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Abstract
In top-k planning, the objective is to determine a set of
k cheapest plans that provide several good alternatives to
choose from. Such a solution set often contains plans that visit
at least one state more than once. Depending on the applica-
tion, plans with such loops are of little importance because
they are dominated by a loopless representative and can pre-
vent more meaningful plans from being found.
In this paper, we motivate and introduce loopless top-k plan-
ning. We show how to enhance the state-of-the-art symbolic
top-k planner, SYM-K, to obtain an efficient, sound and com-
plete algorithm for loopless top-k planning. An empirical
evaluation shows that our proposed approach has a higher k-
coverage than a generate-and-test approach that uses an ordi-
nary top-k planner, which we show to be incomplete in the
presence of zero-cost loops.

Introduction
A prominent problem in graph theory is the k shortest paths
problem with the objective of finding k ∈ N shortest distinct
paths between two specific nodes in a graph (Bock, Kan-
ter, and Haynes 1957). Considering the k shortest paths of a
given graph, it turns out that there are often paths in the so-
lution set that contain loops visiting at least one node more
than once. Depending on the application, e. g., routing prob-
lems in a road network, paths containing loops are of little
importance. Any path containing a loop is dominated by a
loopless representative path p (often called a simple path),
where all nodes visited by p are distinct. In practice, consid-
ering all paths may prevent finding more useful paths. There-
fore two different versions of the k shortest paths problem
exist: one that allows only loopless paths (Yen 1971; Hersh-
berger, Maxel, and Suri 2007) and one that allows paths with
and without loops (Eppstein 1998; Aljazzar and Leue 2011).

The planning counterpart of the k shortest paths problem
is the top-k planning problem (Riabov, Sohrabi, and Udrea
2014) with the objective of finding k cost-optimal plans for
a given planning task. Unlike the k shortest paths problem
in graph theory, the top-k planning problem has so far been
considered only in its basic form, which admits plans with
loops, i. e., plans that may visit a state more than once (Katz
et al. 2018; Speck, Mattmüller, and Nebel 2020). In certain
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planning scenarios, it is important to consider all plans, in-
cluding plans with loops, as ordinary top-k planners do. For
example, to provide all possibilities when user preferences
are not fully known (Nguyen et al. 2012), to find a plan that
satisfies complex (LTL) constraints (Gerevini et al. 2009),
or when searching for an actual plan in a simplified ver-
sion of a given problem, e. g., in an overapproximated or
abstracted model representation (Seipp and Helmert 2018;
Höller 2021), where not considering plans with loops may
lead to an incomplete search.

However, in line with the arguments in graph theory for
considering only loopless paths, in many planning applica-
tions, plans with loops are of little importance. Two promi-
nent examples are the airport domain (Trüg, Hoffmann, and
Nebel 2004) and the elevator domain (Koehler and Schuster
2000). In the airport domain, the ground traffic of airplanes
must be coordinated. A set of best plans in this domain of-
ten includes plans where a single airplane is moved from its
starting position to a free runway, then sent back to its start-
ing position and coordinated back to the same runway, with
no other airplane movements in between. While in the air-
port domain all operators have non-zero costs and thus all
plans are enumerated at some point, these dominated plans
with loops create a significant overhead and distract from ac-
tually interesting plans. In the elevator domain, one can ob-
serve an even worse effect when considering all plans. Here,
only moving an elevator has a non-zero cost, whereas a pas-
senger boarding or leaving an elevator has a cost of zero.
This results in an infinite number of optimal plans, simply
by a passenger repeatedly boarding and leaving an elevator.
In such a case, the usefulness of an ordinary top-k planner
is limited, as it gets stuck in generating optimal plans with
zero-cost loops, which hinders the generation of more mean-
ingful plans with potentially higher costs.

