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Abstract

Cartesian counterexample-guided abstraction refinement
(CEGAR) yields strong heuristics for optimal classical plan-
ning. CEGAR repeatedly finds counterexamples, i.e., abstract
plans that fail for the concrete task. Although there are usu-
ally many such abstract plans to choose from, the refinement
strategy from previous work is to choose an arbitrary optimal
one. In this work, we show that an informed refinement strat-
egy is critical in theory and practice. We demonstrate that it
is possible to execute all optimal abstract plans in the con-
crete task simultaneously, and present methods to minimize
the time and number of refinement steps until we find a con-
crete solution. The resulting algorithm solves more tasks than
the previous state of the art for Cartesian CEGAR, both dur-
ing refinement and when used as a heuristic in an A∗ search.

Introduction
Optimal classical planning is the problem of finding a cheap-
est plan (sequence of actions) for a given planning task that
leads from an initial situation to a desired goal situation. A
prominent solution method for this problem is A∗ (Hart,
Nilsson, and Raphael 1968) with an admissible heuristic
(Pearl 1984). Cartesian abstractions (Ball, Podelski, and Ra-
jamani 2001) represent a smaller and simpler version of the
given concrete task and provide a way to obtain admissi-
ble heuristics by either considering a single abstraction or
combining multiple abstractions (Katz and Domshlak 2008;
Yang et al. 2008; Pommerening et al. 2015; Seipp, Keller,
and Helmert 2020; Drexler, Seipp, and Speck 2021).

Counterexample-guided abstraction refinement (CE-
GAR) is one way to iteratively generate such Cartesian
abstractions with increasing accuracy (Clarke et al. 2000).
In planning, Cartesian CEGAR (Seipp and Helmert 2018;
Seipp, von Allmen, and Helmert 2020) repeatedly finds opti-
mal counterexamples, i.e., optimal abstract plans that fail for
the concrete task. Based on the selected abstract plan, the ab-
straction is refined so that the detected flaw no longer occurs.
Although there are usually many different optimal abstract
plans in an abstraction, the refinement strategy from previ-
ous work is to choose an arbitrary one. We show that select-
ing the optimal abstract plan that comes closest to solving
the concrete task can lead to arbitrarily fewer refinements.
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Figure 1: The concrete transition system (left) of a planning
task for which our new refinement strategies yield arbitrar-
ily smaller abstractions (right) until a concrete plan is found.
The task contains a dashed blue operator, a dotted red oper-
ator and multiple solid black operators.

For example, consider abstractionA1 of the concrete tran-
sition system T , both shown in Figure 1. Applying the
dashed blue and then the dotted red operator is an optimal
concrete plan, while any plan that starts with one of the
solid black operators is a counterexample that leads to (in
the worst case arbitrarily many) unneeded refinements.

In this paper, we investigate new refinement strategies for
Cartesian CEGAR that consider all optimal abstract plans,
and show that these new strategies theoretically and empiri-
cally improve the state of the art for Cartesian abstractions.

Background
A transition system T is a labeled and directed graph with a
finite set of states S(T ), a finite set of labels L(T ) together
with a cost function c(T ) : L(T ) → R+

0 , a finite set of
labeled transitions T ⊆ S(T )×L(T )×S(T ), an initial state
s0(T ) ∈ S(T ), and a set of goal states S?(T ) ⊆ S(T ). A
path τ from s0 to sn is an interleaved sequence of states
and labels 〈s0, l1, s1, . . . sn−1, ln, sn〉 with 〈si−1, li, si〉 ∈
T (T ). We call τ a goal path if it is a path from the initial
state s0(T ) to a goal state s? ∈ S?(T ), and the sequence of
labels π = 〈l1, . . . , ln〉 of a goal path is called a plan. The
cost of a path τ is the cumulative cost of the induced plan π,
i.e., c(τ) = c(π) =

