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Abstract

Object rearrangement is important for many applications but
remains challenging, especially in confined spaces, such as
shelves, where objects cannot be accessed from above and
they block reachability to each other. Such constraints require
many motion planning and collision checking calls, which
are computationally expensive. In addition, the arrangement
space grows exponentially with the number of objects. To
address these issues, this work introduces a lazy evaluation
framework with a local monotone solver and a global plan-
ner. Monotone instances are those that can be solved by mov-
ing each object at most once. A key insight is that reachabil-
ity constraints at the grasps for objects’ starts and goals can
quickly reveal dependencies between objects without having
to execute expensive motion planning queries. Given that,
the local solver builds lazily a search tree that respects these
reachability constraints without verifying that the arm paths
are collision free. It only collision checks when a promising
solution is found. If a monotone solution is not found, the
non-monotone planner loads the lazy search tree and explores
ways to move objects to intermediate locations from where
monotone solutions to the goal can be found. Results show
that the proposed framework can solve difficult instances in
confined spaces with up to 16 objects, which state-of-the-art
methods fail to solve. It also solves problems faster than alter-
natives, when the alternatives find a solution. It also achieves
high-quality solutions, i.e., only 1.8 additional actions on av-
erage are needed for non-monotone instances.

Introduction
Rearrangement in confined spaces is a critical robot skill in
setups such as aligning objects in shelves (Fig. 1), object re-
trieval and part assembly. These are harder setups than the
less constrained tabletop case, where all objects can be di-
rectly accessed with top-down grasps and then lifted suffi-
ciently high to avoid collisions. Tabletop rearrangement al-
lows to ignore robot-object and object-object interactions,
which leads to faster solutions and stronger guarantees. In
the confined setup considered here, the robot arm has limited
space to maneuver and cannot necessarily access all objects
at any point, since top-down grasps are not available. Solv-
ing such tasks becomes harder even for a few objects, let
alone maintaining high efficiency and good solution quality.

Copyright © 2022, Association for the Advancement of Artificial
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Figure 1: Real robot application of the proposed method.
[Left] The robot rearranging objects. [Right] Final result.

Many existing solutions for confined rearrangement us-
ing prehensile primitives1 follow a similar high-level strat-
egy (Stilman et al. 2007; Wang et al. 2021; Wang, Miao, and
Bekris 2021). They build a global tree Tg = (V,E) (Fig.
2(a)) where a node v ∈ V (circles in Fig. 2(a)) represents an
arrangement state αv of the objects and an edge e(v, u) ∈ E
(arrows in Fig. 2(a)) represents a collision-free arm path so
as to pick-and-place an object to transition from arrange-
ment αv to arrangement αu. The pick-and-place path can be
computed by calling a motion planner. For non-monotone
problems, some objects need to be moved to an intermediate
location different from both the object’s start and goal. For
these instances, the global tree can be built hierarchically by
concatenating subtrees Tsub returned by a local monotone
solver as partial solutions until the final arrangement αF is
connected to the initial arrangement αI , as in Fig. 2(a).

A basic monotone Rearrangement Solver (mRS) (Stilman
et al. 2007) explores all possible object orderings that con-
nect αI to αF via backtracking search (Fig. 2(c)). It faces
scaling issues due to its O(n!) time complexity. Dynamic
programming solutions, such as DFSDP (Wang et al. 2021),
observe that solving a subproblem from an arrangement α
(i.e., moving the remaining objects to their goals) does not
depend on how α is reached from αI , i.e., the ordering with
which the objects reach α does not change the feasibility of
the subsequent task α → αF . In the toy example of Fig.
2(b), no solution is found from α obtained from the branch
o1 → o2 → o3. This can also quickly invalidate the branch
o1 → o3 → o2 (Fig. 2(d)). Therefore, an arrangement state
is sufficient to represent all orderings of objects, which re-

1i.e., using grasping, in contrast to non-prehensile primitives,
such as pushing (King et al. 2015; King, Ranganeni, and Srinivasa
2017; Papallas and Dogar 2020; Vieira et al. 2022).

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

385



𝜶𝜶𝑰𝑰 𝜶𝜶𝑭𝑭

𝑻𝑻 𝒔𝒔𝒔𝒔𝒔𝒔 𝑻𝑻 𝒔𝒔𝒔𝒔𝒔𝒔
′

𝑜𝑜5

𝑜𝑜2
𝑜𝑜4

𝑜𝑜1𝑜𝑜3

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭

𝒐𝒐𝟏𝟏

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟒𝟒
𝒐𝒐𝟒𝟒
𝒐𝒐𝟑𝟑

𝒐𝒐𝟑𝟑

𝒐𝒐𝟐𝟐

𝒐𝒐𝟒𝟒

𝒐𝒐𝟒𝟒

𝒐𝒐𝟐𝟐 𝒐𝒐𝟓𝟓

𝒐𝒐𝟐𝟐

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭

𝒐𝒐𝟏𝟏

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟒𝟒
𝒐𝒐𝟒𝟒
𝒐𝒐𝟑𝟑

𝒐𝒐𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟒𝟒

𝒐𝒐𝟐𝟐 𝒐𝒐𝟓𝟓

𝒐𝒐𝟐𝟐

𝜶𝜶𝑰𝑰

𝜶𝜶𝑭𝑭

𝒐𝒐𝟏𝟏

𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑

𝒐𝒐𝟐𝟐 𝒐𝒐𝟒𝟒

𝒐𝒐𝟐𝟐 𝒐𝒐𝟓𝟓

𝒐𝒐𝟐𝟐

(a)

