
Uniform Machine Scheduling with Predictions

Tianming Zhao, Wei Li, Albert Y. Zomaya
School of Computer Science, The University of Sydney, Australia

tzha2101@uni.sydney.edu.au, weiwilson.li@sydney.edu.au, albert.zomaya@sydney.edu.au

Abstract
The revival in learning theory has provided us with im-
proved capabilities for accurate predictions. This work con-
tributes to an emerging research agenda of online schedul-
ing with predictions by studying the makespan minimiza-
tion in uniformly related machine non-clairvoyant scheduling
with job size predictions. Our task is to design online algo-
rithms that effectively use predictions and have performance
guarantees with varying prediction quality. We first pro-
pose a simple algorithm-independent prediction error mea-
surement to quantify prediction quality. To effectively use
the predicted job sizes, we design an offline improved 2-
relaxed decision procedure approximating the optimal sched-
ule. With this decision procedure, we propose an online
O(min{log η, logm})-competitive algorithm that assumes a
known prediction error. Finally, we extend this algorithm to
construct a robust O(min{log η, logm})-competitive algo-
rithm that does not assume a known error. Both algorithms
require only moderate predictions to improve the well-known
Ω(logm) lower bound, showing the potential of using pre-
dictions in managing uncertainty.

Introduction
Managing uncertainty is the focus of online optimiza-
tion. Traditional methods strive to bound the worst-case
performance against the uncertainties from problem input
(Borodin and El-Yaniv 1998; Leung, Kelly, and Anderson
2004). However, dealing with uncertainty incurs a high cost
compared to when such information is known (Karp 1992;
Awerbuch, Kutten, and Peleg 1992). Thus, researchers re-
cently studied augmenting algorithms with advice on un-
known input (Boyar et al. 2016; Antoniadis et al. 2020). Sev-
eral works (Gollapudi and Panigrahi 2019; Mitzenmacher
2020; Dütting et al. 2021) have shown that additional in-
formation can boost the overall algorithm performance and
reduce the cost incurred in managing uncertainties. Mean-
while, recent development in learning theory has made accu-
rate predictions in many fields (Frye et al. 2019; Anand, Ge,
and Panigrahi 2020). Combining techniques from the advice
model and learning theory, the new online optimization with
predictions framework emerges.

One of the most significant fields boosted by the above
approach is online scheduling. Multiple works have shown

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that using predictions improves the theoretical performance
bounds. (Purohit, Svitkina, and Kumar 2018) developed a
preferential round-robin algorithm using job size predictions
for single machine scheduling to minimize total completion
time. (Lattanzi et al. 2020) developed an online rounding
algorithm using machine weight predictions for parallel ma-
chine scheduling under restricted assignment to minimize
makespan. (Azar, Leonardi, and Touitou 2021) developed
greedy and binning algorithms using job size predictions for
single machine scheduling to minimize weighted flow time.
(Im et al. 2021) revisited the problem of single machine
scheduling to minimize total completion time, and devel-
oped a new prediction error measurement and an improved
round-robin algorithm using job size predictions. All these
works reduced the attainable competitive ratios via predic-
tions. This work extends scheduling with predictions to an-
other online scheduling problem: makespan minimization in
uniformly related machine non-clairvoyant scheduling. We
study how to use the imperfect predictions to improve on-
line optimization and present the first such algorithm for uni-
formly related machine non-clairvoyant scheduling.

We develop algorithms with job size predictions, yielding
a significantly improved performance bound. The develop-
ment begins with defining a simple algorithm-independent
prediction error measurement η. With this error measure-
ment and the predicted job sizes, the algorithm simultane-
ously schedules jobs and computes underestimations on ac-
tual job sizes and the error η on the fly. We propose an (im-
proved) offline approximation compared to (Shmoys, Wein,
and Williamson 1995) and two online algorithms: one as-
sumes a known prediction error, and the other one does
not. We prove that our proposed online algorithms achieve
O(min{log η, logm}) competitive ratio with m machines,
improving the Ω(logm) lower bound. Our contributions are
summarized below.

1. An improved offline 2-relaxed decision procedure for ap-
proximating the optimal schedule. (Theorem 1)

2. An online O(min{log η, logm})-competitive algorithm
with the known prediction error. (Theorem 2)

3. A robust online O(min{log η, logm})-competitive algo-
rithm with unknown prediction error. (Theorem 3)

4. Conduct experiments to evaluate the theoretical results
and the practicality of the proposed algorithms.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

413

Preliminaries
Problem Definition
We study the makespan minimization problem in uniformly-
related machine non-clairvoyant scheduling. There are m
uniformly related parallel machines and n independent jobs.
A machine is denoted by Mi, 1 ≤ i ≤ m, and a job
is denoted by Ji, 1 ≤ i ≤ n. Job Ji has size p∗i , but
this value remains unknown until Ji is completed. This set-
ting is known as non-clairvoyant in literature. Machines are
heterogeneous in processing power, and machine Mi has
a processing power of si. For easy understanding, we let
s1 ≥ s2 ≥ ... ≥ sm. If job Jj is assigned to machine

Mi, the processing time for this job is
p∗
j

si
. The jobs are

priority-free, preemptive-restart, and ready at time 0. By
preemptive-restart, we mean those jobs are non-preemptive
but can be restarted later on any machine. Our objective
is to minimize the makespan, Cmax, the time of the last
job completes. Our scheduling problem can be defined as
Qm | online-time-nclv, pmtn-restart | Cmax (Graham et al.
1979). In addition, there is a Machine Learning (ML) oracle
accessible to the system. The scheduler is allowed to make
decisions using the predictions of some parameters to man-
age uncertainty. However, the prediction is imperfect. The
performance of the scheduler could be adversely affected by
the quality of predictions. We will discuss the measurements
of algorithm performance and prediction quality below.

ML Oracle and Prediction Error
When integrating ML oracle into a scheduler, one must con-
sider what to predict and how the prediction quality is mea-
sured. In principle, we expect the predictions to improve the
competitive ratio. The scheduler should guarantee a bounded
performance under poor predictions and a near-optimal so-
lution with accurate predictions. Last, the learning problem
itself must be actionable. A counterexample is to predict the
optimal schedule, which simplifies the scheduling algorithm
but makes the learning problem extremely hard.