∑n
i=1 c(T )(li). A path or plan is called

optimal if there is no cheaper one. We call transitions and
states f -optimal if they are part of an optimal goal path. We
define h(s) of a state s as the minimum cost over all optimal
paths from s and set h(s) =∞ if there is no such path.
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A SAS+ planning task (Bäckström and Nebel 1995) is a
tuple Π = 〈V ,O, s0, s?〉 consisting of a finite set of vari-
ables V , where each variable v ∈ V is associated with a
finite domain dom(v); a finite set of operators O, where
each operator o ∈ O is associated with costs c(o) ∈ R+

0 ;
an initial state s0; and a partial state called goal condition
s?, specifying the set of goal states S? ⊆ S(Π). A partial
state s is a mapping of a subset of variables vars(s) ⊆ V to
values in their domains. We call s a state if vars(s) = V and
refer to all possible states by S(Π). An operator o ∈ O con-
sists of the partial states preo and effo and is applicable in a
state s iff preo ⊆ s. Applying o in s yields the state sJoK with
sJoK(v) = effo(v) if v ∈ vars(effo) and sJoK(v) = s(v) oth-
erwise. A planning task Π = 〈V ,O, s0, s?〉 induces a con-
crete transition system T with S(T ) = S(Π), L(T ) = O,
s0(T ) = s0, T (T ) = {〈s, l, sJoK〉 | s ∈ S(Π), o ∈
O, preo ⊆ s}, and S?(T ) = S?(Π).1

A set of states c is called Cartesian if it has the form
D1 × · · · × D|V|, where Di ⊆ dom(vi). By dom(vi, c) =
Di ⊆ dom(vi) we denote the set of values that variable vi
can have in c. An abstractionA of a concrete transition sys-
tem T ignores some distinctions between states to obtain a
smaller and simpler version of T , while preserving all tran-
sitions (Helmert, Haslum, and Hoffmann 2007). The (ab-
stract) states S(A) of an abstraction A are the equivalence
classes of an equivalence relation on S(T ). We consider a
special kind of abstraction, Cartesian abstractions (Seipp
and Helmert 2018), where all abstract states are Cartesian
sets. We write [s] ∈ S(A) for the unique abstract state that
subsumes the concrete state s ∈ S(T ).

Counterexample-Guided Abstraction Refinement
Counterexample-guided abstraction refinement (CEGAR) is
a method for incrementally computing more informative
Cartesian abstractions for the concrete transition system T
of a planning task Π (Seipp and Helmert 2013, 2018). As
a preprocessing step, we separate all goal states from non-
goal states by splitting all facts (v, d) ∈ s? from the (always
unique) goal state. Then CEGAR iteratively refines the ab-
straction A by searching for an optimal abstract plan π in
A, checking whether π is also a concrete plan for Π, and
repairing the flaw of π in A if necessary.

The induced plan π of an optimal abstract goal path
τ = 〈a0, o1, a1, . . . , an−1, on, an〉 is either a concrete so-
lution for T or yields a flaw ϕ = 〈s, c〉 which is a pair
of a concrete state s ∈ S(T ) and a Cartesian set c, where
either (i) s = s0Jo1K . . . Joi−1K is the first concrete state
in which an operator oi is not applicable and c is the set
of concrete states in [s] = ai in which oi is applicable, or
(ii) s = s0Jo1K . . . Joi−1K is the first state in which oi is ap-
plicable but [sJoiK] 6= ai+1 and c is the set of concrete states
in [s] = ai from which we can reach ai+1 by applying oi.

By Φ(A) we denote the set of all flaws of an abstraction
A. Given a flaw ϕ = 〈s, c〉, we repair it by splitting [s] into
two abstract states d and e with s ∈ d and c ⊆ e. To do this,
we select a single variable v such that s(v) /∈ dom(v, c) and

1We support zero-cost operators by assigning sufficiently small
positive costs ε to the corresponding transitions.

