
A*pex: Efficient Approximate Multi-Objective Search on Graphs
Han Zhang1, Oren Salzman2, T. K. Satish Kumar1, Ariel Felner3,

Carlos Hernández Ulloa4, Sven Koenig1

1 University of Southern California
2 Technion - Israel Institute of Technology

3 Ben-Gurion University
4 Universidad San Sebastian

zhan645@usc.edu, osalzman@cs.technion.ac.il, tkskwork@gmail.com, felner@bgu.ac.il,
carlos.hernandez@uss.cl, skoenig@usc.edu

Abstract

In multi-objective search, edges are annotated with cost vec-
tors consisting of multiple cost components. A path domi-
nates another path with the same start and goal vertices iff
the component-wise sum of the cost vectors of the edges of
the former path is “less than” the component-wise sum of the
cost vectors of the edges of the latter path. The Pareto-optimal
solution set is the set of all undominated paths from a given
start vertex to a given goal vertex. Its size can be exponential
in the size of the graph being searched, which makes multi-
objective search time-consuming. In this paper, we therefore
study how to find an approximate Pareto-optimal solution set
for a user-provided vector of approximation factors. The size
of such a solution set can be significantly smaller than the size
of the Pareto-optimal solution set, which enables the design
of approximate multi-objective search algorithms that are ef-
ficient and produce small solution sets. We present such an al-
gorithm in this paper, called A*pex. A*pex builds on PP-A*,
a state-of-the-art approximate bi-objective search algorithm
(where there are only two cost components) but (1) makes
PP-A* more efficient for bi-objective search and (2) general-
izes it to multi-objective search for any number of cost com-
ponents. We first analyze the correctness of A*pex and then
experimentally demonstrate its efficiency advantage over ex-
isting approximate algorithms for bi- and tri-objective search.

Introduction
In multi-objective search, we are given a directed graph
whose edges are annotated with cost vectors consisting of
multiple cost components. A path π dominates a path π′ iff
the component-wise sum c(π) of the costs of the edges of
path π is less than the component-wise sum c(π′) of the
costs of the edges of path π′, that is, each cost component
of c(π) is no larger than the corresponding cost component
of c(π′) and one of them is smaller. The objective of multi-
objective search is to find the Pareto-optimal solution set of
paths from a given start vertex to a given goal vertex, that is,
all undominated paths from the start vertex to the goal ver-
tex. This objective generalizes the one of single-objective
search to find all cost-minimal paths from the start vertex
to the goal vertex. It is important for many real-world ap-
plications, including route planning for trucks, robots, and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

power lines (Bachmann et al. 2018) as well as inspecting re-
gions of interest with robots (Fu et al. 2019; Fu, Salzman,
and Alterovitz 2021). For example, transporting hazardous
material requires one to trade-off between multiple costs for
each street, such as its length and the number of residents
that would be exposed to the hazardous material in case of a
traffic accident (Bronfman et al. 2015).

Unfortunately, the size of the Pareto-optimal solution set
can be exponential in the size of the graph being searched
(Ehrgott 2005; Breugem, Dollevoet, and van den Heuvel
2017), which makes multi-objective search time-consuming.
Researchers have therefore proposed to find an approximate
Pareto-optimal solution set instead (Breugem, Dollevoet,
and van den Heuvel 2017; Tsaggouris and Zaroliagis 2009;
Warburton 1987; Goldin and Salzman 2021; Perny and
Spanjaard 2008), that is, a set of paths such that any path
in the Pareto-optimal solution set is ε-approximately domi-
nated by some path in the approximate Pareto-optimal solu-
tion set. A path π ε-approximately dominates a path π′ for
some ε ≥ 0 iff each cost component of c(π) is no larger than
(1 + ε) times the corresponding cost component of c(π′),
where ε is a user-provided approximation factor that can be
different for different cost components. Different approxi-
mate Pareto-optimal solution sets (with different cardinal-
ities) can exist for a given multi-objective search instance
and approximation factor, but their cardinalities are typically
much smaller than those of the Pareto-optimal solution set
even for small approximation factors. This property can be
exploited to create approximate multi-objective search algo-
rithms that are efficient and produce small solution sets.

We present such an algorithm in this paper, called A*pex.
A*pex is a multi-objective search algorithm that finds an ε-
approximate Pareto-optimal solution set for a user-provided
approximation factor. It builds on PP-A* (Goldin and
Salzman 2021), a state-of-the-art approximate bi-objective
search algorithm (where there are only two cost compo-
nents), but generalizes the representation of sets of paths
used by PP-A* to (1) make PP-A* more efficient for bi-
objective search and (2) generalize it to multi-objective
search for any number of cost components. We first analyze
the correctness of A*pex using proof techniques in the proof
of Lemma 4 that also apply to PP-A* and then experimen-
tally demonstrate its efficiency advantage over PP-A* for
bi-objective search and an approximate baseline algorithm

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

394



derived from NAMOA*dr, a state-of-the-art multi-objective
search algorithm, for tri-objective search. We obtain average
speed-ups of more than two times over PP-A* and more than
seven times over the baseline algorithm for a road map with
more than 1.5 million vertices and an approximation factor
of 0.01.

Terminology and Problem Definition
Boldface font denotes vectors or vector functions. vi denotes
the i-th component of vector or vector function v. The addi-
tion of two vectors v and v′ of the same length N is defined
as v+ v′ = [v1 + v′1, v2 + v′2 . . . vN + v′N ]. v ⪯ v′ denotes
that vi ≤ v′i for all i = 1, 2 . . . N . In this case, we say that
v weakly dominates v′. v ≺ v′ denotes that v ⪯ v′ and
there exists an i ∈ {1, 2 . . . N} with vi < v′i. In this case,
we say that v dominates v′. v ⪯ε v′ for an approximation
factor (or, more precisely, vector of approximation factors)
ε = [ε1, ε2 . . . εN ] ∈ RN

≥0 denotes that vi ≤ (1 + εi)v
′
i for

all i = 1, 2 . . . N . In this case, we say that v ε-dominates v′.
The truncate function Tr takes a vector as input and outputs
the vector with its first component deleted.

A (multi-objective search) graph is a tuple ⟨S,E, c⟩,
where S is a finite set of states and E ⊆ S × S is a fi-
nite set of edges. succ(s) = {s′ ∈ S : ⟨s, s′⟩ ∈ E} denotes
the successors of state s. Cost function c : E → RN

≥0 maps
an edge to its cost, which is a vector of its N cost compo-
nents. The graph is called bi-objective in case N = 2 and
tri-objective in case N = 3.

A (multi-objective search) instance is a tuple P =
⟨S,E, c, sstart, sgoal⟩, where ⟨S,E, c⟩ is a graph whose edges
have N cost components, sstart ∈ S is the start state, and
sgoal ∈ S is the goal state. The instance is called bi-objective
in case N = 2 and tri-objective in case N = 3.