This work considers using ML oracle to predict job sizes.
Recent works (Amiri and Mohammad-Khanli 2017; Peyravi
and Moeini 2020; Yamashiro and Nonaka 2021) have shown
that job sizes are highly predictable in many scenarios, e.g.,
cloud, clusters, and factories. In addition, when the predic-
tion is accurate, we have the 2-relaxed decision procedure
guaranteeing a near-optimal makespan, and when the predic-
tion goes arbitrarily bad, the existing O(logm)-competitive
algorithm can bound the performance.

Our online algorithms use the ML oracle to predict the
actual job size p∗j as pj . Similar to the work (Lattanzi et al.
2020) that measures the error by ratios, we define the error
for job Jj as ηj = max{ pj

p∗
j
,
p∗
j

pj
}, and the overall prediction

error η as

η = max
1≤j≤n

ηj = max
1≤j≤n

max{pj
p∗j

,
p∗j
pj
}

Observe that ηj ≥ 1 for any j, so that η ≥ 1. The pre-
diction is perfect if and only if η = 1. Please note that
the prediction error measurement is simple and algorithm-
independent.

Performance Evaluation

We evaluate the performance of the algorithms by the com-
petitive framework and the metrics of γ-robustness and β-
consistency (Purohit, Svitkina, and Kumar 2018).

Competitive Framework We study the performance
of online algorithms under the competitive framework
(Borodin and El-Yaniv 1998). An online algorithm A will
compare against an optimal offline algorithm A∗. Algorithm
A∗ knows the exact job sizes, and it produces the sched-
ule with the minimal makespan. Let cost(I, A) denote the
makespan obtained by A on problem instance I . We say an
online algorithm A is c-competitive if for any problem in-
stance I , it satisfies cost(I, A) ≤ c · cost(I, A∗), for some
function c of problem input and prediction error η.

γ-robustness and β-consistency The work (Purohit,
Svitkina, and Kumar 2018) proposed two metrics to measure
how well an online algorithm performs against the changes
in prediction quality. The robustness measures the perfor-
mance with the worst prediction, while the consistency mea-
sures it with the perfect prediction. Specifically, we say an
algorithm is γ-robust if its competitive ratio c ≤ γ for any
η, and is β-consistent if c = β for η = 1.

Related Results

Let us review some important related results: (1) the problem
is NP-complete in the strong sense for m arbitrary, (2) the of-
fline version of the problem has a polynomial-time 2-relaxed
decision procedure, (3) the online version has a lower bound
Ω(logm) on the competitive ratio, and (4) there exists an
O(logm)-competitive algorithm matching this lower bound.

For the computational complexity, consider the simpler
offline problem with identical machines where the job sizes
are known. This problem is NP-complete in the strong sense
for m arbitrary (Garey and Johnson 2009). A simple reduc-
tion to our problem shows that the offline version of the
uniformly related machine scheduling is NP-complete in the
strong sense for m arbitrary.

There exists a 2-relaxed decision procedure for the offline
version (Shmoys, Wein, and Williamson 1995). An algo-
rithm is a 2-relaxed decision procedure if given a makespan
d, the algorithm either determines that no schedule of d
makespan exists or produces a schedule of 2d makespan.
With this procedure, the optimal makespan can be found us-
ing a bisection method, as well as a 2-approximation solu-
tion. The online algorithms will use this 2-relaxed decision
procedure to approximate a near-optimal schedule.

The best result that resolved this problem for decades was
(Shmoys, Wein, and Williamson 1995). It was shown that
any online deterministic algorithm has a competitive ratio
Ω(logm), and the authors gave an O(logm)-competitive al-
gorithm matching this lower bound. This algorithm is there-
fore asymptotically optimal in non-clairvoyant scheduling.
Recent advances in learning theory lead to better prediction
accuracy, thus enabling new ways to minimize makespan.

414

Robust Online Scheduling Algorithms with
Job Size Predictions

Algorithm Overview
The development of our algorithms involves three stages.
The first stage assumes that all job size p∗j and the optimal
makespan d are known. There is a 2-relaxed decision proce-
dure for producing a schedule of length at most 2d (Shmoys,
Wein, and Williamson 1995). We will use this procedure,
with minor improvement, as our base algorithm. The second
stage solves the problem in an online manner by no longer
using the actual job sizes and the optimal makespan d. In-
stead, we use the predicted job sizes pj and the known pre-
diction error η. Note that accessing the prediction error η is
a reasonable assumption as the ML oracle is often trained
offline on large labelled datasets. The prediction error in
the training stage will likely reflect the prediction error in
run time. We propose an O(min{log η, logm})-competitive
algorithm for this case. The algorithm estimates the actual
job sizes in at most O(min{log η, logm}) rounds. The 2-
relaxed decision procedure is executed each round while
the optimal makespan is searched online using a standard
doubling method. Estimating the job sizes incurs a cost of
O(min{log η, logm}) factor in makespan, while the dou-
bling method incurs at most a cost of 2. In the last stage,
we further remove the assumption of knowing the predic-
tion error η in the general case. The prediction error is then
searched online by using a doubling method. The search will
impose an extra log η term in the competitive ratio. To pro-
vide an O(logm) strong worst-case guarantee, we switch
to the guaranteed O(logm)-competitive algorithm once we
believe the prediction error is large enough. This will give
us a general O(min{log η, logm})-competitive algorithm.

An Improved 2-Relaxed Procedure
Consider the offline schedule for all job sizes p∗j are known
and the makespan d is given. Our proposed 2-relaxed pro-
cedure ensures to produce a schedule of length at most 2d,
or otherwise have no d-length schedule exist. Our procedure
works as follows. When a machine Mi is idle, it starts pro-
cessing either the largest unfinished job that can be com-
pleted in period d or the smallest job not yet started. If mul-
tiple machines are idle, we order them in the non-increasing
order of their speed. Specifically, machine Mi will first con-
sider the largest unfinished job Jj with p∗j ≤ si · d that is
either not started or terminated and rerun the currently pro-
cessed job on another machine Mk with p∗j > sk · d. If there
is no such job, the machine will process the smallest job not
started. Otherwise, machine Mi stays idle when all above
conditions are not met. The entire procedure lasts until all
jobs are processed or until time 2d. If at time 2d, there are
still unfinished jobs, the procedure outputs no. Otherwise, it
has constructed a schedule of length at most 2d.

