
Euclidean Distance-Optimal Post-processing of Grid-Based Paths

Guru Koushik Senthil Kumar1, Sandip Aine2, Maxim Likhachev2

1College of Engineering, Carnegie Mellon University
2School of Computer Science, Carnegie Mellon University

guru.koushik@gmail.com, asandip@andrew.cmu.edu, maxim@cs.cmu.edu

Abstract
Paths planned over grids can often be suboptimal in a
Euclidean space and contain a large number of unnec-
essary turns. Consequently, researchers have looked into
post-processing techniques to improve the paths after they
are planned. In this paper, we propose a novel post-
processing technique, called Homotopic Visibility Graph
Planning (HVG) which differentiates itself from existing
post-processing methods in that it is guaranteed to shorten
the path such that it is at least as short as the provably shortest
path that lies within the same topological class as the initially
computed path. We propose the algorithm, provide proofs
and compare it experimentally against other post-processing
methods and any-angle planning algorithms.

Introduction
Computing shortest paths in a continuous 2D environment
has been of interest for researchers in various domains such
as robotics, game development and computational geome-
try. (Lozano-Pérez and Wesley 1979) solved the problem of
finding the shortest path among polygonal obstacles using
visibility graphs. In visibility graphs, search is performed
over a graph with vertices at convex obstacle corners and
guarantees to return optimal Euclidean paths in two dimen-
sional spaces with polygonal obstacles. However, construct-
ing and planning on visibility graphs can become slow as the
number of obstacles increases. In computational geometry
literature, (Chazelle 1982; Bespamyatnikh 2003) solved the
Euclidean shortest path problem with the funnel algorithm
but the algorithm requires triangulation of the environment
which is a not an efficient way to represent environments
that can vary dynamically. Consequently, grid representation
of the environment dominated search-based planning litera-
ture due to its ease of use and flexibility in representation
for varying costs and dynamically changing environments.
The limitations of using grid-based graphs for search-based
planning algorithms such as A* and its derivatives is that the
angle of traversal is limited by increments of 45◦ (assuming
an eight-connected grid). As a result, these planners can pro-
duce unrealistic looking paths with unnecessary turns and
high path cost. The need to alleviate the suboptimal costs
and unnecessary turns of the generated paths has lead to two

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research directions: post-processing of computed paths and
any-angle planning algorithms.

In this work, we present a novel algorithm for post-
processing grid-based paths which returns a path that is at
least as short as the Euclidean-distance optimal path in the
homotopy class of the original path. We utilize the fact that
search over visibility graphs gives optimal Euclidean paths
by building a ‘local’ Homotopic Visibility Graph around the
grid-search path and performing a search over it to obtain the
post-processed path. Considering that visibility graph search
can become time consuming due to high branching factor,
there is a need to prune the maximum number of vertices and
edges possible. Our algorithm chooses only convex obstacle
corners in the homotopy class of the grid path that could
potentially contribute to a taut path, to build the visibility
graph. The process of finding the relevant obstacle corners
and building the visibility graph is highly parallelizable and
hence has a much better runtime compared to planning on
full visibility graphs.

In the following sections of the paper the related work is
detailed, the Homotopic Visibility Graph Planning (HVG)
algorithm is detailed and proofs showing that the post-
processed path is at least as short as the provably optimal
path lying within the same homotopy class as the initial grid-
based path are provided. The results of experiments on grid-
based maps along with comparison to other post processing
algorithms and any-angle planning algorithms are presented.
HVG is able to scale significantly better than any-angle algo-
rithms to large and dense maps and achieves better runtimes
while providing a homotopic optimality guarantee.