A path from state s1 to state sℓ is a sequence of states
π = [s1, s2 . . . sℓ] with ⟨sj , sj+1⟩ ∈ E for all j =
1, 2 . . . ℓ−1. s1 = sstart unless mentioned otherwise. c(π) =∑ℓ−1

j=1 c(⟨sj , sj+1⟩) denotes the cost of path π. The path is
a solution iff it is from sstart to sgoal. It can be extended with
an edge ⟨sℓ, sℓ+1⟩ to obtain path [s1, s2 . . . sℓ, sℓ+1]. It dom-
inates (resp. weakly dominates) a path π′ iff c(π) ≺ c(π′)
(resp. c(π) ⪯ c(π′)). A Pareto-optimal solution for an in-
stance P is a solution that is not dominated by any solution
of P . The Pareto-optimal solution set is the set of all Pareto-
optimal solutions. π ⪯ε π′ denotes that c(π) ⪯ε c(π′). In
this case, we say that path π ε-dominates path π′. An ε-
approximate Pareto-optimal solution set is a set of solutions
such that, for any Pareto-optimal solution π′, there exists
a solution π in the ε-approximate Pareto-optimal solution
set with π ⪯ε π′. The Pareto-optimal solution set is a 0-
approximate Pareto-optimal solution set but not necessarily
vice versa. For example, the set of all solutions is also a 0-
approximate Pareto-optimal solution set. Our objective is to
find an explicit representation of an ε-approximate Pareto-
optimal solution set for a given instance quickly, ideally one
of small size. A multi-objective search algorithm that finds
an ε-approximate Pareto-optimal solution set is also called
an (ε-)approximate multi-objective search algorithm.

A heuristic function h : S → RN
≥0 provides a lower

bound on the cost of any path from any given state s to
the goal state. We assume that the provided heuristic func-
tion h is consistent, that is, h(sgoal) = 0 and h(s) ⪯
c(⟨s, s′⟩) + h(s′) for all ⟨s, s′⟩ ∈ E.

Algorithmic Background
In this section, we review the best-first multi-objective
search framework since all state-of-the-art multi-objective
search algorithms, including our new one, are based on it.

A best-first multi-objective search algorithm computes a
(usually Pareto-optimal or ε-approximate Pareto-optimal)
solution set by maintaining a priority queue Open, which
contains the generated but not yet expanded nodes. Each
node n contains a state s(n) and a g-value g(n). We define
an f -value for the node as f(n) = g(n) + h(s(n)). Open
is initialized with a node that contains the start state sstart
and the g-value 0. At each iteration, the algorithm extracts
a node from Open with the smallest f -value of all nodes
in Open and performs a dominance check to determine
whether the node or any of its descendants have the poten-
tial to be in the solution set. If not, it discards the extracted
node. If so and the node contains the goal state, it adds the
node to the solution set. Otherwise, it expands the node by
generating a new node for each of the successors of the state
contained in the node. The algorithm performs dominance
checks for each generated node to determine whether the
generated node or any of its descendants have the potential
to be in the solution set. If not, it discards the generated node.
Otherwise, it adds the generated node to Open. When Open
becomes empty, the algorithm terminates and returns the so-
lution set.

Different multi-objective search algorithms, such
as NAMOA* (Mandow and De La Cruz 2010),
NAMOA*dr (Pulido, Mandow, and Pérez-de-la Cruz
2015), BOA* (Hernandez et al. 2020), and PP-A* (Goldin
and Salzman 2021), conform to this framework but differ in
which information is contained in the nodes, which node is
extracted from Open, and how the dominance checks work.

NAMOA* and NAMOA*dr
NAMOA* is a best-first multi-objective search algorithm
that finds the Pareto-optimal solution set. Each node in
Open corresponds to a path π. The path contains the state
s(π) that is the last state in path π and the g-value g(π) =
c(π) that is the cost of path π.

NAMOA* maintains two sets of f -values for each state s,
namely, the closed set Gcl(s), that contains the f -values
of all expanded paths that contain state s, and the open
set Gop(s), that contains the f -values of all generated but
not yet expanded paths that contain state s.1 At each itera-
tion, NAMOA* extracts a path π from Open whose f -value
is undominated by the f -value of any other path in Open
and adds f(π) to Gcl(s(π)). If state s(π) is the goal state,
then NAMOA* adds the path to the solution set and removes
all paths from Open whose f -values are dominated by f(π).

1The notation Gcl(s) and Gop(s) is used here for historical rea-
sons since these sets originally contained g-values. We use f -values
instead since it simplifies the descriptions of the search algorithms.

395



g1

g2

πbr

πtl

πtl′

πbr′

g1

g2

πtl
new

πbr
new

merge

Anew

Figure 1: An example, adapted from (Goldin and Salz-
man 2021), of merging path pairs ⟨πtl, πbr⟩ (orange) and
⟨πtl′, πbr′⟩ (blue) into path pair ⟨πtl

new, π
br
new⟩ (green).

Otherwise, for each edge ⟨s(π), s′⟩ ∈ E, NAMOA* extends
path π with the edge to obtain an extended path π′. It dis-
cards the extended path if its f -value is dominated by an
f -value in Gcl(s

′) ∪ Gop(s
′) ∪ Gcl(sgoal). Otherwise, it re-

moves all paths that contain state s′ and whose f -values are
dominated by f(π′) from Open (and removes their f -values
from Gop(s

′)) and then adds the extended path to Open (and
adds its f -value to Gop(s

′)).
NAMOA*dr improves on NAMOA* with respect to

the efficiency of dominance checking, which can be the
computational bottleneck of multi-objective search algo-
rithms (Pulido, Mandow, and Pérez-de-la Cruz 2015).
NAMOA*dr always extracts a path from Open with the
lexicographically smallest f -value of all paths in Open.
When NAMOA*dr generates a path π, it therefore holds that
f1(π) ≥ max{f1(π′) : f1(π

′) ∈ Gcl(s(π))} and f1(π) ≥
max{f1(π′) : f1(π

′) ∈ Gcl(sgoal)} since the heuristic func-
tion is consistent. Thus, NAMOA*dr does not need to check
the first component when checking whether the f -value of
path π is dominated by an f -value in Gcl(s(π))∪Gcl(sgoal).
Instead of maintaining the set Gcl(s) of f -values for each
state s, NAMOA*dr therefore maintains only the often sig-
nificantly smaller set GT

cl (s) of undominated truncated f -
values.

When Open becomes empty, NAMOA* and NAMOA*dr
terminate and return the solution set as the Pareto-optimal
solution set.

Perny and Spanjaard (2008) suggest to compute an ε-
approximate Pareto-optimal solution set by discarding an
extracted or extended path if its f -value is ε-dominated by
the f -value of some path in the solution set. NAMOA*dr-ε
is our best-first multi-objective search algorithm that makes
this change to NAMOA*dr to find an ε-approximate Pareto-
optimal solution set.