We outline the improvement of our 2-relaxed procedure
over the original one (Shmoys, Wein, and Williamson 1995).
First, our procedure uses the largest job first strategy to as-
sign those large jobs to fast machines for processing. It pro-
vides slow machines opportunities to complete relatively
small jobs that could be allocated to fast machines. The

Algorithm 1: Improved 2-relaxed procedure
Require: Actual job sizes p∗j and a makespan d
Ensure: A schedule of length at most 2d, or output no indicating

that it is impossible to construct a schedule of length d.
Define Function getJob(i) {subroutine that returns the next job
for machine Mi}

1: Jnext1 ← Jj with p∗j ≤ si·d, Jj not begin, or is being processed
on Mk with p∗j > sk · d, p∗j maximal

2: Jnext2 ← Jj with p∗j > si · d, Jj not begin, p∗j minimal
3: return the first nonempty Jnextp (smallest p) or null

EndFunction
4: while Time ≤ 2d do
5: if all jobs have been completed then
6: return {the whole schedule finishes}
7: end if
8: for all idle machine Mi (1 ≤ i ≤ n) do
9: Jj ← getJob(i)

10: Mi starts processing Jj or stays idle if Jj is null
11: end for
12: increase Time to the next event
13: end while
14: return no

workload reduction in fast machines contributes to small
makespan as using fast machines to process small jobs in-
creases the makespan. Second, our procedure can invoke
idle machines to complete large jobs processing in 2d but
not d time. In contrast, the procedure (Shmoys, Wein, and
Williamson 1995) leaves the machine idle. If the makespan
of a schedule is at most 2d, the schedule generated by our
procedure is strictly shorter than that generated by (Shmoys,
Wein, and Williamson 1995). The detailed arguments are
omitted due to the page limit. The pseudo-code is shown
in Algorithm 1. Our first result is the correctness of the de-
cision procedure stated as follows.

Theorem 1 (Theorem 4 restated). The improved 2-relaxed
procedure can produce a schedule of length at most 2d, or
otherwise ensures no d-length schedule exist.

Online Scheduling with Job Size Predictions and a
Known η

We now consider the online problem for all job sizes and
the optimal makespan are unknown. Instead, the scheduler
knows the predicted job sizes pj and the prediction error η.
The pseudo-code is shown in Algorithm 2. Initially, the es-
timated size of job Jj is as pej =

pj

η . The estimation of pej
will last k rounds of doubling until p∗j ≤ 2k · pj

η < 2 · p∗j .
The number of rounds can be bounded and we will show
that k ≤ [2 log η + 2]. Meanwhile, the algorithm also es-
timates the optimal makespan C∗

max in rounds. Initially,
we set the estimated makespan d =

max1≤j≤n pj

η·s1 , where
d ≤ C∗

max. Then we run a similar procedure as in Algo-
rithm 1 to test if the estimated makespan is achievable. This
estimated makespan will undergo rounds of doubling until
C∗

max ≤ 2k
′ · max1≤j≤n pj

η·s1 < 2 · C∗
max for some k′. Finally,

to bound the number of doubling rounds for job size esti-
mation, we refine getJob function in Algorithm 1. This re-
finement induces some fast machines to carry out more jobs.

415

Algorithm 2: Online scheduling with known error
Require: Predicted job sizes pj and the prediction error η
Ensure: A schedule with makespan O(min{log η, logm})C∗

max

1: sup← min{k |
∑k

i=1 si ≥
1
2

∑m
i=1 si, 1 ≤ k ≤ m}

Define Function getJob(i) {subroutine that returns the next job
for machine Mi}

2: if i ≤ sup then
3: Jnext1 ← Jj with pej ≤ si · d, Jj not begin, or is being

processed on Mk with pej > sk · d or k > sup, pej maximal
4: else
5: Jnext1 ← Jj with pej ≤ si · d, Jj not begin or is being

processed on Mk with pej > sk · d, pej maximal
6: end if
7: Jnext2 ← Jj with pej > si · d, Jj not begin, pej minimal
8: return the first nonempty Jnextp (smallest p) or null

EndFunction
9: pej ← max{pej ,

pj
η
}, ∀1 ≤ j ≤ n {job size estimates}

10: d← max1≤j≤n pj
η·s1

{optimal makespan estimate}
11: while there are unfinished jobs do
12: while True do
13: Time← 0
14: while Time ≤ 2d do
15: if all jobs have been completed then
16: return {the whole schedule finishes}
17: end if
18: for all machine Mi (1 ≤ i ≤ n) do
19: Jj ← getJob(i)
20: if Jj not null and Mi is not processing Jj then
21: Mi starts processing Jj

22: end if
23: end for
24: increase Time to the next event
25: end while
26: if there is an unfinished job not started by any machine

Mi with i ≤ sup and pej ≤ si·d before time d or machine
M1 processes any job for more than d time then

27: d← 2d {double the makespan estimate}
28: break
29: else
30: for all job Jj been processing on Mi for time t do
31: pej ← max{2pej , 2si · t}
32: end for
33: end if
34: end while
35: end while

Define sup = min{k |
∑k

i=1 si ≥
1
2

∑m
i=1 si, 1 ≤ k ≤ m}

(according to (Shmoys, Wein, and Williamson 1995)). For
machine Mi with i > sup, the definition of getJob remains
the same. Otherwise, the definition of Jnext1 changes to
Jnext1 ← Jj with the maximal p∗j such that p∗j ≤ si ·d, where
Jj is not started or currently processed on another Mk′′ with
p∗j > sk · d or k′′ > sup. It means that a fast machine Mi

(i ≤ sup) can cancel a running job on a slow machine Mk′′

(k′′ > sup) regardless its completion time. The benefit of
this refinement is to let the number of doubling rounds for
job size estimation bounded by O(min{log η, logm}).

For easy discussion, we call the loop from Line 14 in Al-
gorithm 2 the inner procedure. This inner procedure will
run multiple rounds until all jobs are completed. After each
round, the estimated job sizes are updated, or the estimated

Algorithm 3: Online scheduling with unknown error
Require: Predicted job sizes pj
Ensure: A schedule with makespan O(min{log η, logm})C∗

max

1: ηe ← 1
2: while (ηe)2 < m do
3: run Algorithm 2 with pj and prediction error ηe, and stops

by confirming an underestimation of prediction error when
finding a job Jj with pj

η
> p∗j .