In this paper, we define loopless top-k planning and pro-
pose two different approaches to it. The first one is the
generate-and-test approach SYM-K-GNT that uses an ordi-
nary top-k planner. We show that SYM-K-GNT is sound in
general but not complete in the presence of zero-cost loops.
The second approach enhances the symbolic top-k planner
SYM-K (Speck, Mattmüller, and Nebel 2020) yielding the
generally sound and complete algorithm SYM-K-LL. An em-
pirical evaluation shows that SYM-K-LL is overall more ef-
ficient and leads to a higher k-coverage than SYM-K-GNT.
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Preliminaries
We consider classical planning tasks in the SAS+ formalism
(Bäckström and Nebel 1995) defined as follows:
Definition 1 (Planning Task). A planning task is a tuple
Π = 〈V ,O, s0, s?〉. V is a finite set of state variables v ∈ V ,
each associated with a finite domain Dv . A partial state s is
a mapping of a subset of variables vars(s) ⊆ V to values
in their domains. If s assigns a value s(v) ∈ Dv to each
variable v ∈ V , i.e, vars(s) = V , s is called a state. S de-
notes the set of all possible states over V . O is a finite set of
operators or actions. An operator o = 〈preo, effo〉 ∈ O con-
sists of the partial states preo and effo called preconditions
and effects, respectively. An operator o ∈ O is applicable in
a state s iff preo ⊆ s. Applying o in s results in state s[o]
with s[o](v) = effo(v) if v ∈ vars(effo) and s[o](v) = s(v)
otherwise. Each operator o ∈ O has a cost cost(o) ∈ N0.
Finally, s0 ∈ S is the initial state and the partial state s?
is the goal condition specifying the set of all possible goal
states S? ⊆ S.

The objective of classical planning is to determine plans
that lead from the initial state to a goal state.
Definition 2 (Plan). A plan π = 〈o0, . . . , on−1〉 for a plan-
ning task Π is a sequence of applicable operators that gen-
erates a sequence of states states(π) = 〈s0, . . . , sn〉, where
si+1 = si[oi] for i ∈ {0, . . . , n − 1} and sn ∈ S?.
The cost of a plan π is the sum of its operator costs, i. e.,
cost(π) =

∑n−1
i=0 cost(oi). A plan π is called loopless if all

states of states(π) are distinct, and loopy otherwise. With
PΠ we refer to the (possibly infinite) set of all plans and
with P ``

Π we refer to the finite set of all loopless plans for a
planning task Π.

Symbolic Search
In this paper, we will use and enhance SYM-K, a planner
based on symbolic search. We briefly motivate and explain
the relevant concepts related to symbolic search so that the
modifications and enhancements presented can be under-
stood. For a detailed introduction and summary of symbolic
search in planning, we refer the reader to Torralba (2015)
and Torralba et al. (2017), and for a comprehensive expla-
nation of symbolic search for top-k planning, we refer the
reader to Speck, Mattmüller, and Nebel (2020).

Symbolic search is a state space exploration technique
that originated in model checking (McMillan 1993), in
which entire sets of states S ⊆ S are expanded at once us-
ing decision diagrams, such as Binary Decision Diagrams
(BDDs) (Bryant 1986), for concise representation. Similarly,
decision diagrams are used to represent the transition rela-
tions (TRs) induced by operators o ∈ O, i. e., the sets of
state pairs (s, s′) such that s′ is the successor of s when o is
applied in s. Given BDDs representing a set of states S and
a TR To, the operation image/preimage computes a BDD
representing the set of successor/predecessor states S′ of S
through To. An advantage of symbolic search over explicit
state space search is that it easily supports forward, back-
ward, and bidirectional search in planning because it inher-
ently supports sets of states that can occur when regressing
a state with an operator.

In forward direction, the search starts with the single-
ton set containing the initial state and progresses the most
promising set of states (lowest reachability costs) until a goal
state is found. In backward direction, the search starts with
the set of goal states and regresses the most promising set of
states until the initial state is found. The best search strategy
of modern symbolic planners (Torralba et al. 2014; Kiss-
mann, Edelkamp, and Hoffmann 2014; Speck, Geißer, and
Mattmüller 2018) is bidirectional search without heuristics
(Torralba et al. 2017; Speck, Geißer, and Mattmüller 2020).
Symbolic bidirectional search performs a separate symbolic
forward and backward search and switches between the two
search directions until the search frontiers meet and the so-
lution found is proven to be optimal.