PP-A*
PP-A* (Goldin and Salzman 2021) is a best-first bi-objective
search algorithm that finds an ε-approximate Pareto-optimal
solution set for a user-provided approximation factor ε.
Each node in Open corresponds to an ε-bounded path pair
PP = ⟨πtl, πbr⟩ (where “tl” and “br” stand for “top-left”
and “bottom-right,” respectively) with s(πtl) = s(πbr),
g1(π

tl) ≤ g1(π
br), and g2(π

tl) ≥ g2(π
br). The path pair con-

tains state s(PP) = s(πbr) and g-value (also called apex)
g(PP) = [g1(π

tl), g2(π
br)]. It is ε-bounded iff g1(πbr) ≤

Algorithm 1: PP-A*
Input : P = ⟨S,E, c, sstart, sgoal⟩

h
ε = [ε1, ε2]

1 Open← {⟨[sstart], [sstart]⟩}
2 solutions← {}
3 foreach s ∈ S do
4 fmin

2 (s)←∞
5 while Open ̸= ∅ do
6 PP = ⟨πtl, πbr⟩ ← Open.extract min()
7 if is dominated(PP) then
8 continue
9 fmin

2 (s(PP))← f2(PP)
10 if s(PP) = sgoal then
11 insert(PP , solutions)
12 continue
13 for s′ ∈ succ(s(PP)) do
14 PP ′ ← ⟨extend(πtl, ⟨s(PP), s′⟩),

extend(πbr, ⟨s(PP), s′⟩)⟩
15 if is dominated(PP ′) then
16 continue
17 insert(PP ′, Open)
18 return {πbr : ⟨πtl, πbr⟩ ∈ solutions}
19 Function is dominated(PP):
20 if fmin

2 (sgoal) ≤ (1 + ε2)f2(PP) then
21 return true
22 if fmin

2 (s(PP)) ≤ f2(PP) then
23 return true
24 return false

25 Function insert(PP, list):
26 for PP ′ ∈ list do
27 PPnew ← merge(PP,PP ′)
28 if PPnew is ε-bounded then
29 remove PP ′ from list
30 add PPnew to list
31 return
32 add PP to list
33 return

(1 + ε1)g1(π
tl) and g2(π

tl) ≤ (1 + ε2)g2(π
br) or, equiva-

lently, iff the g-values of both paths πtl and πbr ε-dominate
the g-value of path pair PP .

While NAMOA* reasons about single paths, PP-A* rep-
resents sets of paths with the same last state and similar
g-values as ε-bounded path pairs, which results in small
numbers of path pair expansions and thus small runtimes.
For ε-bounded path pair ⟨πtl, πbr⟩, the g-value g(πtl) =
[g1(π

tl), g2(π
tl)] of top-left path πtl is the lexicographically

smallest g-value of all paths in this set, and the vector
[g2(π

br), g1(π
br)] of bottom-right path πbr (called its reverse

g-value) is the lexicographically smallest such vector of all
paths in this set. Also, the g-value of the path pair weakly
dominates the g-values of all paths in this set (because
g1(π

tl) is the smallest g1-value of all paths in this set and
g2(π

br) is the smallest g2-value of them), and the g-values
of both the top-left and bottom-right paths ε-dominate the
g-values of all paths in this set (Goldin and Salzman 2021).

Any two path pairs that contain the same state can be

396



merged into a single path pair, where the top-left path of
the merged path pair is the one of the top-left paths of the
two path pairs with the lexicographically smaller g-value
and the bottom-right path of the merged path pair is the one
of the bottom-right paths of the two path pairs with the lex-
icographically smaller reverse g-value. See Figure 1 for a
visualization of the outcome.

Algorithm 1 shows the pseudocode of PP-A*. It starts
with a single path pair ⟨[sstart], [sstart]⟩ in Open (Line 1). At
each iteration, PP-A* extracts a path pair from Open with
the lexicographically smallest f -value (Line 6). Since PP-
A* is a bi-objective search algorithm, the truncated f -values
correspond to and thus are represented by single numbers.
Furthermore, PP-A* maintains a set of undominated trun-
cated f -values of all expanded path pairs that contain state
s for each state s. This set can be represented by the small-
est f2-value fmin

2 (s) of the already expanded path pairs that
contain state s, which is used for dominance checking as
follows. Both after extracting (that is, after Line 6) and be-
fore generating (that is, before Line 17) a path pair PP that
contains state s, PP-A* discards the path pair

1. if there exists an expanded path pair (that is, one that
reaches Line 9) that contains the goal state and whose f -
value ε-dominates the f -value of path pair PP (Line 20).

2. if there exists an expanded path pair that contains state s
and whose f -value weakly dominates the f -value of path
pair PP (Line 22).

When PP-A* expands a path pair PP with state s, it gen-
erates a child path pair for each successor state s′ of state s.
The top-left and bottom-right paths of the child path pair are
the paths that extend the the top-left and bottom-right paths,
respectively, of path pair PP with edge ⟨s, s′⟩ (Line 14).

After extracting a path pair PP from Open that contains
the goal state, PP-A* checks on Line 11 if there already ex-
ists a path pair in the solution set that (automatically contains
the same state and) results in an ε-bounded path pair when
merged with path pair PP . If so, PP-A* removes that path
pair from the solution set and then adds the merged path pair
to the solution set (Lines 29-30). Otherwise, it adds path pair
PP to the solution set (Line 32). Similarly, before generat-
ing a path pair PP , PP-A* checks on Line 17 if there exists
a path pair in Open that contains the same state and results
in an ε-bounded path pair when merged with path pair PP .
If so, PP-A* removes that path pair from Open and then
adds the merged path pair to Open. Otherwise, it adds path
pair PP to Open.

When Open becomes empty, PP-A* terminates and re-
turns the bottom-right paths of all path pairs in the so-
lution set as an ε-approximate Pareto-optimal solution set
(Line 18).2

A*pex
In this section, we describe A*pex, our best-first multi-
objective search algorithm that finds an ε-approximate

2Returning the top-left paths of the path pairs in the solution
set does not necessarily result in an ε-approximate Pareto-optimal
solution set.

Pareto-optimal solution set for a user-provided approxima-
tion factor ε.

In A*pex, as in PP-A*, nodes correspond to sets of paths
with the same last state and similar costs. But A*pex im-
proves on the representation of these sets, which 1) allows
for larger and thus fewer sets of paths early in the search
and thus results potentially in a search that is more efficient
and produces smaller solution sets and 2) generalizes PP-A*
from bi-objective to multi-objective search with any number
of cost components. PP-A* includes only one path of a path
pair in the solution set, namely the bottom-right path. The
top-left path is not used for this purpose. The g-value of a
path pair is a vector whose first component is the smallest
value of the first components of all paths in the set of paths
that it represents and whose second component is the small-
est value of the second components of all paths in this set.
Again, the top-left path is not used for this purpose. Contri-
bution 1: A*pex therefore represents a set of paths with a
single representative path and a g-value that is similar to the
one of PP-A*. Having only one representative path instead
of two provides flexibility. For example, the representative
path can be chosen more freely than by PP-A*. Contribu-
tion 2: The representation of a set of paths can now easily be
generalized from two to any number of cost components by
extending the g-value from a vector of size two to a vector
of a size that equals the number of cost components. The ith
component of the g-value is the smallest value of the ith cost
components of all paths in the set of paths that it represents.