4: if all jobs have been completed then
5: return {the whole schedule finishes}
6: end if
7: ηe ← 2ηe

8: end while
9: if there are unfinished jobs then

10: run Algorithm 2 with pj = 0 for all j and η =∞.
11: end if
12: return {the whole schedule finishes}

optimal makespan is updated. These updates could affect
the output of getJob in the next round. The inner proce-
dure continues checking on every machine Mi if its pro-
cessing job returned by the current getJob. If not, the run-
ning job is cancelled, and the machine will process the new
one returned by getJob. We will show that the doubling
strategy for estimating the actual job sizes incurs a cost of
O(min{log η, logm}) factor in the competitive ratio, and
the doubling strategy for estimating the optimal makespan
incurs only a cost of 2 factors. Combining these, we obtain
the following significant result.

Theorem 2 (Theorem 10 restated). Given the
predicted job sizes pj and the prediction error

η = max1≤j≤n max{ pj

p∗
j
,
p∗
j

pj
}, Algorithm 2 achieves

O(min{log η, logm}) competitive ratio in online makespan
minimization for uniformly related machine scheduling.

Online Scheduling with Job Size Predictions and
Unknown η

We now consider a general situation where the scheduler has
no (little) knowledge of the prediction error. The pseudo-
code is given in Algorithm 3. We will first assume the pre-
diction is perfect, i.e., ηe = 1. Then run Algorithm 2 with ηe

until we find that ηe = 1 is an underestimation. To confirm
this finding, we need to identify if any job Jj can complete
on machine Mi within time t by si ·t < pj

ηe . Once confirmed,
Algorithm 2 stops, ηe is doubled, and it runs again with the
updated ηe. These activities will repeat at most O(log η)
times before obtaining the actual prediction error. To also
bound the performance for arbitrarily bad prediction error,
Algorithm 3 assumes η =∞ when it finds (ηe)2 ≥ m. With
η = ∞, Algorithm 2 is O(logm)-competitive. Finally, we
obtain a general online algorithm with job size predictions.

Theorem 3 (Theorem 14 restated). Given only the predicted
job sizes pj , Algorithm 3 achieves O(min{log η, logm})
competitive ratio in online makespan minimization for uni-
formly related machine scheduling, where η is the prediction
error and η = max1≤j≤n max{ pj

p∗
j
,
p∗
j

pj
}.

416

Analysis
In this section, we shall prove the above theorems.

Theorem 4 (Correctness of the improved 2-relaxed proce-
dure). The improved 2-relaxed procedure either produces a
schedule of length at most 2d, or otherwise ensures no d-
length schedule exist.

Proof. The whole schedule finishes only while Time ≤ 2d.
Thus it suffices to show that no valid d-length schedule ex-
ists if the procedure outputs no. For an unfinished job Jj , no
valid d-length schedule exists if p∗j > s1 ·d. We thus assume
p∗j ≤ s1 · d. Let k be the largest machine index that satisfies
p∗j ≤ sk ·d. For this statement to hold, machines M1, ...,Mk

must be fully occupied by jobs with size at least p∗j before
time d, since otherwise the function getJob will make one of
these k machines to process Jj before time d, completed by
time 2d. To construct a d-length schedule, any job with size
at least p∗j must be processed on one of the M1, ...,Mk. Ob-
serve that no job is cancelled on the first k machines before
time d by the existence of Jj and the definition of getJob.
Then the total size for those jobs that must be processed by
machines Mi (i ≤ k) are already more than

∑k
i=1 si · d, so

no valid d-length schedule exists.

Next, we show the competitive ratio of Algorithm 2. Re-
call that we refer the inner procedure to the while loop be-
gins with ‘while Time ≤ 2d’. There are a set of bounds
to be proved. (1) For a given makespan d, the number of
rounds of the inner procedure is bounded by either O(log η)
or O(logm). (2) Each inner procedure incurs a cost of
O(1)C∗

max on the makespan. (3) The doubling rounds for
makespan d incurs a constant-factor cost in the makespan.
Combining these results will establish the proof for the
O(min{log η, logm}) competitive ratio.

Lemma 5 (Bound on the number of inner procedure rounds
by log η). For a given makespan d, the number of inner pro-
cedure rounds is at most [2 log η + 2].

Proof. Let the inner procedure execute once. We double the
estimated makespan d when there is an unfinished job Jj
not started on any machine Mi, with i ≤ sup and pej ≤ si · d
before time d or machine M1 completes any job after time
d. Otherwise the inner procedure continues the next round.
This happens only if there are at most sup unfinished jobs.
The job size estimates will undergo k doubling rounds until
either the whole schedule finishes or the makespan estimate
doubles. Consider the inner procedure after the (k − 1)-th
round of doubling. For any unfinished job Jj , we claim that
pej < p∗j . Since otherwise, pej ≥ p∗j . Observe that, because
the algorithm continues the next round without a break, Jj
must start processing on some machine Mi with pej ≤ si · d
before time d. Then at time 2d, it will be completed since
p∗j ≤ pej ≤ si · d. This contradicts the definition of Jj . Fi-
nally, observe that each round at least double the estimated
job size. We end up with

2k−1 · pj
η
≤ pej < p∗j

Therefore we have

2k−1 < η ·
p∗j
pj

= η · ηj ≤ η2 =⇒ k ≤ [2 log η + 1]

and the number of inner procedure rounds is at most k+1 ≤
[2 log η + 2]

Lemma 6 (Bound on the number of inner procedure rounds
by logm). For a given makespan d, the number of inner
procedure rounds is at most [logm+ 2].

Proof. Let the inner procedure execute once. With simi-
lar arguments used in Lemma 5, the inner procedure con-
tinues the next round only if there are at most sup unfin-
ished jobs running on machines M1, ...,Msup for more than
d time. Without loss of generality, let these unfinished jobs
be J1, ..., Jr (r ≤ sup). After updating the job size estimates
for the first time, it follows that pej ≥ 2ssup · d, j ≤ r. The
job size estimates will undergo k doubling rounds before ei-
ther the whole schedule finishes or the makespan estimate
doubles. Consider the inner procedure after the (k − 1)-th
round of doubling. Any unfinished job Jj must start pro-
cessing on some machine Mi with pej ≤ si · d. We let pej1
and pej(k−1) denote the job size estimate for Jj after the first
and the (k − 1)-th doubling respectively. We end up with

2k−2 · 2 · ssup · d ≤ 2k−2 · pej1 ≤ pej(k−1) ≤ si · d ≤ s1 · d

Therefore we have

2k−1 ≤ s1
ssup

=⇒ k ≤ [log
s1
ssup

+ 1]

Finally, by definition of sup, s1
ssup
≤ m. Recall that sup ←

min{k |
∑k

i=1 si ≥
1
2

∑m
i=1 si, 1 ≤ k ≤ m}. If s1 ≥

1
2

∑m
i=1 si, then sup = 1 and apparently s1

ssup
= 1 ≤ m.