Related Work
A two step approach of path computation and post-
processing of grid-based paths has been commonly used
to reduce the cost of the generated paths. The most com-
monly used technique is greedy post-processing (Geraerts
and Overmars 2007) where three consecutive nodes are
taken and if there is a line of sight between the first and the
third node, the second node is removed from the path. This
is followed until there are no path shortcuts available. The
main pitfall of such greedy post-processing is that it only
removes nodes from the path and does not allow for addi-
tion of nodes which is necessary for obtaining a provably
shortest path. (Han, Uras, and Koenig 2020) introduced a

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

321



post-processing algorithm which allowed for addition and
removal of nodes in the path and always generated post-
processed paths with no heading changes in freespace. How-
ever, to the best of our knowledge there still exists no post-
processing algorithm that provides guarantees on optimal-
ity or bounded sub-optimality of the post-processed path in
grid-based representations.

Any-angle algorithms (Uras and Koenig 2015) such as
Theta* (Nash et al. 2007), ANYA (Harabor et al. 2016) and
Field D* (Ferguson and Stentz 2007) resolve the problem
of angle limitations in search over grid-based graphs by in-
terleaving shortcutting with search and propagating infor-
mation along grid edges without constraining the path to
go along the grid edges. Among any-angle algorithms, the
approaches followed to alleviate unnecessary turns differ
from one algorithm to another. The Theta* algorithm inter-
leaves the path shortcutting step during expansion of nodes
by checking for a line of sight between the node and its par-
ent’s predecessor. ANYA performs the search over row-wise
intervals on the grid-based graph to restrict the intermediate
nodes of the path to obstacle corners. Although any-angle
planning algorithms give shorter paths than A*, they are typ-
ically slower and do not provide optimality guarantees with
the exception of ANYA (Harabor et al. 2016).

The problem of post-processing a coarse path to obtain
optimal Euclidean paths in the same homotopy class is
well studied in computational geometry literature. (Chazelle
1982; Bespamyatnikh 2003) introduced the funnel algorithm
which gives the shortest path in the homotopy class with
respect to the Euclidean or link metric. The pitfall of this
approach is the requirement of the boundary-boundary tri-
angulation of the map which is a non-trivial endeavor. Ad-
ditionally, the requirement of triangulation of the 2D space
brings about a recurring computational cost with dynami-
cally changing graphs.

The motivation for this work comes from the need to have
a post-processing algorithm with provable guarantees in the
grid-based representation of 2D environments as it is widely
used in multiple domains. Existing post-processing algo-
rithms do not provide theoretical bounds and any-angle al-
gorithms do not scale well to large maps and maps with high
obstacle density. The proposed Homotopic Visibility Graph
(HVG) algorithm addresses the mentioned gaps in research
by providing a Euclidean optimality guarantee in the homo-
topy class and scales well to large and dense maps due to its
ability to be parallelized.

Terminology
A grid representation of a 2D environment is a discretiza-
tion of the space into equally sized cells which are either
obstacles or not. A graph G = [S,E] is constructed with
corners of the cells as the graph vertices and the edges of
the cells as the edges of the graph E (either 4-connected or
8-connected). Let S be the set of all vertices in the graph
and s, g ∈ S where s = [sx, sy] and g = [gx, gy] denote the
start and goal vertex of the path. The set of convex obstacle
corners in the grid representation of a planar map is denoted
by V ⊆ S. From Lozano-Pérez and Wesley (1979), if a ver-

tex v ∈ Popt where Popt is an optimal Euclidean path, then
v ∈ {s, g} ∪ V .
Grid-based Path: A grid-based path on graph G is defined
as P = (s = p1, p2, ...pn = g) if s ∈ S is the start vertex
and g ∈ S is the goal vertex and pi ∈ S with consecutive
vertices in the path connected by edge ei ∈ E.
Line of Sight (LOS): The graph vertices p, q ∈ S are said
to have line of sight if the line joining the vertices in the
Cartesian space does not intersect any obstacle.
Visibility Graph: A graph V G = [V,Evg] is defined as a
visibility graph if V ⊆ S is the set of all obstacle corners
(convex) in S and Evg is the set of the lines joining all pairs
of vertices vi, vj ∈ V which have line of sight.
Homotopic Trajectories: Formally, homotopic trajectories
are defined as two trajectories τ1 and τ2 with the same start
and end coordinates s and g iff one can be continuously de-
formed into the other without intersecting an obstacle.