split dom(v, [s]) into dom(v, d) and dom(v, e). Often sev-
eral different splits are possible by choosing different vari-
ables v to split for and by choosing how to split the corre-
sponding domain dom(v, [s]).
Example 1. Consider a family of unit-cost planning tasks
Πn with two variables V = {v1, v2}, where dom(v1) =
{0, 1, 2} and dom(v2) = {0, . . . , n}. Figure 1 shows the
transition system T of Πn, where each edge represents a
distinct operator, yielding 2n + 2 operators in total. To ex-
plain CEGAR, we consider the task Π0, where the domain of
variable v1 is the singleton set {0}. CEGAR starts with the
abstractionA0 consisting of a single non-goal state and one
goal state (Figure 1). The cheapest plan in A0 is 〈red〉 with
prered = {(v1, 1), (v2, 0)} and effred = {(v1, 2), (v2, 0)}
leading from state 10 to 20. Operator red is not applicable
in the initial state 00 of T , so the domain of v1 needs to be
split, resulting in A1. In A1, the optimal plan 〈blue, red〉 is
a concrete solution and is therefore returned by CEGAR.

For a more detailed account of CEGAR for planning, we
refer the reader to Seipp and Helmert (2018).

New Refinement Strategies
Although there are usually many optimal abstract plans to
choose from in a refinement step of CEGAR, the refinement
strategy from previous work only considers a single arbitrary
one. In this section, we introduce a method to find all flaws
by executing all optimal abstract plans in the concrete task
simultaneously. This allows us to compare different flaw se-
lection strategies, for which we show that it can be arbitrarily
better to select a flaw closer to a goal state than to choose the
first encountered flaw. The second advantage of knowing all
flaws in the current abstraction is that we can consider all
flaws in an abstract state a when determining how best to
split a. We call the combination of a flaw selection strategy
and a split selection strategy a refinement strategy.

Finding All Flaws
Given an abstraction A, we perform a depth-first search
(called flaw search) in the concrete transition system T ,
starting at s0, but consider only f -optimal transitions of A.
In other words, for a state s, we consider not all succes-
sors {sJoK | o ∈ O, preo ⊆ s}, but only those that have
an f -optimal transition 〈a, o, b〉 in A such that [s] = a and
[sJoK] = b.

To collect all flaws while running the flaw search, we
make some further adaptations. When expanding a state s,
we retrieve all f -optimal abstract transitions T ∗ starting in
abstract state [s]. Then for each 〈[s], o, b〉 ∈ T ∗, we check
whether o is applicable in s. If not, we have found a flaw
〈s, c〉 where c is the set of concrete states in [s] in which o
is applicable. If o is applicable in s but [sJoK] 6= b, we have
found a flaw 〈s, c〉, where c is the set of concrete states in [s]
from which we can reach b via o. The flaw search terminates
when we expand a goal state and thus have found a concrete
solution, or when the open list is empty and thus all flaws
Φ(A) have been found.

The following proposition holds because we execute all
optimal abstract plans in the concrete task.
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Proposition 1. The flaw search returns either an optimal
concrete plan or the set of all flaws for a given abstraction.

Flaw Selection Strategies
Given the set of all flaws Φ(A) of an abstraction, the ques-
tion is which flaws to repair. Any refinement is guaranteed
to make the abstraction more accurate, but as Example 1
shows, some refinements will lead to finding a concrete solu-
tion faster than others. Previous work simply always refined
the abstraction based on an arbitrary optimal abstract plan.
We show below that it is much preferable to consider an op-
timal abstract plan that breaks closest to a goal state in the
concrete transition system.

To evaluate this idea, we introduce two new flaw selec-
tion strategies, MINH and MAXH, which both consider all
optimal abstract plans using the flaw search presented above.
Both strategies select a flaw ϕ = 〈s, c〉 ∈ Φ(A) based on the
h value of the abstract state [s] ∈ S(A) in which ϕ occurs.
MINH returns a concrete solution if one exists, and selects
a flaw with the lowest h value otherwise. MAXH selects a
flaw with the highest h value if a flaw exists, and returns a
concrete solution otherwise. Thus, MINH and MAXH prefer
plans that break late and early, respectively. We use MAXH
as a worst-case strategy that leads to refining the abstraction
until all optimal abstract plans are valid concrete solutions.
Additionally, we consider the FIRST strategy from previous
work, which selects an arbitrary optimal abstract plan π, re-
turns π if it works for the concrete task, or selects the first
flaw found for π (Seipp and Helmert 2018).