From now on, we assume s1 < 1
2

∑m
i=1 si. Suppose, for

contradiction, that s1
ssup

> m or equivalently, ssup < s1
m . Then

ssup+1, ..., sm ≤ ssup < s1
m , so

∑sup−1
i=1 si =

∑m
i=1 si −∑m

i=sup si >
∑m

i=1 si−m·
s1
m > 1

2

∑m
i=1 si. This contradicts

with the definition of sup, and it follows that s1
ssup
≤ m. The

number of inner procedure rounds, therefore, is at most k +
1 ≤ [log s1

ssup
+ 2] ≤ [logm+ 2].

Lemma 7 (Bound on the number of inner procedure
rounds). Fixing a makespan d, the number of inner proce-
dure rounds is bounded by min{[2 log η + 2], [logm+ 2]}.

Proof. It immediately follows from Lemma 5 and 6.

Below we will prove that each inner procedure incurs a
cost of O(1)C∗

max on the makespan. We consider the worst
case where all jobs running on machines Mi (i > sup) are
cancelled by some machine Mk (k ≤ sup), as if only ma-
chines M1, ...,Msup are processing. We will first show that if
the optimal makespan is C∗

max, then the optimal makespan is
at most 3C∗

max if only given machines M1, ...,Msup. It then
follows that Algorithm 2 finishes the whole schedule when
d ≥ 6C∗

max and an inner procedure spends O(1)C∗
max time.

417

Lemma 8 (Bound on the optimal makespan with only fast
machines). Let the optimal makespan be C∗

max. Then the
optimal makespan using only fast machines M1, ...,Msup is
at most 3C∗

max.

Proof. To prove the statement, it is sufficient to show that
there exists a schedule with makespan at most 3C∗

max. The
schedule is constructed as follows. For the first 2C∗

max time,
run all the jobs arbitrarily on machines M1, ...,Msup. Specif-
ically, if any machine becomes idle, it selects a job not
started to process. If all jobs are being processed, the ma-
chine stays idle. No jobs are cancelled before time 2C∗

max.
At time 2C∗

max, there must be at least one idle machine.
Since otherwise, if all fast machine are busy at time 2C∗

max,
the total job size must be more than

∑sup
i=1 2si · C∗

max >∑m
i=1 si · C∗

max. This contradicts with the optimal makespan
C∗

max. If there is at least one idle machine at time 2C∗
max, the

number of unfinished jobs is at most sup − 1. Without loss
of generality, we denote these unfinished jobs as J1, ..., Jr
(r < sup). Now, cancel these jobs. Consider the optimal
schedule with all the machines M1, ...,Mm. In this optimal
schedule, jobs J1, ..., Jr must be assigned on some machines
Mi1,Mi2, ...,Mil with i1 < i2 < ... < il and il ≤ r < sup.
With only fast machines, we process these remaining jobs
that are assigned to machine Mi1 on machine M1, jobs to
machine Mi2 on machine M2, and so on. Formally, process
the remaining jobs that are assigned to machine Mip on ma-
chine Mp. Since sip ≥ sp, the time for processing these re-
maining jobs on fast machines with this assignment will be
no more than C∗

max. This constructs a at most 3C∗
max-length

schedule using only the fast machines M1, ...,Msup.

Lemma 9 (Bound on the estimated makespan). If d ≥
6C∗

max, the whole schedule will finish after several rounds
of inner procedure.

Proof. The proof involves three main observations. (1)
Given a problem instance I that has optimal makespan C,
if all job sizes double, the new problem will have optimal
makespan at most 2C. (2) After the inner procedure ter-
minates, any job size estimate follows pej < 2p∗j . (3) The
makespan estimate doubles only when the algorithm con-
firms that it is impossible to construct a schedule of length d
using only the fast machines M1, ...,Msup.

Observation (1) is trivial. If all job sizes double, the opti-
mal schedule will also double. Thus, the optimal makespan
for the new problem is at most 2C. Observation (2) follows
from the proof of Lemma 5. With a fixed makespan d, the
estimated sizes will undergo k doubling rounds. We have
shown that after the (k − 1)-th round, any unfinished job
Jj has pej < p∗j . Therefore, after the last round of doubling,
it follows that pej < 2p∗j for any unfinished job Jj . Obser-
vation (3) is supported by similar arguments in the proof
of Theorem 4. If machine M1 processes any job for more
than d time, there is no valid schedule of length d. If there
is an unfinished job Jj not started by any machine Mi with
i ≤ sup and pej ≤ si · d before time d, then all the machines
M1, ...,Mq (q is the largest index such that pej ≤ sq · d and
q ≤ sup) are busy processing jobs that cannot complete on
slower machines before time d. Then it follows that a valid

schedule of length d using only machines M1, ...,Msup does
not exist, and observation (3) holds.

Now we combine these observations. First, by Lemma
8, there exists a schedule of length 3C∗

max using only the
fast machines M1, ...,Msup. Since at any time, we have
pej < 2p∗j for all jobs (observation (2)), there exists a sched-
ule of length at most 6C∗

max using only the fast machines
M1, ...,Msup (observation (1)). Therefore, if d ≥ 6C∗

max,
the algorithm will not double d (observation (3)). With a
bounded number of inner procedure rounds by Lemma 7, the
algorithm will return with the whole schedule finished.

It immediately follows that, since each inner procedure
lasts at most 2d time, each call spends 12C∗

max time at most.
Finally, putting all above lemmas together, we obtain the
performance bound for Algorithm 2.

Theorem 10 (Performance bound for Algorithm 2). Given
the predicted job sizes pj and the prediction error η =

max1≤j≤n max{ pj

p∗
j
,
p∗
j

pj
}, Algorithm 2 computes a schedule

of makespan Cmax at most 48 ·min{[2 log η + 2], [logm +
2]} · C∗

max, where C∗
max denotes the optimal makespan.