τ1, τ2 : [0, 1] → R2

τ1(0) = τ2(0) = s, τ1(1) = τ2(1) = g

then, τ1 and τ2 are homotopic iff there exist a continuous
map η such that

η : [0, 1]× [0, 1] → R2

η(α, 0) = τ1(α)∀α ∈ [0, 1]

η(β, 1) = τ2(β)∀β ∈ [0, 1]

η(0, γ) = s, η(1, γ) = g∀γ ∈ [0, 1]

Figure 1: The paths P1 and P2 and homotopic trajectories
with canonical sequence AB’C whereas P3 lies in a different
homotopy class with canonical sequence AB’C’

A test for homotopic paths: As shown in (Cabello et al.
2002), two paths in a plane belong to the same homotopy
class if and only if they have the same reduced canonical se-
quence. To determine the canonical sequence of a path, we
begin by choosing one representative point for each obstacle
in the map and draw an infinite vertical line passing through
each of those points. Each of these lines are treated as two
separate rays originating from the obstacle’s representative
point and each ray is given a unique ID. The canonical se-
quence is then constructed by appending the IDs of the rays

322



which are intersected by the path in order. The canonical se-
quence is further reduced to eliminate redundant crossings.
Two paths are then said to be homotopic iff they have the
same reduced canonical sequence (see Figure 1).
Optimal Euclidean Path: Performing an optimal search on
the graph G will lead to a path that is optimal with respect
to the grid resolution. A path from s ∈ S to g ∈ S is said
to be a optimal Euclidean path if it minimizes the Euclidean
distance metric d(p, q) = ∥p− q∥2.
Taut Path: A 2D path on a discrete grid is a taut path if it has
no turns in freespace and all of its intermediate vertices are
convex obstacle corners. Additionally, all the pairs of path
segments intersecting at an obstacle corner should subtend
an angle less than 180◦ at the obstacle corner. Optimal Eu-
clidean paths in the normal form with no collinear points are
always taut paths with vertices at obstacle corners as shown
in the work on visibility graphs (Lozano-Pérez and Wesley
1979). A taut exit (see Figure 2) is one which subtends an
angle less than 180◦ at an obstacle corner (angle measured
such that the obstacle is contained in the angle). A taut path
is one where each intermediate vertex is a taut exit as illus-
trated in Figure 2.

Figure 2: The figure illustrates taut and non-taut exits at an
obstacle corner. The taut exit subtends an angle less than
180◦ whereas the non-taut exit subtends an angle greater
than 180◦. The taut path cannot be shortened without inter-
secting an obstacle. The non-taut path can be shortened by
removing the intermediate vertex v.

HVG Algorithm
The Homotopic Visibility Graph Planning (HVG) algo-
rithm proposed in this paper is a post-processing algo-
rithm that takes as input the grid-based path P = (s =

p1, p2, p3...pn = g) and returns the post-processed path P̂ .
The core idea behind the approach utilizes two properties of
Euclidean distance-optimal paths in 2D environments: visi-
bility graphs provide Euclidean shortest paths and the short-
est paths are always taut. If a complete visibility graph V G
can be constructed within the homotopy class of P , then
the shortest path can be obtained by performing an opti-
mal search in V G. However V G can be pruned to reduce
the number of edges and vertices by exploiting the knowl-
edge of the grid-based path P . In our algorithm, we con-
struct HVG ⊆ V G from P as described in Algorithm 1. A
visualization of the algorithm is shown in Figure 3.