(b) (c) (d) (e)

Figure 2: (a) A typical tree for non-monotone rearrangement problems, which grows incrementally local trees (Tsub, T ′sub),
which are monotone, i.e., an object is moved at most once and only to its goal at the final arrangement αF . The edge connecting
the two trees (dark blue arrow) corresponds to moving an object to an intermediate location. (b) A toy example with 5 objects
(start positions are denoted as solid circles while goal positions as dashed circles). The goal position of o2 makes the robot arm
unable to move o5 after the placement of o2. (c-e) The tree corresponding to mRS (c), DFSDP (d) and CIRS (e) on the toy example.

sult in the same placements. Given this observation, DFSDP
solves monotone problems with complexityO(2n), a signif-
icant improvement over O(n!).

Nevertheless, neither mRS, nor DFSDP take advantage of
constraint reasoning to further prune the search space. As
robot-object constraints arise often in confined and cluttered
setups, such reasoning can increase efficiency. In the toy ex-
ample of Fig. 2(b), the goal position of o2 makes o5 unreach-
able, which can be identified just by considering robot con-
figurations for grasping o5. Therefore, moving o2 should be
treated as an invalid action for a monotone solution at any ar-
rangement state where o5 is still at its start. Such constraints
can significantly prune the search space as in Fig. 2(e). Such
constraints were first considered in prior related work (CIRS)
(Wang, Miao, and Bekris 2021) but not comprehensively.

The current work focuses on utilizing such constraints
to reduce the computational overhead due to the most ex-
pensive primitive, i.e., the pick-and-place motion planning
calls for each edge of the search tree, which involve colli-
sion checking. All the aforementioned methods call a mo-
tion planner for every edge of the search tree during its gen-
eration to check if the transition to the child arrangement is
valid. Consequently, the number of motion planning queries
is equivalent to the total number of edges in the search
tree, which grows exponentially as the number of objects
increase. The objective here is to avoid this combinatorial
number of calls to motion planning, while still finding any
solution that existing methods can discover and maintaining
high-quality solutions, i.e., not requiring many intermediate
locations for non-monotone problems.

If the approach detects early that there is no way to reach
the final arrangement from a tree node, then significant time
can be saved by not performing motion planning on edges
out of that node. And it is possible to identify the infeasibil-
ity of arrangements quickly given only the objects’ locations
and the robot’s grasps, i.e., if a set of objects in an arrange-
ment blocks the grasps of another object at its start or its
goal, then there is no arm path that can perform the pick-and-
place at the corresponding arrangement (up to the resolution

of grasps). These constraints are referred here as reachabil-
ity constraints. They arise often and dominate the feasibility
of rearrangements in confined spaces. Moreover, computing
reachability constraints is relatively easy as grasps can be
obtained by inverse kinematic (IK) solvers in a hundredth
of a second; much faster than a motion planning routine for
a pick-and-place sequence. In addition, given k such grasps
and total n objects, those IK operations are performed kn
times (O(n)), which is much smaller than the worse case for
the size of the search tree (O(2n)).

Overall, this work proposes a lazy evaluation framework
for rearrangement in confined spaces. It uses reachability
constraints to quickly reveal the dependencies between ob-
jects without performing expensive motion planning queries
during the search tree generation. Thus, this work:

1. Proposes an efficient, lazy local monotone solver that
utilizes reachability constraints. Given the constraints that
arise from grasp reachability, the method first builds a lazy
search tree that respects these constraints without verifying
edge validity via motion planning. It only performs such ver-
ification when a promising solution is found.

2. Proposes a global planner for non-monotone problems
with high success rate, efficiency and quality. The global
planner loads the local search tree from the monotone solver
and explores how to move objects to intermediate spots,
from where a local solver can be called to discover mono-
tone solutions to the goal. Edges are checked lazily only if
needed for moving an object to an intermediate position.

The overall framework is demonstrated to scale up to
16-object instances in confined spaces, which state-of-the-
art alternatives fail to solve. The method significantly im-
proves computational efficiency while maintaining high so-
lution quality, i.e., only 1.8 additional actions are needed to
fulfill non-monotone tasks on average. The solution of the
proposed method is executed on a real robotic system.
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Figure 3: (a) Objects O in a workspace W , where the armM approaches O from one side of W . (b) The arm moves object
oi at pi = α[oi] to a new position p′i = α′[oi] following the arm path πi. (c) The initial arrangement αI . (d) A specified final
arrangement αF (e.g., objects’ goals are chosen from a set of positions PT so that same color objects are in the same column).

