+1
a ,¬pB(a,i)

a , di}〉

A1 =
⋃

a∈A\set(π)

〈pre(a) ∧ w, eff(a)〉

A2 =
⋃

a∈set(π)

〈pre(a) ∧ w ∧ pM(a)
a , eff(a)〉

A3 =
⋃

i∈{1,...,n}

〈¬w ∧ ¬di, {di}〉

switch =〈w, {¬w}〉

G′ =G ∧
∧

i∈{1,...,n}

di

c′(a) =

{
0 if a ∈ A0 ∪ {switch}
1 if a ∈ A1 ∪A2 ∪A3

Intuitively, the compilation reshapes the planning prob-
lem in such a way that all actions that do not contribute in
increasing the distance from the previous plan are given cost
0. Action instances that instead were not in the plan (the
actions set A1) or that were in the plan but we have already
used them (setA2), or that were in the plan but are not going
to be considered for the new plan (set A3) are given cost 1.
Indeed, the goal formula requires that, besides achieving the
problem goals, all actions of the input plan are processed.
This is achieved by formulating a fact d for each action
within the starting plan. Such a fact can either be made true
by actions from setA0 whose cost is equal to 0 – indeed that
corresponds to the case in which we did replicate what the
plan was before, or actions from A3 whose cost is equal to
1. Actions from A3 are the give-up actions, that is, they em-
ulate whether the planner gave up in trying to pick actions
from the input plan and for that it pays an extra cost of 1 for
each one of them. These dummy actions share some anal-
ogy with previous work to compile soft goals away (Key-
der and Geffner 2009). In order to consider whether some
action instance has been already considered we make use
of the aforementioned functions B and M . These functions
make it possible to create as many pa predicates as needed
to keep track of the number of instances of used action a,
and to monitor whether limit M(a) has been hit. This way,
any new occurrence of some action in A2 will increase the
distance from the starting plan. The switch action is what
finalises the search of the plan and starts the collection of
the give-up actions from A3. Indeed, none of the actions is
executable after switch but those in A3.

Properties of RESA
In this section we study some property of RESA. In particu-
lar we prove that RESA is sound, complete and always gen-
erates optimal solutions for the repair problem it is encoding.
Moreover, RESA size is polynomial in the input task.
Theorem 1 (RESA is sound, complete and optimal). Let
R = 〈P , π〉 be a plan repair problem. RESA transforms
R into a problem P ′ that is solvable if and only if so is R.
Moreover, the optimal solution for P ′ equates to that of the
solution forR that minimises the distance from π.

Proof Sketch. (Soundness) Observe that the actions formu-
lated by RESA do not alter the semantics of the original ac-
tions. Indeed all such actions require the precondition of the

317

Optimal setting A∗ (Blind) A∗ (hmax) Delfi1
Domain RS RESA RS RESA RS RESA
AGRICOLA (48) 0 8 0 10 39 14
CALDERA (45) 18 45 18 45 39 45
DATA-NET (48) 16 48 27 48 39 48
NURIKABE (42) 30 37 30 42 36 18
SETTLERS (30) 19 25 22 28 25 28
SPIDER (51) 17 17 19 41 29 41
TERMES (54) 18 9 9 20 36 35
D-1 (106) 39 74 42 85 82 82
D-2 (106) 42 66 43 77 82 76
D-5 (106) 37 49 40 72 79 71
Total (318) 118 189 125 234 243 229

Satisficing setting Lama BFWS

Domain RS RESA RS RESA
AGRICOLA (48) 37 16 16 10
CALDERA (27) 27 27 27 27
DATA-NET (57) 15 55 28 22
NURIKABE (57) 31 56 31 57
SETTLERS (57) 47 54 10 15
SPIDER (54) 48 23 35 33
TERMES (48) 42 32 26 11
D-1 (116) 84 89 56 59
D-2 (116) 83 86 56 60
D-5 (116) 80 88 61 56
Total (348) 247 263 173 175

Table 1: Coverage Analysis. Each entry of the table corresponds to the number of problems solved by the system identified by
the column using RS or RESA. D-{1,2,5} is a regrouping of the instances that considers all instances computed by injecting 1,
2, or 5 random actions in sequence. The number of problems is in parenthesis. Bolds are for best performers