Algorithm 1: Homotopic Visibility Graphs (HVG)
Input : Grid path P = (s = p1, p2, ...pn = g)

Output: Post-processed path P̂
1 Vh = ∅, Vv = ∅, VHVG = {s, g}
2 for node in P do
3 if iscorner(node) then
4 VHVG.add(node);
5 end
6 for dir in {up,down,left,right} do
7 obstacle hit = false;
8 curr = node;
9 while not obstacle hit do

10 obstacle hit = CollisionDetect(curr,
curr+dir);

11 curr = curr + dir;
12 if iscorner(curr) then
13 if dir == left or dir == right then
14 Vh.add(curr);
15 else
16 Vv .add(curr);
17 end
18 break;
19 end
20 end
21 end
22 end
23 VHVG = VHVG ∪ (Vh ∩ Vv);
24 HVG = VisibilityGraph(VHVG);
25 P̂ = Search(VHVG, p1, pn);
26 return P̂

Finding vertices of HVG: A key observation that aids in
finding the vertices of HVG is that v ∈ V is a candidate
vertex for the optimal path P̂ in the homotopy class of P
if and only if it provides a taut exit (see Figure 2). For ev-
ery node p ∈ P , a line of sight scan originating from p is
performed in all the four directions parallel to the axes of
the grid. Two lists Vh, Vv are maintained for storing obstacle
corner vertices encountered during horizontal scans and ver-
tical scans. The scans are performed until an obstacle or an
obstacle corner is encountered. In the case that an obstacle
is encountered, the scan in that direction is terminated. If an
obstacle corner is encountered, then we add that to the cor-
responding list and the scan is terminated. After performing
scans for all the nodes p ∈ P , the HVG vertices are de-
termined by VHVG = Vh ∩ Vv . By finding obstacle corner
vertices that have a horizontal and vertical line of sight scan
from the grid-search path, we ensure that only vertices that
can potentially be a part of a taut exit are included. Since the
scans originating at node pi ∈ P does not depend on scans
from any other node pj ∈ P , the scans can be parallelized.
The proof for optimality is provided in the section below.

Post-processed path P̂ : The post-processed path P̂ is sim-
ply obtained by performing an optimal search over the con-
structed visibility graph HVG. The resulting path may lie

323



(a) The initially computed grid-based path (b) The blue circles indicate the vertices that were encountered
when performing scans in the four directions

(c) The orange circles indicate the vertices of the Homotopic Visi-
bility Graph HVG computed after completing the scanning

(d) The green path is the post-processed path P̂ and the blue lines
illustrate the constructed Homotopic Visibility Graph HVG

Figure 3: Illustration of the HVG post-processing algorithm where a) shows the initial grid-based path which has unnecessary
turns in freespace. b) shows the vertices encountered when performing scans originating from each vertex of the grid-based
path in the up, down, left and right directions. c) illustrates the vertices that are common in the Vv and Vh sets as described in
step 24 of Algorithm 1. d) shows the constructed visibility graph and the post-processed path that is Euclidean-distance optimal
in its homotopy class.

in neighboring homotopy classes since there is no restric-
tion for the path to lie in the same homotopy class as P .
However, the post-processed path P̂ is guaranteed to be at
least as short as the optimal Euclidean path in the homotopy
class of P . The construction of the visibility graph HVG re-
quires pairwise line of sight scans which can be parallelized
for efficient computation.

Grid Path: E1,D2,D3,C4,B5,B6,B7,B8
Grid Path Node Vh Vv

E1 E5 C1
D2 E5 C1
D3 E5 C1,C3
C4 E5,C3,C5 C1,C3
B5 E5,C3,C5 C1,C3,C5
B6 E5,C3,C5 C1,C3,C5
B7 E5,C3,C5 C1,C3,C5
B8 E5,C3,C5 C1,C3,C5
VHVG = {E1,C3,C5,B8}, HVG Path = E1,C5,B8

Table 1: An execution of HVG algorithm. For each node in
the grid based path, the state of the sets Vh and Vv is shown.