Related Work
Object retrieval in confined setups requires relocating some
objects to retrieve an object. The challenges lie in (1) par-
tial observability (Xiao et al. 2019), (2) what and where to
relocate obstacles (Ahn et al. 2021) and (3) which robot re-
locates which object (Ahn, Kim, and Nam 2021). The re-
arrangement problem considered here treats each object as
a target to be relocated from its initial to final position and
tends to be harder than object retrieval of a single target.

Rearrangement planning without violating constraints can
be modeled as a constraint satisfaction problem (CSP),
where a variable corresponds to a moving action at a time
step and the value domain refers to a set of objects to move at
that time step. The solution corresponds to an assignment of
the variables that respects the constraints. (Haralick and El-
liott 1980) discusses ways to increase tree efficiency to solve
binary CSP while (Dechter, Cohen et al. 2003) focuses more
on constraints processing. (Barták, Salido, and Rossi 2010)
introduces definitions and techniques of constraint satisfac-
tion in general AI planning and scheduling, many of which
are adopted in this work for consistency. Constraint satis-
faction techniques are increasingly used in robot planning
problems. (Havur et al. 2014) uses Answer Set Program-
ming (ASP) to decompose the cluttered workspace to place
objects. Forward state-space search algorithms are devel-
oped to guide robotic spatial extrusion tasks (Garrett et al.
2020) under geometric and stiffness constraints. (Krontiris
and Bekris 2016) introduces a dependency graph describ-
ing object constraints and compute solutions via topological
sorting. Such an approach, however, can be computational
expensive as it can produce many dependency graphs, each
of which is computed for a unique combination of grasping
configurations and arm paths for manipulating objects.

The proposed lazy evaluation framework delays path ver-
ification until a seemingly feasible plan is found. There is
extensive work on lazy evaluation for robot path planning,
where edge evaluations are expensive, such as lazy vari-
ants of the weighted A* (Cohen, Phillips, and Likhachev
2015) that postpone expensive operations in N-arm robot
problems, a Lazy Receding Horizon A* (LRA*) that bal-
ances edge evaluations and graph operations (Mandalika,
Salzman, and Srinivasa 2018) and a lazily evaluated Life-

long Planning A* (LPA*) that reduces excessive edge evalu-
ations of LPA* (Lim, Srinivasa, and Tsiotras 2021). A gener-
alized lazy search (GLS) framework is introduced to toggle
between search and edge evaluation (Mandalika et al. 2019).
Lazy collision checking is also used in sampling-based
motion planners such as Probabilistic Roadmap (PRM)
(Kavraki and Bohlin 2000; Sánchez and Latombe 2003),
the properties of which have been examined (Hauser 2015).
These approaches aim at reducing edge evaluation on com-
puting a path (lazy motion planning), while the proposed
framework aims at reducing the cost of path verification
when computing a task plan (lazy rearrangement planning).

Problem Formulation
There are n uniformly-sized cylindrical objects O =
{o1, · · · , on} residing in a cuboid, bounded workspaceW ⊂
R3, each of which at a position pi ∈ R2, i ∈ {1, · · · , n}
(Fig. 3(a)). Such an assignment of objects O to a set of ob-
ject positions {p1, · · · , pn} defines an arrangement α ∈ A,
where A is the arrangement space. α[oi] = pi indicates that
object oi is at position pi given the arrangement α.

A robot armM can access the objects O from only one
side of the workspaceW and can move them one at a time.
The arm M acquires a configuration q ∈ Q where Q is
the space of all possible configurations thatM can acquire.
The swept volume V (q) represents the space occupied by
M at q. IfM is grasping an object, the swept volume also
includes the object’s volume given the grasp. q(α[oi]) repre-
sents a configuration where the arm can grasp oi at position
pi = α[oi]. An arm path πi : [0, 1]→ Q for an object oi cor-
responds to a sequence of configurations that move object oi
from its current position pi = α[oi] to another position p′i,
resulting in a new arrangement α′ where α′[oi] = p′i and
∀j ∈ {1, · · · , n}, j 6= i : α′[oj ] = α[oj ] (Fig. 3(b)). Such
a path is valid if no collision arises between

⋃1
t=0 V (πi(t))

and other static geometries (W and static objects inW).
The workspace is decomposed into a set of possible po-

sitions PT where objects can be placed (Fig. 3(c)(d)). PT

are sampled with a resolution δr defined as the distance
between adjacent candidates in the same row (or column).
Goal positions of objects and intermediate positions called
buffers are chosen from PT . The rearrangement problem is
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Figure 4: Three examples of the robot arm moving object
o3 (gray solid circle). Start and goal positions of objects are
denoted as solid circles and dashed circles, respectively. For
simplicity, only relevant object positions are displayed.

defined as follows: given any possible initial arrangement
αI (Fig. 3(c)) and a specified final arrangement αF of n
objects O (Fig. 3(d)), find a sequence of valid arm paths
Π = (π0, π1, . . . , ), which moves all objects from αI to αF .
A problem is monotone if the sequence Π consists of at most
one arm path for each object. Otherwise, the problem is non-
monotone and at least one object needs to be moved to a
buffer before being moved to its goal.