Proof. Initially, the algorithm sets optimal makespan es-
timate d ← d0 :=

max1≤j≤n pj

η·s1 and executes the in-
ner procedure. Clearly d0 ≤ C∗

max. The algorithm will
undergo x rounds of doubling in makespan with d =
2d0, 2

2d0, ..., 2
xd0. Fixing the makespan d, the number of

inner procedure calls is at most min{[2 log η + 2], [logm+
2]} by Lemma 7, with each spending at most 2d time. Ob-
serve that 2x−1d0 < 6C∗

max, otherwise it would have com-
puted the whole schedule after the (x− 1)-th round of dou-
bling by Lemma 9. Thus, the makespan of the entire sched-
ule is bounded by

Cmax ≤ 2 · (d0 + ...+ 2xd0)·
min{[2 log η + 2], [logm+ 2]}

< 2 · (2x+1d0) ·min{[2 log η + 2], [logm+ 2]}
< 48 ·min{[2 log η + 2], [logm+ 2]} · C∗

max

Remark 11. It immediately follows from Theorem 10 that
Algorithm 2 has competitive ratio O(min{log η, logm}).
Let Cmax be the makespan of the computed schedule. With
η = ∞, we have Cmax < 48 · [logm + 2] · C∗

max. Thus
the algorithm is 48 · [logm + 2]-robustness or O(logm)-
robustness. With η = 1, we have Cmax < 96 · C∗

max. Thus
the algorithm is 96-consistent or O(1)-consistent.

Note that, even in the worst case of η =∞, our algorithm
returns a schedule of makespan at most 48·[logm+2]·C∗

max.
This outperforms the algorithm proposed in (Shmoys, Wein,
and Williamson 1995) with 48 · [logm+ 6] · C∗

max bound.
Finally, we prove the performance bound of Algorithm 3.

With the unknown prediction error, the algorithm estimates
η in rounds. The proof builds on the below core observation.
Fixed the estimated prediction error ηe, the time spent by
an inner procedure is bounded by O(1)C∗

max if pj

ηe > p∗j for
some job Jj , and is bounded by O(min{log η, logm})C∗

max

418

otherwise. To bound the overall performance, we let (ηe)2 <
m and switch to the O(logm)-competitive algorithm if
(ηe)2 ≥ m. With such strategy, the makespan can be
bounded by O(logm)C∗

max if η is arbitrarily large.

Lemma 12 (Bound on the time spent fixing ηe for the case
of pj

ηe > p∗j for some j). Fix ηe with pj

ηe > p∗j for some j.
The time spent for running Algorithm 2 is at most 24C∗

max.

Proof. Let Jj′ denote the largest overestimated job, i.e.,
pj′

ηe > p∗j′ with pj′

ηe maximal. We will show that with a fixed
ηe and a makespan estimate d, an inner procedure either de-
tects an underestimation of ηe or doubles d until d ≥ 3C∗

max.
Then, since each inner procedure call spends at most 2d
time, the total time spent will be bounded by O(1)C∗

max.
First consider a special case where pj′

ηe =
max1≤j≤n pj

ηe ≥
s1 · C∗

max. In such case, the first makespan estimate d :=
d0 =

pj′

s1ηe ≥ C∗
max. By Algorithm 2 machine M1 will first

select an overestimated job to process, and then confirm an
underestimation of ηe within at most

max1≤j≤n p∗
j

s1
≤ C∗

max

time. ηe will double and the time spent is apparently no more
than 24C∗

max. From now on, we will assume pj′

ηe ≤ s1 ·C∗
max

and the first makespan estimate d := d0 ≤ C∗
max.

With a fixed ηe, Algorithm 2 will experience several
rounds of doubling makespan estimate d. We will show that
when d < 3C∗

max, an inner procedure either detects an un-
derestimation of ηe or doubles d at the end, so the job size
estimates never get updated. We prove this by contradiction.
Suppose the algorithm decides to update job size estimates
after the inner procedure. This happens only if Jj′ runs on
some machine Mi with i ≤ sup and pej′ ≤ si · d before time
d. But p∗j′ <

pj′

ηe ≤ pej′ ≤ si · d, indicating job Jj′ should
have been completed. An underestimation of ηe is confirmed
at the first time this happens, which is a contradiction.

Next we show that when d ≥ 3C∗
max, Algorithm 2 will

detect an underestimation of ηe by showing that at least one
overestimated job Jk′ (pk′

ηe > p∗k′) will start processing be-
fore time d + C∗

max on some machine Mi with i ≤ sup and
pek′ ≤ si · d. We prove this by contradiction. Suppose the
opposite. Consider the fast machines M1, ...,Msup. There is
a schedule to process all jobs in 3C∗

max using only the fast
machines by Lemma 8. So all the non-overestimated jobs
can be processed using only the fast machines in d time.
The procedure ensures no non-overestimated job starts after
time d. So the procedure for processing non-overestimated
jobs uses at most d + C∗

max time. All machine will become
idle before d+C∗

max, including the fastest machine M1. Re-
call that pej′ =

pj′

ηe ≤ s1 · C∗
max < s1 · d (the first equality

is due to that pej is never updated). It follows that either job
Jj′ is processing on another machine Mi with pej′ ≤ si · d
or it begins processing on M1 before d + C∗

max. This is a
contradiction. Then within at most d + 2C∗

max < 2d time,
some overestimated job completes processing.

Finally, let Algorithm 2 returns after x rounds of doubling
d with d = 2d0, 2

2d0, ..., 2
xd0, where d0 =

max1≤j≤n pj

s1
.

Fixing a makespan d, the number of inner procedure calls is
at most 1. It spends at most 2d time at each round. Observe

that 2x−1d0 < 3C∗
max. The total time spent in Algorithm 2,

before confirming an underestimation of ηe, is at most

2 · (d0 + ...+ 2xd0) < 24C∗
max

Lemma 13 (Bound on the time spent fixing ηe for the case of
pj

ηe ≤ p∗j for all j). Fix ηe with pj

ηe ≤ p∗j for all j. Algorithm
2 will finish the whole schedule with makespan at most 48 ·
min{[2 log ηe + 2], [logm+ 2]} · C∗

max.

Proof. The lemma holds, by the same arguments for Theo-
rem 10. All bounds apply.

Theorem 14 (Performance bound for Algorithm 3). Given
only the predicted job sizes pj , Algorithm 3 computes
a schedule of makespan Cmax at most min{[120 log η +
216], [60 logm + 216]} · C∗

max, where C∗
max denotes the

optimal makespan and η denotes the prediction error and
η = max1≤j≤n max{ pj

p∗
j
,
p∗
j

pj
}.