Figure 4: Illustration of the execution of HVG algorithm.
The green circles represent the start and goal vertices. Red
circles denote the vertices of the grid-based path P which is
computed using A*. Blue path is the post-processed path P̂
with the blue circles denoting the HVG vertices VHVG.

Execution of HVG: An example execution of HVG is illus-
trated in Figure 4 and Table 1. The green circles denote the
start and goal vertices. The red path is the initially computed
grid-based path P where the red circles represent the ver-
tices of the path. The blue path is the post-processed path P̂

324



with the blue circles denoting the vertices VHVG found by
HVG. For each node in P , Table 1 shows the state of the lists
Vv and Vh. The horizontal and vertical scans are performed
from the vertices colored in red or green and the result is
agnostic to the order in which the scans are performed.

Proof
In this section, the proof for homotopic optimality of the
post-processing algorithm is presented. The outline of the
proof is as follows. For the given grid-based path P in ho-
motopy class H , let Popt ∈ H be an optimal path in H and
VHVG be the set of vertices found by the HVG algorithm.
If we can show that Popt ⊆ VHVG then the visibility graph
constructed using VHVG will be guaranteed to contain the
path Popt. The aim is to show that an obstacle corner vertex
vi ∈ V belongs to an optimal path in the homotopy class
Popt only if there exists a grid search node pih, p

i
v ∈ P such

that pih has a horizontal scan to v and piv has vertical scan
to v. Here, a scan is defined as a line that passes through
freespace and does not go along obstacle edges or intersect
an obstacle.
Lemma 1: For the grid-based path P ∈ H , consider the
scenario when the Euclidean-distance optimal path Popt ∈
H has only one intermediate vertex v. For v ∈ V to be a
taut exit belonging to the optimal path, the angle subtended
by the path segments at v is less than 180◦ and the vertex
v = [vx, vy] satisfies

sx ≤ vx ≤ gx

sy ≤ vy ≤ gy

assuming sx ≤ gx and sy ≤ gy without loss of generality.
In the general case, {vx, vy} lies inside or on the rectangle
where {sx, sy} and {gx, gy} are diagonal vertices.
Proof: Let us assume that vy < sy ≤ gy and v is part of the
optimal path. But this would lead to the angle subtended at
v by the path segments to be greater than 180◦ which would
make it a non-taut exit. This contradicts the assumption that
v is part of the optimal path. Similarly, violation of the other
inequalities can be shown to lead to v not being part of the
optimal path. Hence, it is proven by contradiction that for
an optimal Euclidean path with two segments, containing
an obstacle corner v as one of the vertices, the inequalities
sx ≤ vx ≤ gx and sy ≤ vy ≤ gy are satisfied.
Lemma 2: For any grid-based path P that is homotopic
to Popt with one intermediate vertex v ∈ Popt, there exist
ph, pv ∈ P such that

phy = vy

pvx = vx

and the lines joining the pairs of points {v, ph}, {v, pv} are
collision free.
Proof: The grid search path P is homotopic to the path Popt.
In Lemma 1, we stated and proved that if v ∈ Popt, then
sx ≤ vx ≤ gx and sy ≤ vy ≤ gy . Since the grid search path
P is continuous between s and g, there exist ph, pv ∈ P
such that phy = vy and pvx = vx. Let us assume that either
of the pairs of points {v, ph} and {v, pv} are obstructed by

Figure 5: Illustration to show that the homotopy class
changes if an obstacle is present between either pair of
points {v, ph} and {v, pv}

an obstacle. As shown in Figure 5, the canonical sequence
(Cabello et al. 2002) for testing homotopy for P is AB and
for Popt is A′B which indicates that the grid search path P
and Popt belongs to different homotopies. Thus, by contra-
diction we prove that the pair of points {v, ph} and {v, pv}
has to be collision free.
Lemma 3: When Popt is an optimal path in H , there exist
pih, p

i
v ∈ P for every vi ∈ Popt \ {s, g} such that pihy = viy

and pivx = vix and the line joining the pair of points {vi, pih}
and {vi, piv} are collision free.