Methodology
This section introduces lazy rearrangement planning and de-
scribes: (1) how reachability constraints are generated and
used to prune the search space, (2) how the local, monotone
solver builds a lazy search tree, and (3) how the global plan-
ner operates over these trees for non-monotone instances.

Reachability Constraints
Consider Fig. 4(a) where there are two arm configurations
for grasping o3: o3 is unreachable from one configuration, if
o2 is at its goal; while o3 is unreachable from the other, if o1

is at its start. Define Si as the event that oi is at its start while
Gi as the event that oi is at its goal. Then in Fig. 4(a), o3 is
unreachable if the event G2

⋂
S1 occurs, which generates

the reachability constraint:

Don’t move o3, if o2 is at its goal and o1 is at its start. (1)

In Fig. 4(b), o3 is unreachable if the event G2

⋂
G1 occurs:

Don’t move o3, if o2 is at its goal and o1 is at its goal. (2)

Note that when all reachability constraints arise from goal
positions, additional constraints can be elicited for the con-
straining objects, i.e., o2 and o1 in this example. In particu-
lar, the additional constraints are:

Don’t move o2, if o1 is at its goal and o3 is at its start. (3)

Don’t move o1, if o2 is at its goal and o3 is at its start. (4)

For generalization, one more example (Fig. 4(c)) is given
where a grasping configuration intersects with more than
one object position (start position of o1 and goal posi-
tion of o4). In this case, o3 is unreachable if the event
G2

⋂
(S1

⋃
G4) occurs. The event can be decoupled as

G2

⋂
(S1

⋃
G4) = (G2

⋂
S1)

⋃
(G2

⋂
G4) (5)

Algorithm 1: Lazy Rearrangement Solver (LRS)
Input: αS , αF , O
Output: Tsub

1 C = OBTAINCONSTRAINTS(αS , αF ,O)
2 return Tsub, f lag = GROWLOCALTREE(∅, αS , αF , C)

where G2

⋂
S1 can be handled similar to the constraint (1)

of Fig. 4(a), while G2

⋂
G4 can be handled similar to con-

straint (2) of Fig. 4(b).
The above reachability constraints readily generalize to k

grasping configurations and n objects. All the reachability
constraints can be stored in a container C to indicate invalid
actions of moving certain objects at a certain arrangement.

Grasping configurations can be acquired via an IK solver.
An improved version of the Samuel Buss IK library was
used (Buss and Kim 2005). In practice, different IK solu-
tions place the last few links close to the gripper in similar
locations, inducing similar reachability constraints. Given
that, it usually suffices to consider only one IK per grasp.

Monotone Instances
A lazy rearrangement solver (LRS) is proposed to solve lo-
cal, monotone tasks αS → αF where αS is the start ar-
rangement. Alg. 1 summarizes the two steps of the solver:
(1) obtain reachability constraints C from the task (Line 1);
(2) use these constraints to grow lazily a search tree rooted
at αS (Line 2). Two definitions are introduced here to avoid
potential confusion: In the context of a lazy tree, a node αj

is connected to another node αi if the edge αi → αj does
not violate reachability constraints. In contrast, αj is acces-
sible from αi if αi → αj is verified by a motion planner to
exist. Connectivity is a prerequisite for accessibility.

Step 2 of Alg. 1 is detailed in Alg. 2, which is a recur-
sive routine to grow a local tree Tsub from αC to αF that
respects the reachability constraints C. Here αC refers to the
arrangement where the search process is currently at. The
output refers to a local, monotone tree Tsub and a flag indi-
cating if a solution is found (initially set to false, Line 1).

For each object o ∈ O(αC) not yet at its goal given αC

(Line 2), a forward-checking routine is performed (Line 3)
to evaluate if moving o violates constraints C at αC . If it
does, then this action is pruned at αC (Line 4, also see Fig.
5(a)). Therefore, LRS identifies dead-ends and prunes the
search space by reducing the action space. If C are satis-
fied, the resulting node αnew is generated (Line 5) where
αnew[o] = αF [o], αnew[O \ {o}] = αC [O \ {o}]. If αnew

is not in the tree, it will be added to the tree lazily (Line
6-7) without path verification to save computation. The tree
keeps growing lazily in a recursive manner (Line 13) until
αF is connected to αS via a branch (Line 8, also see Fig.
5(b)) where the path verification will be performed on the
edges of the branch (Line 9), which is described in Alg. 3.