Optimal setting A∗ (Blind) A∗ (hmax) Delfi1
Domain RS RESA RS RESA RS RESA
agricola – – – – 30.00 5.67
CALDERA 7.89 0.00 8.56 0.00 3.97 0.00
DATA-NET 6.13 1.75 7.56 1.78 8.85 1.82
NURIKABE 17.03 2.31 16.23 2.40 14.92 3.67
SETTLERS 9.94 1.82 11.50 2.09 8.88 2.08
SPIDER 64.33 1.67 35.95 11.32 36.14 11.79
TERMES 18.56 0.56 19.78 0.67 29.10 0.65

Satisficing setting Lama BFWS

Domain RS RESA RS RESA
AGRICOLA 49.20 8.67 52.25 3.75
CALDERA 21.52 3.26 24.11 0.78
DATA-NET 107.20 53.47 85.64 41.45
NURIKABE 65.48 13.48 83.35 22.87
SETTLERS 110.04 88.42 83.29 19.14
SPIDER 324.39 245.09 270.75 233.36
TERMES 604.69 1160.22 575.00 589.89

Table 2: Plan Distance Analysis. Each entry of the table corresponds to an average of the plan distances across problems solved
by both RS and RESA. Bolds are for best performers

original actions to hold before their execution, and the orig-
inal effects are preserved. The remaining preconditions and
effects only monitor whether the action instance is playing
the role of an action that was in the input plan, or not.
(Completeness) Observe that for any valid plan π′ ofR there
is one plan in the compiled one. Each action in π′ has a copy
either in set A0 or in set A1 or in set A2 that is applicable.
(Optimality) Let π′ be an optimal plan for R. We can con-
struct a solution for P ′ by choosing for each action in π′ one
inA0∪A2 according to the prefix of π′ if the action is also in
π, one in A1 otherwise; subsequently, adding action switch
and one action in A3 for each action instance in π that is not
in π′. It is easy to see that the resulting cost of the solution
will reflect the overall cost of π′.

Theorem 2. RESA is linear on the size ofR.

Proof sketch. Observe that there are only O(π) new predi-
cates and actions.

Experimental Analysis
Our experimental analysis evaluates the performance of
RESA comparing it with both replanning from scratch (here-
inafter RS), and LPG-adapt, which is the state-of-the-art ap-
proach to plan repair; LPG-adapt adapts plans through a re-
finement approach in the plan spaces. It is designed to take
plan stability into account (Fox et al. 2006).

In our comparison against RS, we study RESA with both
optimal and satisficing planners. With optimal planners, we

evaluate the coverage of doing optimal plan repair against
just doing optimal planning. The goal of this comparison
is evaluating how harder/simpler the problem gets when
we aim at finding plans of minimum distance from the in-
put plan. Moreover, we also collect the actual plan distance
found by the planners to show how different the solutions
found by RESA w.r.t. just ignoring the input plan are. We
used the same metrics for the satisficing planners. Also for
the satisficing setting we aim at understanding how hard-
er/simpler the satisficing problem gets when the search is
driven by minimizing the distance from an input plan, and
the effectiveness of the satisficing planners in computing so-
lutions closer to the input plan. For optimal planning, we
used A∗ with a simple blind heuristic, A∗ with the hmax
heuristic, and Delfi1 (Katz et al. 2018), the winner of the
2018 edition of the Int. Planning Competition (IPC-18). For
the satisficing setting we use Lama (Richter and Westphal
2010) and BFWS (Lipovetzky and Geffner 2017). For both
systems we run only the first cost-sensitive iteration. Finally,
we compare coverage and plan distance of LPG-adapt w.r.t.
optimal planning and the anytime version of Lama.