Figure 6: Illustration to demonstrate Lemma 3 where
Popt = (v1, v2, v3, v4, v5), P ′ = (v2, v3, v4) and P ′′ =
(v2, v1, P, v5, v4). Lemma 3 extends the results of Lemma
1 and Lemma 2 by constructing P’ and P” for each of the
intermediate vertices of Popt, namely v2, v3 and v4

Proof: We generalize Lemma 1 and Lemma 2 for Popt with
multiple intermediate vertices. The two step proof for the

325



lemma is as follows:

1. First we show that when the paths P and Popt intersect
at only two points, namely the start s and goal g coor-
dinates, there exist horizontal and vertical line of sight
scans from vi ∈ Popt to P . We utilize the property
that any subpath is also optimal. Consider the sub-path
P ′ = (vi−1, vi, vi+1) from Popt = (s = v1, v2, ...vk =
g) where P ′ is an optimal path with start vi−1 and
goal vi+1 with only one taut exit as shown in Lemma
2. Construct another path P ′′ ∈ H such that P ′′ =
(vi−1, vi−2..v1, P, vk, vk−1...vi+1) as illustrated in Fig-
ure 6. From Lemma 2, P ′ and P ′′ are homotopic trajecto-
ries and the existence of pih, p

i
v ∈ P ′′ can be shown. Fur-

ther, it holds that pih, p
i
v ∈ P because if pih, p

i
v ∈ P ′′ \ P

then that would be a valid path shortcut in Popt which
contradicts the assumption that Popt is an optimal path in
H . Here, a path shortcut is defined as a line joining two
vertices of the path which is collision free and results in
the path being in the same homotopy class.
By construction, P ′′ contains vertices that belong to P
and Popt. From Lemma 1 and 2, the vertex scans from
v ∈ P ′ will intersect P ′′ at some vertex v′. Lemma 3
states and proves that v′ belongs to P and not Popt. This
is because if v′ is in Popt, and a line joining v and v′

is collision free and this will lead to a path shortcut in
Popt which violates the assumption that Popt is an opti-
mal Euclidean path in the homotopy class. Hence, it is
proven that for every vi ∈ Popt ∃ pih, p

i
v ∈ P .

2. In the case that the paths P and Popt intersect at more
than two points, the paths are split at the intersection
points and for each of the segments, (1.) of the proof
holds.

Theorem 1: For a given grid-based path P in homotopy
class H with Popt being the Euclidean-distance optimal path
in H , the post-processed path P̂ returned by the Homotopic
Visibility Graph (HVG) algorithm is such that length(P̂ ) ≤
length(Popt).
Proof: Vertices of the graph found in lines 2–24 of Algo-
rithm 1 are a superset of the vertices v ∈ Popt as stated and
proved in Lemma 3. Hence, the path found by performing an
optimal search on the visibility graph constructed using the
found vertices is guaranteed to be at least as short as Popt.

Experiments
For benchmarking the algorithms, we use city and random
maps from (Sturtevant 2012) ranging from sizes 512x512 to
6000x6000. To test the algorithms on maps with high ob-
stacle density, custom maps were generated by randomly
sampling obstacles. We test the path length and runtime for
A∗ with HVG, A∗ with Greedy post-processing (G-PP), A∗

with String Pulling (SP), Theta∗ and ANYA. All the algo-
rithms were implemented in C++ on an Intel i7-6700 CPU
(3.40GHz) with 8 cores and 32GB RAM. The implementa-
tions for Theta∗ & ANYA are from (Uras and Koenig 2015).
Since HVG is easily amenable for parallelization, multiple
cores are used in the vertex scanning and visibility graph
construction phases. The other algorithms compared to are

not trivially parallelizable and hence a single core imple-
mentation is used.