Batch Refinements. Even if MINH needs fewer refine-
ments than other strategies, we will see below that search-
ing for all flaws Φ(A) in each refinement step is too costly
if we only split a single state afterwards. To amortize the
overhead of the flaw search, we introduce the BATCH flaw
selection strategy that selects multiple flaws at once. BATCH
runs the flaw search and returns a concrete plan if the flaw
search found one. Otherwise, BATCH iteratively repairs the
flaw with the lowest h value. Repairing a flaw changes the
abstraction, which may affect the other flaws found. There-
fore, after each refinement, we need to check if the h values
of the remaining flaws have changed. If the h value of a flaw
has not changed, this flaw is still part of an optimal abstract
plan and we still need to repair it. Otherwise, we discard it.
The BATCH strategy continues this process until all flaws in
Φ(A) have been repaired or discarded. Repairing the flaws
in ascending order of their h value as a batch is possible, be-
cause repairing a flaw refines the abstraction and therefore
the h values in the abstraction can only increase. Thus, re-
pairing a flaw can never decrease the h values of the flaws
considered later, but it can increase their h values, in which
case they are no longer part of an optimal abstract plan and
hence can be discarded. Refining flaws in a batch comes at
the cost of possibly repairing flaws with higher h value than
necessary, because we may not yet know about flaws with
smaller h value, or about an abstract plan that works for the
concrete task.

The new flaw selection strategies MINH and BATCH,
which prefer flaws near the goal, i.e., with a small h value,

can lead to requiring arbitrarily fewer refinement steps.

Theorem 1. Using the FIRST or MAXH flaw selection
strategies can lead to arbitrarily larger abstractions until
a concrete solution is found, compared to using the MINH
or BATCH strategies.

Proof. Consider the family of planning tasks Πn described
in Example 1 and visualized in Figure 1. Regardless of the
choice of n ∈ N0, there is only one optimal abstract plan and
hence one flaw in the initial abstraction A0. We obtain the
abstraction A1, which has 3 states and n different optimal
abstract plans, but only π = 〈blue, red〉 is a concrete plan.
MINH and BATCH directly return π, since they consider all
abstract plans. MAXH and possibly FIRST consider one of
the n abstract plans π′ = 〈black, red〉 which leads to split-
ting the abstract state {1} × {0, . . . , n}. This can occur n
times in total, separating each value of v2 until the abstrac-
tion matches T with n + 3 states. At this point, CEGAR
returns the optimal plan π.

Split Selection Strategies
Given a flaw ϕ = 〈s, c〉, there are usually many different
ways of how to split the abstract state [s] into two new ab-
stract states, all of which repair ϕ. The main choice point is
choosing the variable v whose domain dom(v, [s]) is to be
split but there are usually also several possibilities of how
to partition dom(v, [s]). Seipp and Helmert (2018) use the
MAXREFINED split selection strategy that selects the vari-
able v which maximizes the fraction dom(v,[s])

dom(v) among all
variables for which splits are feasible.

By running the flaw search, we obtain all flaws that occur
in an abstract state, instead of only a single one as in previ-
ous work. This allows us to define the COVER split selection
strategy, which splits an abstract state in a way that maxi-
mizes the number of repaired flaws by a single refinement.
COVER considers all possible splits for each flaw, counts
how many other flaws they repair, and chooses the split that
addresses the most flaws at once.

Experiments
We implemented the new refinement strategies (each con-
sisting of a flaw and split selection strategy) for Cartesian
CEGAR in the Scorpion planner (Seipp 2018), which builds
on Fast Downward (Helmert 2006). We evaluate the refine-
ment strategies and compare them to the previous state of the
art (FIRST+MAXREFINED) on all 1827 tasks (65 domains)
from the optimal tracks of the International Planning Com-
petitions 1998–2018 using Lab (Seipp et al. 2017). All of
our benchmarks, source code and experiment data are avail-
able online (Speck and Seipp 2022). We use an overall time
limit of 30 minutes and a memory limit of 4 GB, refine a sin-
gle abstraction and use the resulting hCEGAR heuristic in an
A∗ search. We stop the refinement when we find a concrete
solution, reach the refinement time limit of 15 minutes, or
use more than 3.5 GB for the abstraction or the flaw search.
For space reasons, we only present results for an interesting
subset of combinations of flaw selection and split selection
strategies.
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Figure 2: Comparison of BATCH+COVER to other refinement strategies for creating hCEGAR and using it in an A∗ search. Tasks
that are not solved within the resource limits appear on “n.s.” axes.