Finally, a plan reconstruction is performed to obtain the
final plan (Torralba 2015). In symbolic search, the parents
(predecessors in forward search; successors in backward
search) of a state are not known directly, but all reachable
states are stored together with their reachability costs in a
closed list that forms the set of potential parent states. This
makes it possible to perform the plan reconstruction as a
greedy search opposed to the actual search direction, which
is guided by the reachability cost of the stored states.

Speck, Mattmüller, and Nebel (2020) show that three
modifications of ordinary symbolic search lead to a sound
and complete algorithm for top-k planning: 1) the plan re-
construction is performed exhaustively instead of only re-
constructing a single plan from the initial state to found goal
states, 2) all newly generated states with their corresponding
reachability costs are added to the open list without filtering
out already expanded states1, 3) and the termination crite-
rion is adjusted so that the algorithm terminates when either
k plans have been found or no more plans can be found.

Loopless Top-k Planning

We define loopless top-k planning as follows.

Definition 3 (Loopless Top-k Planning). Given a planning
task Π and a natural number k ∈ N, loopless top-k planning
is the problem of determining a set of plans P ⊆ P ``

Π such
that the following conditions hold:
C1. there exists no plan π′ ∈ P ``

Π with π′ 6∈ P that is
cheaper than some plan π ∈ P , and

C2. |P | = k if |P ``
Π | ≥ k, and |P | = |P ``

Π | otherwise.

Note that Definition 3 specifies ordinary top-k planning
when P ``

Π is replaced with PΠ. Let P be the solution of a
planner A for a given planning task Π. Then A is called
sound for loopless top-k planning iff P ⊆ P ``

Π and P sat-
isfies C1. A is called complete for loopless top-k planning
iff A terminates and P satisfies C2.

1In order to expand all states Sg with a certain reachability cost
g in the presence of zero-cost operators, symbolic planners like
SYM-K first collect all states reachable with zero-cost operators.
This reachability analysis is performed with a separate symbolic
search (with state filtering) that computes all reachable states Sg

from a given set S using all zero-cost operators (Torralba 2015).
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Figure 1: Counterexample for completeness of SYM-K-GNT
with initial state s0 and a unique goal state sg ∈ S?.

Generate-and-Test Approach
A straightforward way to generate a set of desired plans
is using a top-k planner with an anytime behavior like
SYM-K (Speck, Mattmüller, and Nebel 2020), which enu-
merates all plans with increasing costs. The underlying idea
of our generate-and-test approach, SYM-K-GNT, is to treat
the ordinary top-k planner SYM-K as a black box by request-
ing a sufficiently large number of plans (k = ∞) and run-
ning it until a sufficient number of desired plans are found.
In our case, we are interested in the k cheapest loopless
plans. Therefore, for each newly reported plan π produced
by SYM-K, we add π to our solution set P if it is loopless,
and ignore it otherwise. Once k loopless plans are found, the
algorithm terminates and returns P .

The generate-and-test approach SYM-K-GNT is sound
since (a) it adds only loopless plans to the solution set P ,
and (b) it does not miss any cheaper plans, as SYM-K reports
plans in non-decreasing order of costs.

SYM-K-GNT is a straightforward approach to loopless
top-k planning, but it comes with some drawbacks: First, the
performance of SYM-K-GNT strongly depends on the num-
ber of ignored plans, since the generation of these undesired
plans can lead to a large overhead (see empirical evaluation).
Second, and most critically, SYM-K can report infinitely
many plans with the same cost, only finitely many of which
are accepted by the looplessness test. This occurs if a plan
contains a loop with zero-cost operators: Consider a simple
planning task Π with three operators O = {o0, o1, o2} with
cost(oi) = i, where the induced transition system is shown
in Figure 1. In this example, there are infinitely many op-
timal plans with a cost of 1, namely applying o0 arbitrarily
often before applying o1. SYM-K will report only these op-
timal plans with cost 1, of which only π = 〈o1〉 is loopless,
and will never generate the other loopless plan π′ = 〈o2〉
with cost 2. Thus, if the desired number of loopless plans
is k = 2 (P ``

Π = {π, π′}), SYM-K-GNT discards an infinite
number of loopy plans and never terminates.
Proposition 1. SYM-K-GNT is sound but not complete for
loopless top-k planning.