Figure 7: Runtime vs Map Size statistics for maps generated
with 40% obstacle density

Runtime vs Map Size: The scalability of HVG and other
algorithms are tested in maps of size 512x512 to 6000x6000.
The practical merits of using A*+HVG in place of ANYA
or Theta* are seen in Figure 7 where the scalability of the
proposed algorithm (A*+HVG) to large maps is shown. On
average, A*+HVG is four times faster than Theta* and three
times faster than ANYA in maps of size 6000x6000. While
the time taken for HVG is comparable to that of the search
itself in maps of size 512x512, the ratio of time taken by
HVG to that of A* grows significantly smaller as the map
size increases.

Figure 8: Runtime vs Obstacle Density statistics for maps of
size 512x512 generated with randomly sampled obstacles

Runtime vs Obstacle Density: The performance of
A*+HVG is benchmarked in maps of varying obstacle den-
sities and the runtime is plotted in Figure 8. It can be seen
that A*+HVG performs better than the other algorithms in
maps of moderately high obstacle densities. ANYA exploits
freespace regions efficiently by searching over the space of
intervals instead of neighboring vertices in the grid-based
graph and hence performs better in maps which are less
dense and maps which are extremely dense where the num-
ber of intervals is low.
Path Cost: The path quality generated by HVG when cou-
pled with A* is comparable to that of Theta* and ANYA.

326



The length of paths generated by A*+HVG is shorter than
that of A*, A*+G-PP and A*+SP. Theta* and ANYA gener-
ate shorter paths than A*+HVG which is a consequence of
the A* path being in a homotopy class that does not contain
the globally Euclidean-distance optimal path.

Figure 9: Path cost statistics with the grid-based path gen-
erated by A*. The random maps have names that contain
the map size and the obstacle density in order. For exam-
ple, random2000-40-0 is a randomly generated map of size
2000x2000 with 40% obstacle density. The plot depicts the
path cost as a percentage of the path cost of A* on the y-axis.

Figure 10: Runtime statistics with the grid-based path gen-
erated by A*. The random maps have names that contain
the map size and the obstacle density in order. For exam-
ple, random2000-40-0 is a randomly generated map of size
2000x2000 with 40% obstacle density. The plot depicts the
natural logarithm of the runtime (ms) on the y-axis.

Bounded Suboptimal Search + HVG: Typically bounded
suboptimal search methods like Weighted A* (wA*) are
significantly faster than A* with the tradeoff on path cost.
HVG can be used to post-process paths generated by wA*
to provide homotopic Euclidean optimality guarantee while
having a much smaller runtime compared to using A*.
HVG provides a tradeoff opportunity by coupling HVG with
weighted A* which worsens the path quality but the runtime
improves significantly as the search component has at least
a five-fold reduction in runtime.

In the case of the map ‘random4000-40-0’, the cost of
the path generated by A*+HVG is around 0.98% worse than
the path cost of ANYA with a 3x improvement in runtime
over ANYA. However, the cost of the path generated by
wA*+HVG is 9.1% worse than that of ANYA with the run-

Figure 11: Path cost statistics with the grid-based path gen-
erated by wA* with w = 3. The plot depicts the path cost as
a percentage of the path cost of wA* on the y-axis.

Figure 12: Runtime statistics with the grid-based path gen-
erated by wA* with w = 3. The plot depicts the runtime (ms)
in log-scale on the y-axis.

time of wA*+HVG being 26x faster than ANYA. There is
a substantial improvement in runtime when HVG is used
along with weighted A*. The homotopic optimality guaran-
tee still stands for wA*+HVG in the homotopy class of the
grid-based path generated by wA*.