We take all the domains and problems from the optimal
and satisficing track of the IPC-18. For each instance prob-
lem we generate three plan repair problems modifying the
initial state by randomly executing 1, 2 and 5 actions in se-
quence. As an input plan, we used the shortest plan among
those generated during the competition. Ties among short-
est plans are broken randomly. This gives us a grand total of

318

100

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105 106 107 108 109

R
es

a

From scratch

D-1
D-2
D-5

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

R
es

a

From scratch

D-1
D-2
D-5

Figure 1: Scatter plotting the number of node expansions be-
tween RESA and replanning from scratch (RS). Each point is
the pairwise comparison between RESA and RS with all op-
timal (left) and satisficing (right) planners. Full scale values
are problems unsolved by one of the two systems.

666 instances. All experiments ran up to 1800 seconds with
a memory cut of 8GB. Tests are performed on a single core
of a 4 cores Intel(R) Xeon(R) 2.30 GHz.

RS vs RESA, Optimal Planning. In our comparison
against RS, each experiment consists in launching each in-
stance and each planner either with the original formulation
of the problem or with that obtained by our compilation. Ta-
ble 1 shows the coverage of A∗ ran with the blind and the
hmax heuristic, and Delfi1 over both the original problem
and the problem compiled by RESA. As it is possible to ob-
serve, RESA with A∗ performs much better than RS. To have
a better understanding of the reasons why RESA performs
so much better with A∗, we also collected information on
the number of expanded nodes during the search. This is re-
ported in Figure 1. As it is possible to observe, RESA makes
the search much simpler. Indeed, the planner is encouraged
to explore all 0-cost path first, and, especially for small dis-
crepancies, there is quite a gain of coverage. For Delfi1 we
instead have mixed results. In AGRICOLA and NURIKABE,
in particular, RS proves to be more beneficial than repairing.
By looking at our raw data we observed that Delfi1 spends
a lot of time in preprocessing. RESA generates ground prob-
lems, and this seems particularly problematic for the pre-
processing step of Delfi1, to the point that with RESA even
a much simpler search such as A∗ combined with hmax per-
forms better than Delfi1. Our conjecture about the reason
for the poorer performance of RESA even with Delfi1 seems
supported by Figure 1. Indeed, in terms of number of ex-
panded nodes, RESA with Delfi1 expands fewer nodes than
RS, since the vast majority of the points are under the di-
agonal. As expected, the performance of RESA gets worse
as the number of differences w.r.t. the original problems in-
creases. This also indicates that the optimal repair problem
becomes progressively more difficult as the number of such
differences increases. Finally, the results in Table 2 show
that in terms of plan distance RESA using optimal planners
is always much better than replanning.

RS vs RESA, Satisficing Planning. Table 1 reports on
the coverage of Lama and BFWS with or without the RESA
compilation. Note that the compilation improves the cover-

Solved Distance Solved Distance
Domain LPG RD LPG RD LPG RL LPG RL
AGRICOLA 16 14 126.5 14.50 16 43 136.1 106.7
CALDERA – 45 – – – 45 – –
DATA-NET 48 48 4.94 1.85 48 48 4.94 2.73
NURIKABE – 18 – – – 42 – –
SETTLERS – 28 – – – 28 – –
SPIDER – 41 – – – 31 – –
TERMES 54 35 0.80 0.63 54 48 0.79 108.0

Table 3: Coverage and plan distance between LPG-adapt
and RESA using Delfi1 (RD) and Lama (RL) over the prob-
lems derived from the optimal track of IPC-18. Bolds are for
best performers; “–” for unsupported.

age of Lama over the majority of domains, but AGRICOLA,
SPIDER and TERMES. The problems of these domains have
solution plans definitely longer than other domains. Our con-
jecture is that longer plans make the compilation more dif-
ficult, nullifying the guidance that such plans can provide in
solving the problem. The results of RESA with BFWS are
similar. Regarding BFWS and Lama, we have the similar
problem we got with Delfi1. As Delfi1, Lama and BFWS
are based on the Fast-Downward planning system (Helmert
2006), and such a system seems to be not well optimised
to work over fully grounded problems. Interestingly, differ-
ently from the optimal setting, the satisficing repair problem
does not become more difficult as the number of differences
w.r.t. the original problem increases. Table 2 shows that for
all domains but TERMES the plans computed by RESA are
less distant from the input plan than RS. In TERMES, very
long input plans give no fruitful information to the search.