Each node in Open therefore corresponds to an ε-
bounded apex-path pair AP = ⟨A, π⟩, where A is a vector
of N cost components and π is a representative path with
A ⪯ g(π). The apex-path pair contains state s(AP) = s(π)
and g-value (called apex) g(AP) = A. The g-value of
an apex-path pair is the component-wise minimum of (and
hence weakly dominates) the g-values of all paths in the set
of paths that it represents. Contribution 3: Similar to PP-
A*, one could define an apex-path pair AP = ⟨A, π⟩ to be
ε-bounded iff g(π) ⪯ε g(AP), where the g- and f -values
of paths are defined as for NAMOA* and NAMOA*dr. We
generalize the preceding definition by defining the apex-path
pair to be ε-bounded iff f(π) ⪯ε f(AP), allowing for larger
sets of paths to be represented by apex-path pairs early in
the search.

Any two apex-path pairs that contain the same state can be
merged into a single apex-path pair, where the apex of the
merged apex-path pair is the component-wise minimum of
the apexes of the two apex-path pairs and the representative
path of the merged apex-path pair is either one of the two
representative paths of the two apex-path pairs. See Figure 2
for a visualization of the two possible outcomes. Each of the
two representative paths is considered a candidate for the
merged apex-path pair if choosing it results in an ε-bounded
merged apex-path pair. If there are no candidates, A*pex
does not merge the apex-path pairs. Otherwise, which candi-
date it chooses does not affect its correctness but can affect
its efficiency. We therefore consider these different methods:

• Random (R) Method: A*pex randomly chooses the rep-
resentative path from the candidates.

397



A

A′
Anew

A

A′
Anew

g1

g2

A′
π′A

π

Choose π to be the
new representative
path after the merge

Choose π′ to be the
new representative
path after the merge

πnew

πnew

g1

g1

g2

g2

Figure 2: An example of merging apex-path pairs ⟨A, π⟩ (or-
ange) and ⟨A′, π′⟩ (blue) into Apex-path pair ⟨Anew, πnew⟩
(green).

• Lexicographically (L) Smallest Reverse g-Value
Method: A*pex chooses the representative path with the
lexicographically smaller reverse g-value. If this path is
not a candidate, A*pex does not merge the apex-path
pairs. If there are only two cost components, this method
is similar to how PP-A* merges path pairs, namely by
picking the bottom-right path.

• Greedy (G) Method: A*pex chooses the candidate π
with the larger slack

min
i=1.2...,N

{
1 + εi − fi(π)/fi(AP)

εi

}
,

where AP is the resulting merged apex-path pair. The
ith component of the f -value of the representative path
could be a factor of 1 + εi larger than the ith component
of the f -value of the apex-path pair but is only a factor of
fi(π)/fi(AP) larger. The smaller the difference of these
two values, the better path π utilizes the leeway provided
by the approximation factor. The difference, which can
range from zero to εi, is divided by εi to normalize it
and thus make the differences for different components
comparable. Overall, the expression above indicates how
much room is left to merge the merged apex-path pair
with other apex-path pairs in the future, and maximizing
it chooses the candidate that that leaves more room for
future merges.

Algorithm 2 shows the pseudocode of A*pex. It starts
with a single apex-path pair ⟨0, [sstart]⟩ in Open (Line 1).
At each iteration, A*pex extracts an apex-path pair from
Open with the lexicographically smallest f -value (Line 6).
Similar to NAMOA* and NAMOA*dr, A*pex maintains a
set GT

cl (s) for each state s that contains the undominated
truncated f -values of the expanded apex-path pairs that con-
tain state s. This is necessary since the fmin

2 (s) optimiza-
tion of PP-A* only works for bi-objective search and af-
fects dominance checking as follows. Both after extracting
(that is, after Line 6) and before generating (that is, before

Algorithm 2: A*pex
Input : P = ⟨S,E, c, sstart, G

T
cl (⟩

h
ε

1 Open← {⟨0, [sstart]⟩}
2 solutions← ∅
3 foreach s ∈ S do
4 GT

cl (s)← ∅
5 while Open ̸= ∅ do
6 AP = ⟨A, π⟩ ← Open.extract min()
7 if is dominated(AP) then
8 continue
9 GT

cl (s(AP)).add(Tr(f(AP))
10 if s(AP) = sgoal then
11 insert(AP , solutions)
12 continue
13 for s′ ∈ succ(s(AP)) do
14 AP ′ ←

⟨A+ c(⟨s(AP), s′⟩), extend(π, ⟨s(AP), s′⟩)⟩
15 if is dominated(AP ′) then
16 continue
17 insert(AP ′, Open)
18 return {π : ⟨A, π⟩ ∈ solutions}
19 Function is dominated(AP = ⟨A, π⟩):
20 if ∃AP ′ = ⟨A′, π′⟩ ∈ solutions:

Tr(f(π′)) ⪯ε Tr(f(AP)) then
21 remove ⟨A′, π′⟩ from solutions
22 add ⟨comp wise minimum(f(AP),A′), π′⟩ to

solutions
23 return true
24 if ∃x ∈ GT

cl (s(AP)) : x ⪯ Tr(f(AP)) then
25 return true
26 return false

27 Function insert(AP, list):
28 for AP ′ ∈ list do
29 APnew ← merge(AP,AP ′)
30 if APnew is ε-bounded then
31 remove AP ′ from list
32 add APnew to list
33 return
34 add AP to list
35 return

Line 17) an apex-path pair AP that contains state s, A*pex
discards the apex-path pair

1. if there exists an expanded apex-path pair AP ′ that con-
tains the goal state and the f -value of whose representa-
tive path ε-dominates the f -value of apex-path pair AP
(Line 20). A*pex also updates the apex of apex-path pair
AP ′ to the component-wise minimum of the f -value of
apex-path pair AP and the apex of AP ′ (Lines 21-22).
This update guarantees that, if A*pex merges apex-path
pair AP ′ with other apex-path pairs later on Line 29, the
f -value of the representative path of the resulting apex-
path pair still ε-dominates the f -value of apex-path pair
AP and thus also the f -values of all paths in the set of

398



paths that apex-path pair AP represents. 3

2. if there exists an expanded apex-path pair that contains
state s and whose f -value weakly dominates the f -value
of apex-path pair AP (Line 24).