Proof. First assume the algorithm returns the entire sched-
ule while (ηe)2 < m. The algorithm will undergo x
rounds of doubling ηe with ηe = 1, 2, ..., 2x. When ηe =
1, 2, ..., 2x−1, there must be some job Jj with pj

ηe > p∗j ,
since otherwise it will have less rounds of doubling ηe. Each
round spends at most 24C∗

max time by Lemma 12. In total,
this sums to 24xC∗

max. After setting ηe = 2x, the algorithm
returns within time 48 · min{[2 log 2x + 2], [logm + 2]} ·
C∗

max = 48 · (2x+ 2) ·C∗
max (since (ηe)2 < m) by Lemma

13. Observe that 2x−1 < η. Therefore, the makespan of the
whole schedule, if returned when (ηe)2 < m, is at most

24xC∗
max + 48(2x+ 2)C∗

max ≤ [120 log η + 216] · C∗
max

Next assume the algorithm returns the whole schedule by
running Algorithm 2 with pj = 0 and η = ∞. The al-
gorithm will experience x − 1 rounds of doubling ηe with
ηe = 1, 2, ..., 2x−1 before breaking the while loop. Each
round spends at most 24C∗

max time. This sums to 24xC∗
max.

With (2x−1)2 < m, it follows that 24xC∗
max ≤ (12 logm+

24)C∗
max. After breaking the while loop, Algorithm 2 with

pj = 0 and η =∞ will cost at most 48 · [logm+2] ·C∗
max.

Therefore, the makespan of the whole schedule, if returned
when (ηe)2 ≥ m, is at most

24xC∗
max+48 · [logm+2]C∗

max ≤ [60 logm+120] ·C∗
max

The entire schedule, therefore, has makespan Cmax at
most min{[120 log η + 216], [60 logm+ 216]} ·C∗

max.

Remark 15. It immediately follows from Theorem 14 that
Algorithm 3 has competitive ratio O(min{log η, logm}).
The algorithm is [60 logm + 120]-robustness or O(logm)-
robustness, and is 216-consistent or O(1)-consistent.

Finally, we state the time complexity results and brief the
correctness for Algorithms 2 and 3. By maintaining jobs in
the order of estimated size, an operation in the inner proce-
dure takes O(log n) time. At the end of an inner procedure,
doubling makespan takes O(1) time, and doubling job sizes
O(sup) time. This complexity is identical to the existing

419

1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0
pe

rf
or

m
an

ce
 ra

tio
= 1

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0
= 2

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0
= 4

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0
= 8

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
log2m

1.0

1.5

2.0

2.5

3.0

3.5

4.0

pe
rf

or
m

an
ce

 r
at

io

= 16
knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
log2m

1.0

1.5

2.0

2.5

3.0

3.5

4.0
= 32

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
log2m

1.0

1.5

2.0

2.5

3.0

3.5

4.0
= 64

knowError
unknowError
classic

1 2 3 4 5 6 7 8 9 10
log2m

1.0

1.5

2.0

2.5

3.0

3.5

4.0
=

knowError
unknowError
classic

Figure 1: Performance ratios comparison by varying m and η

non-clairvoyant algorithm (Shmoys, Wein, and Williamson
1995). Therefore, using predictions does not introduce over-
head in Algorithm 2. Algorithm 3 requires an additional cost
when doubling ηe, which takes O(m) time. The correctness
implicitly follows the established bounds. The algorithm ter-
minates in a bounded number of iterations. By examining
the termination conditions, a valid schedule is constructed at
the termination of the algorithm. The detailed arguments are
omitted due to the page limit.

Experimental Results
Experimental Setup
This section provides numerical studies to show the com-
petitiveness of our proposed algorithms. We implemented
four algorithms: (1) an offline near-optimal algorithm based
on Algorithm 1, (2) the O(logm)-competitive algorithm
(Shmoys, Wein, and Williamson 1995), (3) Algorithm 2 with
a known prediction error, and (4) Algorithm 3 without a
known error. We denote these algorithms as Aopt, Aclassic,
AknowError, and AunknowError. Finding the optimal solutions is
computationally infeasible due to NP-hardness. We instead
implemented Aopt with a bisection method on Algorithm 1 to
find a 2-approximation solution, giving a baseline for other
algorithms. Thus, the reported performance ratios are ap-
proximations to the analytical ones. The approximations are
within twice the analytical competitive ratios.

We generated 2 million independent problem instances to
evaluate the performance ratios. The number of jobs ranges
from 1000 to 10000, and each job size randomized from
[1, 1000]. The number of machines is from 21, ..., 210, with
machine speed varies between [1, 1000]. The prediction er-
rors were set to 20, 21, ..., 26, and∞. With a given prediction
error η, we randomly generated a predicted size for every job
Jj (with actual size p∗j) from [max{1, p∗

j

η }, η · p
∗
j]. To mini-

mize measurement deviation caused by randomly generated

predictions, each problem instance was executed 50 times.
All reported data points are an average of 2500 executions.

Results
Figure 1 shows the performance comparisons between
Aclassic, AknowError, and AunknowError with increasing ma-
chines m and prediction error η. As shown, AknowError and
AunknowError consistently outperform Aclassic, even with ar-
bitrarily bad predictions. This confirms that our improved
2-relaxed procedure ensures the worst case performance of
our proposed algorithms is better than Aclassic. The per-
formance ratios of AknowError and AunknowError increase sub-
linearly as logm increases, verifying the theoretical result of
O(min{log η, logm})-competitiveness. Our proposed algo-
rithms have most performance ratios around 1.5 and a slight
increase for unreasonably large η (η →∞). Thus, our algo-
rithms bound the performance ratios within small constants.

Next, we discuss the performance difference between
AknowError and AunknowError. They have the same performance
when η = 1. When η = ∞, AknowError outperforms
AunknowError since AunknowError spends extra time in estimating
η before realizing that it is too large and it is better to switch
to the O(logm)-competitive algorithm by setting ηe = ∞.
We also observe that, knowing the error is favourable if η is
relatively large compared to m. For relatively large η com-
pared to m, AknowError implicitly bounds the performance
by logm term. However and interestingly, if η is small,
AunknowError slightly outperforms AknowError. Both algorithms
have log η term to bound the performance, but AunknowError
works better. Here, we brief the subtle reason. AunknowError
starts with many iterations with optimistic error estimates
ηe = 1, 2, etc. Though these ηe underestimate η, they make
many jobs with accurate predictions to be near-optimally
scheduled. In contrast, AknowError acts conservatively at the
beginning to underestimate every job size, which abandons
the benefits of those high-quality predictions.