LPG-Adapt vs RESA. We consider RESA with Delfi1
and Lama, the best performers among the used optimal
and satisficing planners. We take the best solution found
by LPG-adapt and RESA using Lama in anytime modality
run up to 1800s. The results show that (Table 3), for all do-
mains but TERMES, RESA with Delfi1 is competitive with
LPG-adapt in terms of coverage, while guaranteeing the op-
timality of the solution for the repair problem. The plans
computed by RESA with Delfi1 are up to one order of mag-
nitude closer to the input plans (i.e., in AGRICOLA). RESA
with Lama solves much more problems than LPG-adapt
overall, but is not effective in TERMES. Missing results of
Table 3 are due to LPG-adapt not supporting conditional
effects. An extended analysis without conditional effects is
needed to better compare LPG-adapt with RESA.

Conclusion
This paper faces the problem of optimal plan repair, which
consists in finding a plan that solves the problem and also
minimises the distance with respect to the input plan. We
solved this problem through a compilation into classical
planning. Our results show that not only is this approach
possible, but also competitive with LPG-adapt, the state-of-
the-art system for computing repair plans optimising stabil-
ity. As a future work we want to investigate different metrics
for stability and adaptations of RESA to such metrics.

319

Acknowledgements
We thank the anonymous reviewers for their insightful com-
ments. The authors have been supported by AIPlan4EU, a
project funded by EU Horizon 2020 research and innovation
programme under GA n. 101016442 (since 2021)

References
Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artif. Intell., 174(3-4): 245–269.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning versus Plan Repair. In ICAPS, 212–
221. AAAI.
Garrido, A.; C., G.; and Onaindia, E. 2010. Anytime Plan-
Adaptation for Continuous Planning. In Proc. of P&S Spe-
cial Interest Group Workshop (PLANSIG-10).
Gerevini, A.; and Serina, I. 2010. Efficient Plan Adaptation
through Replanning Windows and Heuristic Goals. Fun-
dam. Informaticae, 102(3-4): 287–323.
Goldman, R. P.; Kuter, U.; and Freedman, R. G. 2020. Sta-
ble Plan Repair for State-Space HTN Planning. In Proceed-
ings of the ICAPS-20 Workshop on Hierarchical Planning
(HPlan 2020), 27–35.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
HTN plan repair using unmodified planning systems. In Pro-
ceedings of the 1st ICAPS Workshop on Hierarchical Plan-
ning (HPlan), 26–30.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning.
IPC-9 planner abstracts, 57–64.
Keyder, E.; and Geffner, H. 2009. Soft Goals Can Be Com-
piled Away. J. Artif. Intell. Res., 36: 547–556.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI, 3590–3596. AAAI Press.
Nebel, B.; and Koehler, J. 1995. Plan Reuse Versus Plan
Generation: A Theoretical and Empirical Analysis. Artificial
Intelligence, 76(1-2): 427–454.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127–177.
Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J. 2011.
On-line Planning and Scheduling: An Application to Con-
trolling Modular Printers. Journal of Artificial Intelligence
Research (JAIR), 40: 415–468.
Scala, E. 2014. Plan Repair for Resource Constrained Tasks
via Numeric Macro Actions. In ICAPS. AAAI.
Scala, E.; and Torasso, P. 2014. Proactive and Reactive Re-
configuration for the Robust Execution of Multi Modality
Plans. In ECAI, volume 263 of Frontiers in Artificial Intel-
ligence and Applications, 783–788. IOS Press.
Scala, E.; and Torasso, P. 2015. Deordering and Numeric
Macro Actions for Plan Repair. In IJCAI, 1673–1681. AAAI
Press.

Smith, D. E.; and Weld, D. S. 1998. Conformant Graphplan.
In AAAI/IAAI, 889–896. AAAI Press / The MIT Press.
van der Krogt R.; and de Weerdt M. 2005. Plan Repair as an
Extension of Planning. In Proc. of International Conference
on Automated Planning and Scheduling (ICAPS-05), 161–
170.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS, 352. AAAI.

320