When A*pex expands an apex-path pair AP with state s,
it generates a child apex-path pair for each successor state s′
of state s. The apex of the child apex-path pair is the
component-wise sum of the apex of apex-path pair AP and
the cost of edge ⟨s, s′⟩, and the representative path of the
child apex-path pair is the path the extends the representa-
tive path of apex-path pair AP with edge ⟨s, s′⟩ (Line 14).

Both after extracting an apex-path pair from Open that
contains the goal state and before generating an apex-path
pair, A*pex attempts on Lines 11 and 17, respectively, to
merge the apex-path pair with an apex-path pair in the solu-
tion set or Open, respectively, just like PP-A*.

When Open becomes empty, A*pex terminates and re-
turns the representative paths of all apex-path pairs in the
solution set as an ε-approximate Pareto-optimal solution set
(Line 18).

Theoretical Results
Lemma 1. The sequence of extracted apex-path pairs has
monotonically non-decreasing f1-values.

Proof. The proof is similar to the one of Lemma 3
in (Goldin and Salzman 2021).

Lemma 2. If there exists a truncated f -value in GT
cl (s(AP))

that weakly dominates the truncated f -value of some apex-
path pair AP on Line 24, then there exists an expanded
apex-path pair AP ′ that contains state s(AP) and whose
f -value weakly dominates the one of apex-path pair AP .

Proof. Let apex-path pair AP ′ be the expanded apex-path
pair that contains state s(AP) and that Line 9 was exe-
cuted with to add the truncated f -value to GT

cl (s(AP)). It
holds that f1(AP ′) ≤ f1(AP) according to Lemma 1 and
since the heuristic function is consistent. Thus, the f -value

3PP-A* does not need to perform such an update of the apex
before Line 21 of Algorithm 1 for the following reason: Assume
that fmin

2 (sgoal) ≤ (1 + ε2)f2(PP) (Equation 1) on Line 20 for
some path pair PP = ⟨πtl, πbr⟩. Assume further that path pair
PP ′ = ⟨πtl′, πbr′⟩ resulted in the value of fmin

2 (sgoal) via the as-
signment on Line 9 and is later merged with another path pair.
Then, the f -value of the bottom-right path of the resulting path pair
PP ′′ = ⟨πtl′′, πbr′′⟩ still ε-dominates the f -value of path pair PP
since the f -values of solutions are equal to their g-values and 1)
f1(π

br′′) ≤ (1+ϵ1)f1(π
tl′′) ≤ (1+ϵ1)f1(π

tl′) ≤ (1+ϵ1)f1(π
tl)

(since, in order of the ≤ relationships, PP ′′ is ε-bounded, the first
component of the g-value of the path pair resulting from merging
is no larger than those of the merged path pairs, and the sequence
of the first components of the g-values of expanded path pairs
is monotonically non-decreasing) and 2) f2(πbr′′) ≤ f2(π

br′) ≤
(1 + ϵ2)f2(π

br) (since, in order of the ≤ relationships, the second
component of the g-value of the path pair resulting from merging
is no larger than those of the merged path pairs and Equation 1
holds).

of apex-path pair AP ′ weakly dominates the one of apex-
path pair AP .

Lemma 3. If the apex of an apex-path pair weakly domi-
nates a vector and the apex-path pair is merged with another
apex-path pair, then the apex of the merged apex-path pair
weakly dominates the vector as well.

Proof. The apex of the merged apex-path pair is the
component-wise minimum of the apexes of the two merged
apex-path pairs.

Lemma 4. For any prefix πl = [s1, s2 . . . sl] of any solution
π = [s1(= sstart), s2 . . . sL(= sgoal)] with 1 ≤ l ≤ L, there
exists, when A*pex terminates, (Case 1:) an expanded apex-
path pair AP (that is, one that reaches Line 9) that contains
state sl and whose apex weakly dominates the g-value of
path πl or (Case 2:) an apex-path pair AP in the solution set
such that the f -value of its representative path ε-dominates
the f -value of path πl.

Proof. The proof is by induction. The lemma holds for l =
1 and any solution since apex-path pair AP = ⟨0, [sstart]⟩
gets expanded and has the properties required for Case 1.
Now assume that the lemma holds for some l < L and any
solution. We prove that it then also holds for l + 1 and this
solution.

Assume that Case 1 holds for l and consider both the
apex-path pair AP mentioned there and its potential child
apex-path pair AP ′ created on Line 14 for s′ = sl+1. Apex-
path pair AP ′ contains state sl+1, and its apex weakly domi-
nates the g-value of path πl+1, which implies that its f -value
weakly dominates the f -value of path πl+1. We distinguish
several cases:

1. First, the condition on Line 20 holds for some apex-
path pair in the solution set, namely, the truncated f -
value of the representative path of this apex-path pair ε-
dominates the truncated f -value of apex-path pair AP ′.
A*pex replaces this apex-path pair with a new apex-path
pair AP ′′ in the solution set on Line 22. Apex-path pair
AP ′′ stays in the solution set but A*pex might merge it
several (more) times with other apex-path pairs on Line
29 before it terminates. The apex of apex-path pair AP ′′

weakly dominates the f -value of path πl+1 (since this
apex is the component-wise minimum of the f -value of
apex-path pair AP ′ and another apex and hence weakly
dominates the f -value of apex-path pair AP ′, which in
turn weakly dominates the f -value of path πl+1) and
merging it with other apex-path pairs does not change
this property according to Lemma 3. Since the apex-path
pair also remains ε-bounded (which is due to the condi-
tions on Lines 20 and 30, Lemma 1, and since the heuris-
tic function is consistent), the f -value of its representa-
tive path always ε-dominates the f -value of itself, which
equals its apex. Put together, the f -value of its represen-
tative path ε-dominates the f -value of path πl+1. Thus,
the merged apex-path pair satisfies Case 2 for l + 1.

2. Second, the condition on Line 24 holds, namely, there
exists a truncated f -value in GT

cl (s(AP ′)) that weakly
dominates the truncated f -value of apex-path pair AP ′.

399



Then, an expanded apex-path pair AP ′′ exists accord-
ing to Lemma 2 that contains state sl+1 and whose f -
value weakly dominates the f -value of apex-path pair
AP ′. Thus, its apex weakly dominates the apex of apex-
path pair AP ′. Thus, apex-path pair AP ′′ satisfies Case 1
for l + 1 since the apex of apex-path pair AP ′ in turn
weakly dominates the g-value of path πl+1.

3. Otherwise, A*pex executes Line 17 for apex-path pair
AP ′, where the apex-path pair is inserted into Open, per-
haps after having been merged with another apex-path
pair on Line 29. A*pex might merge it several (more)
times with other apex-path pairs on Line 29 before fi-
nally extracting it. Its apex weakly dominates the g-value
of path πl+1 and merging it with other apex-path pairs
does not change this property according to Lemma 3.
Thus, if this apex-path pair is expanded, it satisfies Case
1 for l + 1. If it is extracted but not expanded, the con-
dition on Line 20 or Line 24 holds, and thus, as we have
already proved, Case 1 or Case 2 holds.