A global parameter mode is used to indicate the current
search mode (backtracking or backjumping). It is in back-
tracking mode when Alg. 2 is first called in step 2 of Alg.
1. If the branch is valid, the solution is found and it quits
Alg. 2 with backtracking (Line 11, 13-14). If not, the search
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Algorithm 2: GROWLOCALTREE

Input: Tsub, αC , αF , C
Output: Tsub, flag

1 flag = False

2 for o ∈ O(αC) do
3 valid = FORWARDCHECKING(o, αC , C)
4 if not valid then continue
5 αnew = GETNEWNODE(o, αC , αF )
6 if αnew ∈ T then continue
7 Tsub = ADDNODE(αnew, αC , Tsub)
8 if αnew = αF then
9 Tsub, success, αlast =

VERIFYBRANCH(αnew, Tsub)
10 if not success then mode = backjumping
11 return Tsub, success
12 else
13 Tsub, f lag =

GROWLOCALTREE(Tsub, αnew, αF , C)
14 if flag then return Tsub, f lag
15 if mode = backjumping then
16 if αnew = αlast then mode = backtracking
17 else return Tsub, f lag
18 return Tsub, f lag

switches to the backjumping mode (Line 10), in which the
search tree jumps back to the last accessible node αlast to
continue (Line 15-17, also see Fig. 5(e)). The tree is returned
when all alternatives have been exhausted (Line 18).

Alg. 3. verifies the branch that connects αF from αS . It
first traces back to the nearest node α′ that is accessible from
the root (Line 1) to avoid duplicate edge verification. From
there, it checks the validity of each edge (Line 3-4). If an
edge α′ → αchild is valid (Line 5), it marks αchild as acces-
sible from α′ (Line 6) and moves on to the next edge (Line
7). If not (Line 8), the branch verification stops at the edge
α′ → αchild (see Fig. 5(d)) and deletes any subtree rooted at

(a) (b) (c) (d) (e)
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Figure 5: Lazy tree in LRS. Black dashed circles and arrows
represents nodes and edges without path verification while
green solid ones represents those with path verification. Here
αC indicates the current stage of the search. (a) Forward-
checking phase (Alg. 2, Line 3-4). A tree cannot expand
upon αC due to constraint violation. (b) The tree connects
αS to αF lazily (Alg. 2, Line 8). (c) The branch pass path
verification (Alg. 3, Line 11). (d) Path verification fails at the
edge α′ → αchild and is terminated. (e) The subtree rooted
at αchild is trimmed (Alg. 3, Line 9-10) and the search jumps
back to the last accessible node αlast and backtracks to grow
the tree lazily (Alg. 2, Line 15-17).

Algorithm 3: VERIFYBRANCH

Input: αC , Tsub

Output: Tsub, success, αlast

1 α′ = NEARESTNODE(αC , Tsub)
2 while α′ 6= αC do
3 αchild = α′.child
4 success = PATHVERIFICATION(α′, αchild)
5 if success then
6 Tsub = ADDEDGE(α′, αchild, Tsub)
7 α′ = αchild

8 else
9 DELETETREE(αchild, Tsub)

10 return Tsub, success, α
′

11 return Tsub, success, α
′

αchild (Line 9) as αchild is not accessible from α′. It returns
the trimmed lazy tree Tsub and records the last accessible
node αlast = α′ (Line 10, also see Fig. 5(e)). If all the edges
are valid, the task is solved and the branch on Tsub is the
solution (Line 11, also see Fig. 5(c)).

Theorem 1 (Completeness of LRS). LRS achieves the same
completeness properties as the underlying motion planner.

Proof. Assume there is a monotone solution Π′ but LRS fails
to find it. Since Π′ is monotone, each object moves directly
from its start to its goal. Following the order, there is a cor-
responding path P ′ in the state space of LRS, which is a se-
quence of states with the first state being αS and the others
being the resulting states of actions in Π′ in the order. Given
the failure assumption, let the first edge in P ′ that is not in
Tsub be α1 → α2. Since α1 → α2 is a valid edge that re-
spects constraints C, it should be eventually discovered by a
motion planner (e.g., assuming probabilistic completeness).
Therefore, the only reason that α2 is not linked to α1 when
LRS explores α1 is that α2 corresponds to a node that has
been considered already (with a different parent than α1)
and deemed as a “dead end”, i.e., can’t be connected to αF .

If α2 = αF , then it means LRS finds a path from αI to
αF and the path succeeds in the branch verification process,
which contradicts the failure assumption. Otherwise, since
the search tree is developed in a depth first manner, it sug-
gests that LRS cannot find a path in the state space from α2

to αF . But there is a sub-path P ′′ in P ′ from α2 to αF . Re-
cursively, all the edges in P ′ are in Tsub or there is another
path from αI to αF in Tsub.

Thus, given a monotone rearrangement instance, whether
LRS is able to find a solution depends on whether the under-
lying motion planner can find one. In other words, the pro-
posed LRS does not degrade the properties of the underlying
motion planner (e.g., probabilistic/resolution completeness).
For instance, if a solution has not been found but exists, a
straightforward iterative strategy can provide to the motion
planner additional resources (more sampled configurations,
object position candidates, grasps and IK solutions) and then
the task planner is called again.

The motion planner used is the asympt. optimal Proba-
bilistic Roadmap (PRM*) (Karaman and Frazzoli 2011).
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Non-Monotone Instances
For non-monotone problems where some objects need to be
moved to buffers first to admit a feasible solution, a global
planner is needed, as the local solver only examines the
monotonicity of a local task. The global planner assigns a
local task to the local solver and concatenates the local tree
Tsub returned by the local solver to build a global tree Tg .
If the resulting Tg does not lead to a solution, an action is
needed to move an object to a buffer at an arrangement. Such
actions are called perturbations in the context of the global
planner. A new tree node αpert (the blue node in Fig. 2(a))
will be generated upon perturbation, from which a new local
task αpert → αF is assigned to the local planner.