Symbolic Search Approach
The second approach that we propose for loopless top-k
planning, SYM-K-LL, modifies the SYM-K algorithm. In par-
ticular, the following two modifications are required to ob-
tain a sound and complete algorithm.

Plan Reconstruction. The plan reconstruction procedure
of SYM-K must keep track of all states it has visited since
these are already part of the goal path being reconstructed.
Those previously visited states will no longer be considered

st
s3

s4

s1

s2

st
. . .

. . . ∅{st}
{st, s4}
{st, s3}{st, s3, s1}

{st, s4, s2}

Figure 2: Example of the plan reconstruction of SYM-K-LL.

as possible parent states during reconstruction. This change
avoids generating plans with loops and ensures that plan re-
construction always terminates starting from a certain tar-
get state. Note that it is possible to represent and handle the
previously visited states concisely using BDDs which is the
underlying data structure of SYM-K.

Example 1. Figure 2 illustrates the reconstruction phase
of SYM-K-LL starting from a state st. The reconstruction
starts with {st} and the empty set of visited states ∅. It
computes the set of parents {s3, s4} and updates the vis-
ited states to {st}. As states s3 and s4 have not been visited
along this goal path, both are valid parent states. Thus, from
both states a separate plan reconstruction is continued in a
depth-first manner (greedy search). Let us consider s3 next.
The parents of s3 are {s1, st}, but st has already been vis-
ited along the current goal path, thus only s1 is considered a
valid parent state. This procedure is continued until k plans
are found or no more paths can be reconstructed.

Termination Criterion. The second modification con-
cerns the termination criterion of SYM-K to ensure that
SYM-K-LL terminates when no more loopless plans can be
found. SYM-K terminates if either k plans are found or the
open list contains only states that have already been ex-
panded at least once and are not part of a goal path induced
by a previously found plan (Speck, Mattmüller, and Nebel
2020). In other words, the second part of this termination cri-
terion checks whether the states in the open list form a fixed
point from where a goal path cannot be completed. This
termination criterion also works for SYM-K-LL, because if
k loopless plans have been found, it is safe to stop, and if
no more plans can be found, neither can any more loopless
plans. However, we need to strengthen the termination crite-
rion so that SYM-K-LL stops when all existing loopless plans
have been found, there are less than k of them, and all further
goal paths contain loops.

The longest loopless plan can traverse each state of the
finite state space S only once. Thus, for any loopless plan
|S| − 1 is an upper bound on the maximum plan length and
(|S| − 1) ·maxo∈O cost(o) is an upper bound on the maxi-
mum plan cost. Since we expand the states with increasing
reachability costs in symbolic search, we can terminate as
soon as SYM-K-LL exceeds the cost bound. This termina-
tion criterion could be strengthened by keeping track of the
minimum path length to reach states in symbolic search and
using the length bound directly. However, we consider both
bounds to be interesting only for theoretical considerations,
not for practical applications.
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Theoretical Properties. Both introduced modifications
together result in a sound and complete algorithm
SYM-K-LL for loopless top-k planning, which avoids the
generation of loopy plans and can handle zero-cost loops.

Theorem 1. SYM-K-LL is sound and complete for loopless
top-k planning.

Proof. By construction of the plan reconstruction proce-
dure, no returned plan can contain a loop. C1 of Definition
3 is satisfied because SYM-K-LL, like SYM-K, expands all
reachable states with increasing cost and all possible goal
paths are considered. This proves soundness.

The plan reconstruction of SYM-K-LL terminates because
it retains the states already visited on each path and does
not revisit these states. Thus, at some point, all possible
states on each reconstructed goal path have been considered.
SYM-K-LL terminates because the plan reconstruction calls
terminate and at some point either k loopless plans have
been found or the upper cost bound has been reached. Fi-
nally, C2 of Definition 3 is satisfied because SYM-K-LL, like
SYM-K, reconstructs all possible plans, but ignores loopy
plans. This proves completeness.