Assume that Case 2 holds for l and consider the apex-path
pair mentioned there. The f -value of the representative path
of this apex-path pair ε-dominates the f -value of path πl.
Since the heuristic function is consistent, the f -value of
path πl in turn weakly dominates the f -value of path πl+1.
Thus, this apex-path pair satisfies Case 2 for l + 1.

The following theorem shows that A*pex determines an
ε-approximate Pareto-optimal solution set.

Theorem 1. For any solution π, there exists, when A*pex
terminates, an apex-path pair in the solution set whose rep-
resentative path ε-dominates π.

Proof. Lemma 4 holds for prefix πL = π of any solution π.
In case its Case 2 holds, the theorem holds by definition for
path π since the f -values of solutions (including those of
the representative path and path π) are equal to their costs.
In case its Case 1 holds, consider the apex-path pair men-
tioned there. This apex-path pair contains the goal state, and
A*pex thus executed Line 11 for it, where the apex-path pair
was inserted into the solution set, perhaps after having been
merged with another apex-path pair on Line 29. The apex-
path pair stays in the solution set but A*pex might merge it
several (more) times with other apex-path pairs on Line 29
before it terminates. The apex of the apex-path pair weakly
dominates the g-value of path π according to Lemma 4 and
merging it with other apex-path pairs does not change this
property according to Lemma 3. Since the apex-path pair
also remains ε-bounded (which is due to the conditions on
Lines 20 and 30, Lemma 1, and since the heuristic function
is consistent), the f -value of its representative path always
ε-dominates the f -value of itself, which equals its apex. Put
together, the f -value of its representative path ε-dominates
the g-value of path π. Thus, the theorem holds by definition
for path π since the g- and f -values of solutions (including
those of the representative path and path π) are equal to their
costs.

BAY
321,270 states, 794,830 edges

ε PP-A* A*pex-R A*pex-L A*pex-G
0.0001 3.9 (1.00) 3.3 (1.00) 3.3 (1.00) 3.2 (1.00)
0.001 3.1 (1.00) 1.7 (1.00) 1.7 (1.00) 1.5 (1.00)
0.005 1.9 (1.00) 1.1 (1.00) 1.0 (1.00) 1.0 (1.00)
0.01 1.4 (1.00) 1.0 (1.00) 0.9 (1.00) 0.9 (1.00)
0.025 1.0 (1.00) 0.9 (1.00) 0.7 (1.00) 0.8 (1.00)
0.05 0.6 (1.00) 0.7 (1.00) 0.5 (1.00) 0.6 (1.00)
0.1 0.4 (1.00) 0.5 (1.00) 0.4 (1.00) 0.4 (1.00)
0.5 0.1 (1.00) 0.1 (1.00) 0.1 (1.00) 0.1 (1.00)
1 0.0 (1.00) 0.0 (1.00) 0.0 (1.00) 0.0 (1.00)

FLA
1,070,376 states, 2,712,798 edges

ε PP-A* A*pex-R A*pex-L A*pex-G
0.0001 26.5 (0.92) 15.7 (1.00) 17.2 (1.00) 15.3 (1.00)
0.001 30.9 (1.00) 10.3 (1.00) 9.8 (1.00) 8.4 (1.00)
0.005 14.3 (1.00) 5.4 (1.00) 4.1 (1.00) 4.4 (1.00)
0.01 9.1 (1.00) 4.7 (1.00) 3.6 (1.00) 3.7 (1.00)
0.025 4.3 (1.00) 4.0 (1.00) 2.6 (1.00) 2.7 (1.00)
0.05 2.4 (1.00) 3.1 (1.00) 1.9 (1.00) 2.0 (1.00)
0.1 1.3 (1.00) 1.7 (1.00) 1.2 (1.00) 1.2 (1.00)
0.5 0.3 (1.00) 0.2 (1.00) 0.2 (1.00) 0.2 (1.00)
1 0.1 (1.00) 0.1 (1.00) 0.1 (1.00) 0.1 (1.00)

NE
1,524,453 states, 3,897,636 edges

ε PP-A* A*pex-R A*pex-L A*pex-G
0.0001 53.8 (0.72) 37.5 (0.80) 40.1 (0.80) 37.2 (0.80)
0.001 52.0 (0.80) 21.2 (0.88) 22.7 (0.88) 18.2 (0.96)
0.005 46.1 (0.92) 17.6 (1.00) 16.2 (0.96) 14.0 (1.00)
0.01 34.4 (0.96) 15.8 (1.00) 12.9 (1.00) 13.3 (1.00)
0.025 25.1 (1.00) 15.9 (1.00) 11.9 (1.00) 12.6 (1.00)
0.05 14.8 (1.00) 14.5 (1.00) 9.8 (1.00) 10.2 (1.00)
0.1 9.1 (1.00) 11.1 (1.00) 7.6 (1.00) 7.8 (1.00)
0.5 1.2 (1.00) 1.3 (1.00) 1.3 (1.00) 1.3 (1.00)
1 0.2 (1.00) 0.2 (1.00) 0.2 (1.00) 0.2 (1.00)

Table 1: Average runtimes (in seconds) and, in parentheses,
success rates on bi-objective road map instances for different
approximation factors ε.

Evaluation
In this section, we compare the efficiency of PP-A*,
NAMOA*dr-ε, A*pex with the Random Method (A*pex-R),
A*pex with the Lexicographically Smallest Reverse g-Value
Method (A*pex-L), and A*pex with the Greedy Method
(A*pex-G) on the road maps BAY, FLA, and NE of the 9th
DIMACS Implementation Challenge: Shortest Path.4 We ran
all experiments on t2.large AWS EC2 instances with 8GB of
memory and a runtime limit of five minutes per instance. We
implemented all algorithms in C++, using a common code
base as much as possible.5

We generated 25 bi- and tri-objective road map instances
with randomly selected start and goal states for each road
map. The first two components c1 and c2 of the cost func-
tion represent travel distances and times, respectively, which

4http://users.diag.uniroma1.it/challenge9/download.shtml.
5https://github.com/HanZhang39/A-pex.

400



10−1 100 101 102

PP-A*

10−1

100

101

102

A
*p

ex
-G

1x
2x

5x

BAY

10−1 100 101 102

PP-A*

10−1

100

101

102

A
*p

ex
-G

1x
2x

5x

FLA

10−1 100 101 102

PP-A*

10−1

100

101

102

A
*p

ex
-G

1x
2x

5x

NE

Figure 3: Runtimes of PP-A* and A*pex-G on bi-objective road map instances.