Consider a lazy local tree Tsub in Fig. 6(a). There are dif-
ferent ways of concatenating Tsub to the global tree Tg . A
greedy global planner concatenates only the part of the tree
which has been path verified (Fig. 6(b)), while a conserva-
tive global planner first verifies all unverified edges in the
lazy tree and then concatenates the verified tree (Fig. 6(c)).
In the greedy case, the planner operates lazily by only ac-
cepting the verified part of the tree to avoid performing any
expensive path verification. As a result, it quickly concate-
nates the tree but giving up unverified nodes which could
lead to a solution given a proper perturbation. In the ex-
treme cases where no nodes except the root of the local tree
is accepted, the only way the tree can grow in the greedy
case is through perturbation at the root. But a perturbation is
both slow (just extends one edge) and unpredictable (the ob-
ject is moved to a random buffer). In the conservative case,
the planner performs additional work to verify the unverified
part of the tree, thus maintaining those nodes in the global
tree. This, however, undermines the utility of lazy evaluation
as the global planner takes time to make up the laziness of
the local planner. The only advantage lies in the last itera-
tion if a solution is found (in that case, the global planner
only needs to concatenate the verified branch).

To leverage the benefits of both the greedy and the con-
servative planner, this work introduces a global planner
LRShybrid, which concatenates the lazy local tree as it is and
only performs path verification if the node being selected
for perturbation is unverified. In this manner, the global
tree maintains both verified and unverified edges (hybrid)
throughout the search. LRShybrid is described in Alg. 4. It
solves a global task αI → αF with n objects and all possi-
ble positions PT and outputs a path sequence Π. The global
task is first assigned to the local solver, from where the

(a) (b) (c)
𝜶𝜶𝑺𝑺 𝜶𝜶𝑺𝑺 𝜶𝜶𝑺𝑺

Figure 6: (a) A lazy search tree returned by the local solver
LRS with both verified (green solid arrows) and unverified
(black dashed arrows) edges. (b) The tree concatenated by a
greedy global planner. (c) The tree concatenated by a con-
servative global planner.

Algorithm 4: LRShybrid
Input: αI , αF , O, PT

Output: Π
1 Tg = ∅, Π = ∅
2 Tsub = LRS(αI , αF ,O)
3 Tg = Tg + Tsub

4 while αF /∈ Tg and TIMEPERMITTED do
5 αC = SELECTNODE(Tg)
6 Tg, success, αlast = VERIFYBRANCH(αC , Tg)
7 if success then
8 αpert = PERTURBNODE(αC , αF ,PT )
9 if αpert 6= ∅ then

10 Tg = ADDNODE(αpert, αC , Tg)
11 Tg = Tg + LRS(αpert, αF ,O)
12 if αF ∈ T then
13 Π = TRACEBACKPATH(Tg, αF , αI)
14 return Π

solver tests the monotonicity of the problem (Line 1-3). If
the problem is non-monotone (Line 4), a node αC is selected
to perform a perturbation (Line 5, also see Fig. 7(a)). Before
perturbation, αC is checked to see if it is accessible from
the root αI (Line 6). If not, the perturbation terminates and
restarts (Fig. 7(c)(d)). If αC is accessible from αI (Line 7),
the perturbation is performed on αC by randomly selecting
an object to be placed in a buffer, which is randomly selected
from PT (Line 8). If the perturbation is not successful, it ter-
minates and restarts (Line 4). Otherwise (Line 9), a pertur-
bation node αpert is added to the tree (Line 10, also see Fig.
7(b)), from where the local solver is called to solve a local
task αpert → αF . The local solver call and the perturbation
alternate until a solution is found (Line 12-13) or the time
exceeds a threshold (Line 4).

Despite different ways (greedy, conservative or hybrid) of
tree concatenation, the planner generally follows the struc-
ture of alternating between random perturbations and sub-
tree concatenation. The high-level structure is referred to as
Perturbation Search (PERTS). The following discussion pro-
vides a proof that PERTS guarantees probabilistic complete-
ness, regardless of how local trees are concatenated or the
type of monotone solver used. The only requirement is that
the clearance of paths δ in the rearrangement plan is lower
bounded by a constant. Here δ is measured as the minimum
distance between the robot arm and the obstacles in the plan.