420

Conclusion
We study online optimization with predictions and show
how job size predictions improve the competitive ratio
for minimizing makespan in uniformly related machine
scheduling. We first design an offline improved 2-relaxed
decision procedure approximating the optimal schedule us-
ing job sizes. The online algorithms use this procedure as
a base. With a simple algorithm-independent prediction er-
ror measurement η and the decision procedure, we give
an O(min{log η, logm})-competitive algorithm assuming a
known prediction error. Built upon this algorithm, we finally
propose a robust O(min{log η, logm})-competitive algo-
rithm that does not assume a known error. Both algorithms
improve the known Ω(logm) lower bound via the predic-
tions. We prove the performance bounds and conduct nu-
merical simulations to verify these results.

Many interesting problems remain open in online opti-
mization with predictions. An immediate direction is to ex-
tend our work to other online scheduling or optimization
problems. It is worth studying how the proposed error mea-
surement and the algorithm design technique lead to im-
proved competitiveness. Finally, since predictions expose
rich information to algorithms, exploring the theoretical per-
formance lower bounds in such settings is valuable. The new
lower bounds will give us a better understanding of the po-
tential of predictions in managing uncertainty.

Acknowledgments
Dr. Wei Li acknowledges the support of the Australian Re-
search Council (ARC) through the Discovery Early Career
Researcher Award (DE210100263). Professor Zomaya and
Dr. Wei Li acknowledge the support of an ARC Discovery
Project (DP200103494).

References
Amiri, M.; and Mohammad-Khanli, L. 2017. Survey on Pre-
diction Models of Applications for Resources Provisioning
in Cloud. J. Netw. Comput. Appl., 82(C): 93–113.
Anand, K.; Ge, R.; and Panigrahi, D. 2020. Customizing
ML Predictions for Online Algorithms. In III, H. D.; and
Singh, A., eds., Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, 303–313. PMLR.
Antoniadis, A.; Coester, C.; Elias, M.; Polak, A.; and Si-
mon, B. 2020. Online metric algorithms with untrusted pre-
dictions. In III, H. D.; and Singh, A., eds., Proceedings
of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research,
345–355. PMLR.
Awerbuch, B.; Kutten, S.; and Peleg, D. 1992. Compet-
itive Distributed Job Scheduling (Extended Abstract). In
Proceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing, STOC ’92, 571–580. New York,
NY, USA: Association for Computing Machinery. ISBN
0897915119.
Azar, Y.; Leonardi, S.; and Touitou, N. 2021. Flow Time
Scheduling with Uncertain Processing Time. In Proceed-

ings of the 53rd Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2021, 1070–1080. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450380539.
Borodin, A.; and El-Yaniv, R. 1998. Online Computation
and Competitive Analysis. USA: Cambridge University
Press. ISBN 0521563925.
Boyar, J.; Favrholdt, L. M.; Kudahl, C.; Larsen, K. S.; and
Mikkelsen, J. W. 2016. Online Algorithms with Advice: A
Survey. SIGACT News, 47(3): 93–129.
Dütting, P.; Lattanzi, S.; Paes Leme, R.; and Vassilvitskii, S.
2021. Secretaries with Advice. In Proceedings of the 22nd
ACM Conference on Economics and Computation, EC ’21,
409–429. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450385541.
Frye, M.; Gyulai, D.; Bergmann, J.; and Schmitt, R. H.
2019. Adaptive scheduling through machine learning-
based process parameter prediction. MM Science journal,
2019(November): HSM2019–023.
Garey, M. R.; and Johnson, D. S. 2009. Computers and in-
tractability: a guide to the theory of NP-completeness. W.H.
Freeman and Company.
Gollapudi, S.; and Panigrahi, D. 2019. Online Algorithms
for Rent-Or-Buy with Expert Advice. In Chaudhuri, K.;
and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 2319–2327.
PMLR.
Graham, R.; Lawler, E.; Lenstra, J.; and Kan, A. 1979. Op-
timization and Approximation in Deterministic Sequencing
and Scheduling: a Survey. In Hammer, P.; Johnson, E.; and
Korte, B., eds., Discrete Optimization II, volume 5 of Annals
of Discrete Mathematics, 287–326. Elsevier.
Im, S.; Kumar, R.; Montazer Qaem, M.; and Purohit, M.
2021. Non-Clairvoyant Scheduling with Predictions. In Pro-
ceedings of the 33rd ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’21, 285–294. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450380706.
Karp, R. M. 1992. On-Line Algorithms Versus Off-Line Al-
gorithms: How Much is It Worth to Know the Future? In
Proceedings of the IFIP 12th World Computer Congress on
Algorithms, Software, Architecture - Information Processing
’92, Volume 1 - Volume I, 416–429. NLD: North-Holland
Publishing Co. ISBN 044489747X.
Lattanzi, S.; Lavastida, T.; Moseley, B.; and Vassilvitskii, S.
2020. Online Scheduling via Learned Weights. In Proceed-
ings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’20, 1859–1877. USA: Society
for Industrial and Applied Mathematics.
Leung, J.; Kelly, L.; and Anderson, J. H. 2004. Handbook of
Scheduling: Algorithms, Models, and Performance Analysis.
USA: CRC Press, Inc. ISBN 1584883979.
Mitzenmacher, M. 2020. Scheduling with Predictions and
the Price of Misprediction. In ITCS.
Peyravi, N.; and Moeini, A. 2020. Estimating runtime of a
job in Hadoop MapReduce. Journal of Big Data, 7(1): 44.

421

Purohit, M.; Svitkina, Z.; and Kumar, R. 2018. Improving
Online Algorithms via ML Predictions. In Bengio, S.; Wal-
lach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.
Shmoys, D. B.; Wein, J.; and Williamson, D. P. 1995.
Scheduling Parallel Machines On-Line. SIAM Journal on
Computing, 24(6): 1313–1331.
Yamashiro, H.; and Nonaka, H. 2021. Estimation of pro-
cessing time using machine learning and real factory data for
optimization of parallel machine scheduling problem. Op-
erations Research Perspectives, 8: 100196.

422