BAY
ε PP-A* A*pex-R A*pex-L A*pex-G
0.001 56.0 29.8 27.8 28.0
0.01 15.5 7.6 5.4 5.3
0.1 3.2 1.1 1.1 1.1

FLA
ε PP-A* A*pex-R A*pex-L A*pex-G
0.001 81.4 68.4 40.5 53.3
0.01 13.0 8.6 3.9 4.1
0.1 2.5 1.1 1.1 1.1

NE
ε PP-A* A*pex-R A*pex-L A*pex-G
0.001 125.0 98.1 71.0 90.7
0.01 25.2 23.6 9.4 10.7
0.1 3.9 1.2 1.1 1.1

Table 2: Average sizes of solution sets on bi-objective road
map instances for different approximation factors ε.

are both available from the DIMACS data set. We randomly
generated the third component, since it is not available from
the DIMACS data set, as c3(e) = x(e)(c1(e) + c2(e)) for
all edges e ∈ E, where x(e) is chosen uniformly at ran-
dom from the interval [0.3, 0.4] for each edge. Thus, the third
component is positively but not linearly correlated with the
first two components. We used the vector of the minimum
cost from state s to the goal state for each cost objective,
computed with Dijkstra’s algorithm, as h-value of state s,
as is common in the multi-objective search literature since
the computation of all h-values (which took at most around
3 seconds per instance in our experiments) is only a small
fraction of the runtime. We reported the runtime without this
computation since all search algorithms compute the same
h-values. We used approximation factors ε = [ε, ε . . . ε],
denoted in the following simply as ε.

Bi-Objective Road Map Instances
Table 1 shows the average runtimes (in seconds) of PP-A*,
A*pex-R, A*pex-L, and A*pex-G over all bi-objective road
map instances that were solved by all four algorithms within
the runtime limit and, in parentheses, the success rates (de-
fined as the percentages of instances solved within the run-

time limit). We omit the results for NAMOA*dr-ε because
PP-A* significantly outperformed BOA*-ε on the instances
in (Goldin and Salzman 2021), and BOA*-ε improves the
efficiency of the dominance checks of NAMOA*dr-ε. The
success rates of A*pex-R and A*pex-G were at least as large
as the ones of A*pex-L for all approximation factors and
road maps, and the success rates of A*pex-L were at least as
large as the ones of PP-A* for all approximation factors and
road maps and larger than the ones of PP-A* for ε ≤ 0.01
on road map NE. The runtimes of A*pex-R, A*pex-L, and
A*pex-G were smaller than the ones of PP-A* for many ap-
proximation factors and road maps. The runtimes of A*pex-
R were similar to the ones of A*pex-G for small (≤ 0.005)
or large (≥ 0.1) approximation factors but larger than the
ones of A*pex-L and A*pex-G for approximation factors in
between. The runtimes of A*pex-L were larger than the ones
of A*pex-G for small (≤ 0.001) approximation factors but
similar to the ones of A*pex-G otherwise.

Figure 3 shows the individual runtimes (in seconds) of
PP-A* and A*pex-G for all approximation factors and road
map instances. The runtimes of PP-A* and A*pex-G were
similar on easy instances (where the runtimes were small).
However, the runtimes of A*pex-G were much smaller than
the ones of PP-A* on hard instances (where the runtimes
were large), and A*pex-G solved a few instances that PP-
A* could not solve within the runtime limit (shown on the
right boundary in the plots). A comparison of PP-A* and
A*pex-R and one of PP-A* and A*pex-L yielded similar
results.

Table 2 shows the average sizes of the solution sets of
PP-A*, A*pex-R, A*pex-L, and A*pex-G on all bi-objective
road map instances that were solved by all four algorithms
within the runtime limit. We show only the results for a
representative set of approximation factors due to the space
limit. All three A*pex variants found solution sets of smaller
average sizes than PP-A* for all approximation factors and
road maps. The solution sets of A*pex-L and A*pex-G were
of similar average sizes and no larger than the ones of
A*pex-R (but often smaller).

Tri-Objective Road Map Instances
Table 3 shows the average runtimes (in seconds) of
NAMOA*dr-ε, A*pex-R, A*pex-L, and A*pex-G over all

401



10−1 100 101 102

NAMOA*dr

10−1

100

101

102

A
*p

ex
-G

1x

5x
10x

25x
50x

BAY

10−1 100 101 102

NAMOA*dr

10−1

100

101

102

A
*p

ex
-G

1x

5x
10x

25x
50x

FLA

10−1 100 101 102

NAMOA*dr

10−1

100

101

102

A
*p

ex
-G

1x

5x
10x

25x
50x

NE

Figure 4: Runtimes of NAMOA*dr-ε and A*pex-G on tri-objective road map instances.

BAY
321,270 states, 794,830 edges

ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
.0001 15.2 (1.00) 9.9 (1.00) 13.3 (1.00) 9.3 (1.00)
0.001 12.5 (1.00) 4.8 (1.00) 3.0 (1.00) 2.4 (1.00)
0.005 12.2 (1.00) 1.7 (1.00) 1.5 (1.00) 1.5 (1.00)
0.01 11.1 (1.00) 2.4 (1.00) 1.3 (1.00) 1.4 (1.00)
0.025 8.0 (1.00) 1.4 (1.00) 1.1 (1.00) 1.1 (1.00)
0.05 5.9 (1.00) 1.1 (1.00) 0.8 (1.00) 0.8 (1.00)
0.1 2.9 (1.00) 1.0 (1.00) 0.5 (1.00) 0.5 (1.00)
0.5 0.1 (1.00) 0.1 (1.00) 0.1 (1.00) 0.1 (1.00)
1 0.1 (1.00) 0.0 (1.00) 0.0 (1.00) 0.0 (1.00)

FLA
1,070,376 states, 2,712,798 edges

ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
0.0001 93.9 (0.80) 59.3 (0.92) 69.7 (0.88) 54.5 (0.96)
0.001 85.4 (0.88) 19.1 (1.00) 15.3 (1.00) 12.8 (1.00)
0.005 72.7 (0.88) 11.0 (1.00) 6.3 (1.00) 6.5 (1.00)
0.01 68.1 (0.88) 9.3 (1.00) 5.3 (1.00) 5.6 (1.00)
0.025 50.9 (0.92) 5.9 (1.00) 3.9 (1.00) 3.9 (1.00)
0.05 42.0 (0.92) 4.3 (1.00) 2.7 (1.00) 2.9 (1.00)
0.1 27.3 (1.00) 2.7 (1.00) 1.8 (1.00) 1.8 (1.00)
0.5 1.6 (1.00) 0.3 (1.00) 0.3 (1.00) 0.3 (1.00)
1 0.2 (1.00) 0.1 (1.00) 0.1 (1.00) 0.1 (1.00)