(a) (b) (c)

𝜶𝜶𝑰𝑰

𝜶𝜶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝜶𝜶𝑰𝑰

𝜶𝜶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝜶𝜶𝑰𝑰

𝜶𝜶𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝜶𝜶𝑰𝑰

(d)

𝜶𝜶𝑪𝑪 𝜶𝜶𝑪𝑪 𝜶𝜶𝑪𝑪

Figure 7: (a) A node αC is selected to perform perturbation
on a tree in Fig. 6(a). (b) A perturbation succeeds only if
(1)αC is accessible from the root (green arrows) and (2) the
perturbation node αpert is accessible from αC (blue arrow).
(c) An unsuccessful perturbation given that αC is not acces-
sible. (d) The tree after trimming the subtree rooted at αC .
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A lemma for the completeness theorem is proved as follows.
Lemma 1. Given the set of position candidatesPT with res-
olution δr and a complete motion planner, if there is a fea-
sible rearrangement plan Π from αI to αF with clearance
δΠ >

√
2δr, then there is a feasible path P from αI to αF

in the state space of the proposed global planner.

Proof. The lemma can be proven by moving all the placing
positions in Π (goal and buffer positions) to their nearest
neighbors in PT . Given the resolution δr, each point in the

rectangular region is at most
√

2

2
δr away from its nearest

neighbor in PT . With a complete motion planner, there is a
feasible path P in the state space S of the proposed global

planner given clearance: δΠ ≥ δ − 2 ∗
√

2

2
δr > 0.

Theorem 2 (Probabilistic Completeness of PERTS). Given
a complete motion planner and a constant δ∗, if there is a
rearrangement plan with clearance δ ≥ δ∗, then the proba-
bility of the global planner to find a feasible rearrangement
plan approaches 1 as the number of perturbations increase,
regardless of which monotone solver is used.

Proof. Given the tolerating clearance δ∗, generate PT with

resolution
√

2

3
δ∗. Assume that there is a feasible rearrange-

ment plan Π for a rearrangement instance. According to the
Lemma above, there is a feasible path P from αI to αF in
the state space S of PERTS.

To prove the probabilistic completeness, regardless of
which monotone solver is used, it suffices to prove that the
probability of finding αF via perturbations approaches 1 as
the perturbation number m goes to infinity.

In each perturbation, PERTS moves a randomly selected
object from a random state to a randomly selected position
in PT . Since the size of the state space S is upper bounded
by (|PT | + n)n, for all 2 ≤ i ≤ |P |, when P [i − 1] is in
the search tree, the probability that P [i] can be added into
the search tree in the next perturbation is lower bounded by
p > 1/(|S| ∗ n ∗ (|PT |+ n)) > 1/(n ∗ (|PT |+ n)n+1).

Similar to the probabilistic completeness for RRT (Klein-
bort et al. 2018), consider m Bernoulli trials with success
prob. p. LetXm be the number of successes inm trials, then:

Pr[αF cannot be found in m perturbations] ≤ Pr[Xm < |P |]

≤
|P |−1∑
i=0

(
m
i

)
pi(1− p)m−i ≤

|P |−1∑
i=0

(
m

|P | − 1

)
pi(1− p)m−i

≤
(

m
|P | − 1

) |P |−1∑
i=0

(1− p)m ≤
(

m
|P | − 1

) |P |−1∑
i=0

(e−p)m

=

(
m

|P | − 1

)
|P |(e−p)m ≤ |P |

(|P | − 1)!
m|P |−1e−pm

→ 0(m→∞)

The transitions rely on p < 1/2, which trivially holds
when |PT | > 1. Therefore, the probability of finding Π ap-
proaches 1 as the number of perturbations increases.

Figure 8: [Left] The robotic simulation environment where
the experiments are performed. [Right] Monotone or non-
monotone problem distribution per number of objects.

Experiments
This section demonstrates the effectiveness of the proposed
monotone solver LRS on monotone problems and the global
planner LRShybrid on non-monotone problems. The experi-
ments are performed in a robotic simulator Pybullet, with a
Motoman SDA10F robot tasked to rearrange objects in the
confined setup (Fig. 8, left) and solutions of the proposed
method are executed on a real robot system (Fig. 1) 2.

The problems are generated by randomly sampling start
positions of the objects and assigning goal locations to these
objects from a discretized set of locations in the shelf simi-
larly to Fig. 3(c) and 3(d). Fig. 8 (right) shows the distribu-
tion of monotone and non-monotone problems for different
number of objects. Given this distribution, monotone prob-
lems are selected with 8-14 objects, while non-monotone
problems with 12-16 objects. 80 experiments are performed
for each number of objects. The metrics for monotone and
non-monotone solutions involve success rate and computa-
tion time. The computation time is separated into (1) the to-
tal computation time, and (2) the motion planning/collision
checking (path verification) time. The computation time is
plotted in the logarithmic scale for better visualization.