The theoretical guarantees provided by current state of
the art algorithms are (i) ANYA provides global optimal-
ity guarantee with respect to the Euclidean distance metric
(ii) Greedy post-processing provides a guarantee that the re-
sulting path is atleast as short as the path it began with (iii)
String Pulling provides a guarantee that the resulting path is
atleast as short as the path it began with and has no turns in
freespace and (iv) Theta* provides a guarantee that the path
is atleast as short as the path obtained by A*. HVG provides
a guarantee that the resulting path is atleast as short as the
optimal Euclidean path in the homotopy class of the path it
began with.

Conclusion & Future Work
In this work, we introduced a novel post-processing algo-
rithm (HVG), which is, to the best of our knowledge, the
first post-processing technique that returns a provably op-
timal path within the same homotopy class as the path re-
turned by A* search run on a 2D grid. The algorithm is
highly parallelizable and hence gives competitive runtimes.
Other post-processing algorithms and any-angle algorithms
do not lend themselves to be parallelized trivially. A∗ with

327



HVG has shorter path lengths than A∗, A∗ with greedy post-
processing and A∗ with String Pulling. In large maps and
maps with high obstacle density, we demonstrated that A∗

with HVG consistently shows better runtimes than Theta∗
and ANYA. The runtime of A∗ with HVG is dominated by
the time taken by A∗ for the initial grid search. However,
HVG can also be used with weighted A∗. The runtime of the
algorithm can be further improved by incorporating pruning
techniques used in (Oh and Leong 2017). The paralleliza-
tion of the vertex scanning and visibility graph construction
was done using a naive allocation of one thread per node of
the grid-based path. There is potential in improving multi-
threading to get a sizeable reduction in runtime.

References
Bespamyatnikh, S. 2003. Computing homotopic shortest
paths in the plane. Journal of Algorithms, 49(2): 284–303.
Cabello, S.; Liu, Y.; Mantler, A.; and Snoeyink, J. 2002.
Testing Homotopy for Paths in the Plane. In Proceedings
of the Eighteenth Annual Symposium on Computational Ge-
ometry, SCG ’02, 160–169. Association for Computing Ma-
chinery.
Chazelle, B. 1982. A Theorem on Polygon Cutting with
Applications. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, SFCS ’82, 339–349.
USA: IEEE Computer Society.
Ferguson, D.; and Stentz, A. 2007. Field D*: An
Interpolation-Based Path Planner and Replanner. In Thrun,
S.; Brooks, R.; and Durrant-Whyte, H., eds., Robotics Re-
search, 239–253. Berlin, Heidelberg: Springer Berlin Hei-
delberg.
Geraerts, R.; and Overmars, M. H. 2007. Creating High-
quality Paths for Motion Planning. The International Jour-
nal of Robotics Research, 26(8): 845–863.
Han, J.; Uras, T.; and Koenig, S. 2020. Toward a String-
Pulling Approach to Path Smoothing on Grid Graphs. In
Proceedings of the Symposium on Combinatorial Search
(SoCS).
Harabor, D.; Grastien, A.; Öz, D.; and Aksakalli, V. 2016.
Optimal Any-Angle Pathfinding In Practice. Journal of Ar-
tificial Intelligence Research, 56: 89–118.
Lozano-Pérez, T.; and Wesley, M. A. 1979. An Algorithm
for Planning Collision-Free Paths among Polyhedral Obsta-
cles. Commun. ACM, 22(10): 560–570.
Nash, A.; Daniel, K.; Koenig, S.; and Feiner, A. 2007.
Theta*: Any-Angle Path Planning on Grids. In Proceedings
of the 22nd National Conference on Artificial Intelligence -
Volume 2, AAAI’07, 1177–1183. AAAI Press.
Oh, S.; and Leong, H. 2017. Edge N-Level Sparse Visibility
Graphs: Fast Optimal Any-Angle Pathfinding Using Hierar-
chical Taut Paths. In SOCS.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144–148.
Uras, T.; and Koenig, S. 2015. An empirical comparison
of any-angle path-planning algorithms. In Eighth Annual
Symposium on Combinatorial Search.

328