NE
1,524,453 states, 3,897,636 edges

ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
0.0001 177.8 (0.52) 165.8 (0.52) 170.5 (0.52) 158.4 (0.64)
0.001 172.6 (0.52) 99.3 (0.80) 97.8 (0.80) 78.1 (0.88)
0.005 172.2 (0.52) 55.0 (0.96) 37.3 (0.96) 32.5 (1.00)
0.01 169.9 (0.52) 42.9 (0.96) 23.9 (1.00) 23.8 (1.00)
0.025 158.9 (0.60) 24.1 (1.00) 17.5 (1.00) 18.7 (1.00)
0.05 147.8 (0.60) 23.1 (1.00) 14.6 (1.00) 15.3 (1.00)
0.1 128.3 (0.72) 22.9 (1.00) 11.5 (1.00) 11.7 (1.00)
0.5 26.5 (0.96) 1.9 (1.00) 1.8 (1.00) 1.9 (1.00)
1 0.3 (1.00) 0.2 (1.00) 0.2 (1.00) 0.2 (1.00)

Table 3: Average runtimes (in seconds) and, in parentheses,
success rates on tri-objective road map instances for differ-
ent approximation factors ε.

tri-objective road map instances, similar to Table 1. The re-
sults for NAMOA*dr-ε on tri-objective instances were simi-
lar to the ones for PP-A* on bi-objective instances, with the

10−1 100 101 102

NAMOA*dr

10−1

100

101

102

A
*p

ex
-G

1x

5x

10x

25x

50x

ε = 0.0001

ε = 0.01

ε = 1

Figure 5: Runtimes of NAMOA*dr-ε and A*pex-G on tri-
objective road map instances of road map FLA with approx-
imation factors ε = 0.0001, 0.01, and 1.

BAY
ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
0.001 69.8 38.4 32.2 31.7
0.01 16.2 7.0 5.6 5.4
0.1 3.2 1.2 1.1 1.1

FLA
ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
0.001 74.8 56.9 29.7 31.9
0.01 11.6 7.3 3.2 3.5
0.1 2.4 1.0 1.1 1.1

NE
ε NAMOA*dr-ε A*pex-R A*pex-L A*pex-G
0.001 118.4 92.6 69.8 66.0
0.01 21.9 14.2 7.8 8.7
0.1 3.6 1.2 1.1 1.1

Table 4: Average sizes of solution sets on tri-objective road
map instances for different approximation factors ε.

following difference: The runtimes of A*pex-L and A*pex-
G were again similar to each other, now except for approxi-
mation factor ε = 0.0001, where the speed-up of A*pex-G

402



over A*pex-L was up to a factor of about 1.4. The runtimes
of A*pex-R were much larger than the ones of A*pex-G and
A*pex-L for more values of the approximation factor (from
0.001 to 0.1) on maps FLA and NE.

Figure 4 shows the individual runtimes (in seconds) of
NAMOA*dr-ε and A*pex-G for all approximation factors
and road map instances, similar to Figure 3. Again, the re-
sults for NAMOA*dr-ε on tri-objective instances were sim-
ilar to the ones for PP-A* on bi-objective instances, with
the following difference: The speed-up of A*pex-G over
NAMOA*dr-ε was up to a factor of 50, and A*pex-G solved
several instances that NAMOA*dr-ε could not solve within
the runtime limit. Figure 5 is similar to Figure 4 for road
map FLA, but the results are now color-coded for a represen-
tative subset of approximation factors. Colors indicate the
different approximation factors. The speed-ups of A*pex-G
over NAMOA*dr-ε for both the small approximation factor
(ε = 0.0001) and the large one (ε = 1) were much smaller
than the speed-ups for the one in between (ε = 0.01) be-
cause A*pex-G did not have many opportunities to merge
nodes in the former case. The speed-up for ε = 0.01 was
more than a factor of 25 for two instances,

Table 4 shows the average sizes of the solution sets of
NAMOA*dr-ε, A*pex-R, A*pex-L, and A*pex-G on all tri-
objective road map instances that were solved by all four al-
gorithms within the runtime limit, similar to Table 2. The re-
sults for NAMOA*dr-ε on tri-objective instances were sim-
ilar to the ones for PP-A* on bi-objective instances.

Conclusions
In this paper, we presented A*pex, a multi-objective search
algorithm that finds an ε-approximate Pareto-optimal so-
lution set for a user-provided approximation factor ε. It
builds on PP-A* but (1) makes PP-A* more efficient for
bi-objective search and (2) generalizes it to multi-objective
search for any number of cost components. We first analyzed
the correctness of A*pex and then experimentally demon-
strated its efficiency advantage over PP-A* for bi-objective
search and a baseline algorithm derived from NAMOA*dr
for tri-objective search. It is future work to extend A*pex to
bi-directional and anytime search.

Acknowledgements
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533. The research was also supported
by the United States-Israel Binational Science Foundation
(BSF) under grant number 2021643 and Centro Nacional de
Inteligencia Artificial CENIA, FB210017, BASAL, ANID.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies, or any government.

References
Bachmann, D.; Bökler, F.; Kopec, J.; Popp, K.; Schwarze,
B.; and Weichert, F. 2018. Multi-Objective Optimisation

Based Planning of Power-Line Grid Expansions. ISPRS In-
ternational Journal of Geo-Information, 7(7): 258.
Breugem, T.; Dollevoet, T.; and van den Heuvel, W. 2017.
Analysis of FPTASes for the Multi-Objective Shortest Path
Problem. Computers & Operations Research, 78: 44–58.
Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The Maximin HAZMAT Routing Prob-
lem. European Journal of Operational Research, 241(1):
15–27.
Ehrgott, M. 2005. Multicriteria Optimization (2nd ed.).
Springer.
Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning via Effi-
cient Near-Optimal Graph Search. In Robotics: Science and
Systems (RSS).
Fu, M.; Salzman, O.; and Alterovitz, R. 2021.
Computationally-Efficient Roadmap-Based Inspection
Planning via Incremental Lazy Search. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
7449–7456.
Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-
Optimal Frontier. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 149–158.
Hernandez, C. U.; Yeohz, W.; Baier, J. A.; Zhang, H.; Sua-
zoy, L.; and Koenig, S. 2020. A Simple and Fast Bi-
Objective Search Algorithm. In International Conference
on Automated Planning and Scheduling (ICAPS), 143–151.
Mandow, L.; and De La Cruz, J. L. P. 2010. Multiobjective
A* Search with Consistent Heuristics. Journal of the ACM,
57(5): 1–25.
Perny, P.; and Spanjaard, O. 2008. Near Admissible Algo-
rithms for Multiobjective Search. In European Conference
on Artificial Intelligence (ECAI), 490–494.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality Reduction in Multiobjective Shortest Path
Search. Computers & Operations Research, 64: 60–70.
Tsaggouris, G.; and Zaroliagis, C. D. 2009. Multiobjective
Optimization: Improved FPTAS for Shortest Paths and Non-
Linear Objectives with Applications. Theory of Computing
Systems, 45(1): 162–186.
Warburton, A. 1987. Approximation of Pareto Optima in
Multiple-Objective, Shortest-Path Problems. Operations
Research, 35(1): 70–79.

403