Empirical Evaluation
We empirically evaluate the two proposed approaches
SYM-K-LL and SYM-K-GNT for loopless top-k planning on
a benchmark set consisting of 2262 planning tasks from 74
domains taken from the optimal track of the International
Planning Competitions 1998-2018.2 For each task, the time
limit is set to 30 minutes and the memory limit is set to 4 GB.
As a measure of planner performance, we use k-coverage:
the number of tasks a planner was able to solve within the
given bounds for a given number of requested loopless plans
k. We set the number of requested loopless plans toK = 104

and derive the k-coverage values for all k ≤ K, given the
anytime behavior of the planners.

Figure 3 shows that, for k > 1 and each search direc-
tion, SYM-K-LL can solve substantially more instances than
SYM-K-GNT. Regarding the search direction, we can see
that for both approaches, bidirectional search dominates for-
ward and backward search. The latter is not surprising since
the same is also the case for ordinary symbolic planners
(Edelkamp, Kissmann, and Torralba 2015; Torralba et al.
2017; Speck, Geißer, and Mattmüller 2020) and for the un-
derlying symbolic top-k planner SYM-K.

A natural question is to what extent the gap between the
k-coverage of SYM-K-GNT and SYM-K-LL is due to the fact
that only SYM-K-LL is complete in the presence of zero-cost
loops. Considering only domains without zero-cost opera-
tors, we find that the advantage of SYM-K-LL in terms of
k-coverage is almost as large as in Figure 3. Thus, the disad-
vantage of SYM-K-GNT originates mainly from the unneces-
sary generation of loopy plans and not from the lack of com-
pleteness in some domains. Finally, it should be mentioned
that SYM-K-GNT can be the better choice in some domains
that have few or no plans with loops and do not require the
more complex plan reconstruction of SYM-K-LL.

2Available online: https://github.com/speckdavid/symk
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Figure 3: The overall k-coverage of SYM-K-LL and
SYM-K-GNT with forward (fwd), backward (bwd) and bidi-
rectional (bid) search.

Related Work
The field of diverse planning has the objective of generat-
ing a set of interesting and diverse plans according to a di-
versity measure (Coman and Muñoz-Avila 2011; Nguyen
et al. 2012; Goldman and Kuter 2015; Katz and Sohrabi
2020). The underlying idea is to provide a good set of plans
that offers reasonable alternatives. Katz, Sohrabi, and Udrea
(2020), proposed to search for practically useful plan sets
by defining an equivalence relation over plans to determine
only one representative of each equivalence class. However,
their work does not provide a general solution to find only
unique representatives of the equivalence classes. In our
case, each loopless plan forms the representative of a sepa-
rate equivalent class and our proposed symbolic approach is
the first complete approach that can generate loopless plans
with increasing costs, allowing the search for more practi-
cally useful sets. Note that it is possible to further restrict
the set of loopless plans by considering the plans generated
by SYM-K-LL (or SYM-K-GNT) and filtering out the unde-
sirable ones (e.g., plan permutations) or to optimize the set
of loopless plans for a particular diversity metric.

Conclusion
In this paper, we introduced loopless top-k planning, where
the solution set contains only plans that do not visit any
state more than once. Such loopless plans are more use-
ful in many real-world applications, as plans with loops are
dominated by a loopless representative. Since there can be
infinitely many optimal plans in the presence of zero-cost
loops, ordinary top-k planners are of limited use, as they
generate undesired loopy plans that can prevent more mean-
ingful plans from being found. We have proposed two ap-
proaches to loopless top-k planning, a generate-and-test ap-
proach, SYM-K-GNT, which is sound but not complete, and
a symbolic search approach, SYM-K-LL, which is sound and
complete. The empirical evaluation shows that it is possible
to determine a set of k best loopless plans in various do-
mains using both approaches, with SYM-K-LL performing
substantially better overall in terms of k-coverage.
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Coman, A.; and Muñoz-Avila, H. 2011. Generating Diverse
Plans Using Quantitative and Qualitative Plan Distance Met-
rics. In Proc. AAAI 2011, 946–951.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2015. BDDs
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