Evaluation on Monotone Problems: The proposed LRS
is compared to the aforementioned alternatives (mRS, DFSDP,
CIRS). A limitation of 100 seconds is given to solve a mono-
tone problem. Fig. 9 (left column) demonstrates that the suc-
cess rate for LRS stays 100% even in harder problems (12,
14 objects) while that for mRS and DFSDP drops significantly
(16.7%, 4.2% for mRS and 46.7%, 8.3% for DFSDP). CIRS
shows relatively high success rate (83.3% for 14 objects)

2Codes and Videos are available online at https://github.com/
Rui1223/confined-space-rearrangement.
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Figure 9: Algorithm comparisons in monotone instances.
[left] Success rate (%). [right] Computation time (plotted in
logarithm) presented as two components: the colored part is
the path verification time and the white part is the other.
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Figure 10: Algorithm comparisons in non-monotone in-
stances. [left] Success rate (%). [right] Computation time
(logarithm) presented as two components: the colored part
is the path verification time and the white part is the other.

but LRS outperforms CIRS (Fig. 9 (right column)) with faster
computation time (10.2 and 16.8 seconds for 12 and 14 ob-
jects, compared to 28.3 and 47.3 seconds for CIRS). The lazy
evaluation structure of LRS significantly reduces the path
verification time. For 14 objects, LRS spends 16.2 seconds
(96.4% of the total time) on path verification, while the time
is 46.9 (99.2%), 93.9 (99.3%) and 97.3 (99.3%) seconds for
CIRS, DFSDP and mRS, respectively (Fig. 9 (right column),
colored part of the bars). It also confirms the observation
that path verification is the computational overhead.

Evaluation on Non-monotone Problems: The proposed
global planner LRShybrid is compared to global planners
which use the alternatives (mRS, DFSDP, CIRS) as the inte-
grated local solver. For simplicity, the names mRS, DFSDP,
CIRS are still used to represent the corresponding global
planner. A limitation of 240 seconds is given to solve a
non-monotone problem. Fig. 10 (left) indicates that mRS and
DFSDP fail in every instance for 13-16 objects and CIRS
shows a stable decrease of success rate (44.1%, 37.9% and
25.8% for 14, 15 and 16 objects, respectively). In contrast,
LRShybrid has 100% success rate for 12-14 objects and stays
high for harder problems (85.7% for 15 objects and 82.4%
for 16 objects). LRShybrid solves non-monotone problems
61% faster than alternatives, as it lazily loads the local tree
and only performs path verification if the node selected for
perturbation is unverified. Moreover, the time used other
than path verification (Fig. 10 (right), white part of the bars)
for LRShybrid is higher than other methods (e.g., for 16 ob-
jects, that time is 23.2 seconds for LRShybrid, compared to
1.9 seconds for other methods), as LRShybrid requires steps
such as obtaining constraints (Alg. 1, Line 1) and trimming
inaccessible subtrees (Alg. 3, Line 9). However, the path ver-
ification time for LRShybrid is 98.8 seconds, much smaller
than that of other methods (231.6 seconds on average). In

12 13 14 15 16
100

102

LRS-GREEDY LRS-CONSERVATIVE LRS-HYBRID
12 13 14 15 16

0

1

Figure 11: Ablation study in non-monotone instances. [left]
Success rate (%). [right] Computation time (logarithm) pre-
sented as two components: the colored part is the path veri-
fication time and the white part is the other.

# objects 12 13 14 15 16
LRShybrid 1.4 1.5 1.9 2.2 2.3
LRSgreedy 1.3 1.5 1.2 2.2 2.4

LRSconservative 1.2 1.5 1.8 1.4 1.5

Table 1: Average number of buffers needed to solve non-
monotone problems.

that regard, LRShybrid trades heavy path verification time for
some moderate increase in task planning time.

Ablation Study: An ablation study is also performed to
reveal the impact of different versions of the global plan-
ner (greedy, conservative, hybrid) on non-monotone prob-
lems. Fig. 11 (left column) shows that the success rate for
LRShybrid is higher than LRSgreedy and LRSconservative. The
two alternatives suffer from relatively low success rates for
different reasons. LRSgreedy only accepts the verified part of
tree to avoid path verification, giving up potential nodes. As
a result, it involves more perturbation steps to grow the tree,
which can be slow. LRSconservative further verifies the un-
verified part of the local lazy tree before concatenating it
to the global tree. As a result, it has more path verification
steps, which is also slow. Fig. 11 (right column) also con-
firms these reasons. LRSgreedy has a smaller path verification
time (colored part of the bars) but a higher other time (white
part of the bars) and LRSconservative is on the opposite. The
proposed LRShybrid has both time in the middle compared to
the other two, achieving the fastest computation time.

The number of buffers needed to solve non-monotone
problems is provided in Table. 1. With the PERTS structure,
the problems can be mostly solved with one or two buffers.

Conclusion and Future Work
This work introduces a lazy evaluation framework, which in-
volves a local monotone solver and a global planner for solv-
ing rearrangement in confined spaces. The proposed frame-
work is capable of solving hard instances up to 16 objects
with high-quality by improving computational efficiency.
This paper argues the completeness of the local solver and
the probabilistic completeness of the global planner. The so-
lutions are also demonstrated on a real robotic system.

The confined setup does not only pose reachability chal-
lenges, but also visibility challenges. As the objects cannot
be accessed from above by the robot arm, they cannot be al-
ways detected from above by a camera. This results in partial
observability where the rearrangement objective changes,
i.e., rearranging objects which improve the visibility of oth-
ers. Not all objects may be known initially and replanning
is needed as the scene is updated. The proposed techniques
can be modified to be deployed in these setups. For instance,
building a stochastic tree where the edge incorporates the
probability the object is movable given uncertainty.
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