MAXREFINED COVER

Strategy FIRST MAXH MINH MINH BATCH

Refinement 499 345 382 393 534
Refinement + A∗ 802 780 792 797 812

Table 1: Number of solved tasks by different refinement
strategies. The first row shows how many tasks are solved
during refinement.

Table 1 shows the number of solved tasks by different
refinement strategies. Especially interesting is the first row,
which shows how many tasks are solved during refinement.
It reveals that it is too expensive to collect all flaws in each
refinement step and repair only a single one of them, as
the three strategies in the middle do. Instead, it is prefer-
able to consider an arbitrary optimal path and repair only
its first flaw (FIRST+MAXREFINED), as done in previous
work. However, we solve the most tasks during refinement,
if we compute all flaws, use batch refinement and try to
cover several flaws of each abstract state simultaneously
(BATCH+COVER). This strategy solves many more tasks
than the previous best strategy, both during refinement (534
vs. 499 tasks) and even overall (812 vs. 802 tasks).

Figure 2 compares our strongest refinement strategy,
BATCH+COVER, with the other four strategies from Ta-
ble 1 in more detail. For the tasks solved during the refine-
ment, Figures 2a and 2b present the time to create hCEGAR

and the resulting abstraction size. The plots reveal that
BATCH+COVER requires fewer refinements, often by more
than one order of magnitude (Figure 2b), and solves tasks
faster (Figure 2a) than the previous state of the art and the
other strategies. Figures 2c and 2d show the heuristic ac-
curacy of the hCEGAR heuristics obtained with the different
refinement strategies. Since BATCH+COVER makes better
refinements than the other strategies, the resulting heuris-
tic is almost always more accurate and is perfect for many
more tasks than the heuristics computed by the other strate-
gies (x = 0 in Figure 2c). Similarly, for the vast majority of
tasks, BATCH+COVER is able to prove higher lower bounds
on solution cost than the other strategies (Figure 2d).

Related Work
In the context of CEGAR for pattern selection, Rovner, Siev-
ers, and Helmert (2019) study so-called wildcard plans, i.e.,
abstract plans that share the same sequence of abstract states
but may use different operators between states. Wildcard
plans usually consider more than one abstract plan, but they
are less general than our approach of considering all optimal
plans. Thus, only considering a single wildcard plan can still
lead to making many unnecessary refinements when a differ-
ent wildcard plan already contains a concrete plan.

Top-k and top-quality planning is concerned with find-
ing a set of best plans (Speck, Mattmüller, and Nebel 2020;
Katz, Sohrabi, and Udrea 2020). While in these scenarios
all plans are generated explicitly, in our case we are only
interested in which concrete states are reachable by optimal
abstract plans. Thus, we do not generate the actual plans,
which would require much more effort, since all the possi-
bilities of how a state can be reached have to be stored.

Apart from MAXREFINED there are other split selec-
tion strategies for a single flaw (Seipp and Helmert 2018).
Among those strategies MAXREFINED is the preferable op-
tion. However, our analyses show that for finding concrete
solutions quickly, selecting which state to split is more im-
portant than choosing how to split it.

Conclusions
We introduced new refinement strategies for Cartesian CE-
GAR, that differ in how they select flaws and how they com-
pute splits that repair the flaws. Our algorithm for executing
all optimal abstract plans in the concrete task simultaneously
is able to obtain all flaws of an abstraction. Our theoretical
and empirical analyses show that it is beneficial to 1) prefer
refining the abstraction near the goal, 2) refine an abstract
state such that the number of repaired flaws is maximized,
and 3) refine several abstract states at once. The resulting al-
gorithm outperforms the previous state of the art in terms of
the number of instances solved, both during the refinement
and when using the resulting heuristic in an A∗ search. In the
future, we plan to evaluate the impact of our new refinement
strategies when computing multiple Cartesian abstractions.
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