
Deep Reinforcement Learning for a Multi-Objective Online Order Batching
Problem

Martijn Beeks,1 Reza Refaei Afshar,1 Yingqian Zhang,1 Remco Dijkman,1 Claudy van Dorst,2
Stijn de Looijer2

1 Eindhoven University of Technology, Eindhoven, Netherlands
2 Vanderlande Industries, Veghel, Netherlands

m.s.beeks@student.tue.nl, {r.refaei.afshar, yqzhang, r.m.dijkman}@tue.nl, {claudy.van.dorst,
stijn.de.looijer}@vanderlande.com

Abstract

On-time delivery and low service costs are two important per-
formance metrics in warehousing operations. This paper pro-
poses a Deep Reinforcement Learning (DRL) based approach
to solve the online Order Batching and Sequence Problem
(OBSP) to optimize these two objectives. To learn how to
balance the trade-off between two objectives, we introduce a
Bayesian optimization framework to shape the reward func-
tion of the DRL agent, such that the influences of learning
to these objectives are adjusted to different environments. We
compare our approach with several heuristics using problem
instances of real-world size where thousands of orders arrive
dynamically per hour. We show the Proximal Policy Opti-
mization (PPO) algorithm with Bayesian optimization out-
performs the heuristics in all tested scenarios on both objec-
tives. In addition, it finds different weights for the compo-
nents in the reward function in different scenarios, indicating
its capability of learning how to set the importance of two ob-
jectives under different environments. We also provide policy
analysis on the learned DRL agent, where a decision tree is
used to infer decision rules to enable the interpretability of
the DRL approach.

Introduction
Warehouse fulfillment solutions are a crucial factor for
achieving successful supply chain management. Warehouse
operations consider receiving, storing, picking, and consol-
idation of goods, where a sub-problem, the order batching
and sequencing problem (OBSP), studies how to collect all
orders that arrive at a warehouse such that certain objec-
tives such as minimizing tardiness of orders are optimized
(De Koster, Le-Duc, and Roodbergen 2007). The OBSP is
considered as one of the most important operations as it ac-
counts for 55% of the total warehousing costs (Bartholdi III
and Hackman 2018).

Different orders can be grouped in one batch (called
picking-by-batch), and each batch is assigned to a single
picker, who will then collect all the required items in the
storage system. For some orders, it might be better not to
combine them in any batch (called picking-by-order) for a
faster collecting process to meet the deadline (i.e., cut-off
time). This is especially desirable in the e-commerce market,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where fast deliveries are expected. In this paper, we study an
online order batching problem. We decide whether each ar-
riving order should be batched or not, i.e., picking-by-batch
or picking-by-order, and if it is batched, which batches to
assign it. The (offline) order batching problem is known to
be NP-hard when the number of orders per batch is larger
than two (Gademann and Velde 2005).

In the e-commerce era, companies face the challenge of
assembling numbers of time-critical picking orders. They
are investigating new solutions of order batching and picking
systems to meet the requirements of significantly increased
orders with different patterns of arrivals and balance vari-
ous optimization objectives such as fast deliveries and low
picking costs. The existing heuristics have difficulties in pro-
viding good solutions in a dynamic environment, either be-
cause they assume an offline (static) setting where all orders
are known in advance, or the handcrafted heuristics cannot
grasp important relations in stochastic processes (Boysen,
De Koster, and Weidinger 2019). Recently, Cals et al. treated
the online order batching problem as a sequential decision-
making problem and proposed the first reinforcement learn-
ing approach to learn the best batching decision to minimize
the number of tardy (late) orders.

In this paper, we extend the work of Cals et al. by consid-
ering an additional objective, i.e., minimizing order picking
costs. While picking an order within a small batch will re-
sult in a short lead time, the order picking efficiency will de-
crease. When using RL for solving optimization problems,
RL aligns the optimization objectives with learning through
its reward function. Human modelers have some intuitions
on the priority of one objective over the other in specific
scenarios. For example, when many orders have their cut-
off times approaching, the batching decisions should pre-
fer minimizing tardy orders to picking costs. However, it is
hard for human modelers to specify weight values for two
objectives for different situations. To learn how to balance
the trade-off between two objectives (i.e., tardy orders and
picking costs), we propose a Bayesian optimization frame-
work to shape a parametrized reward function, such that
the weights (or importance) of these objectives are adap-
tive to different situations. Moreover, unlike in Cals et al.,
we model a true online setting for learning where at ev-
ery time step, new orders arrive that change the state of the
environment. Furthermore, to explain the learned policy of

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

435

the DRL agent, a decision tree is extracted from the pol-
icy network. We compare our approach with several well-
performing batching rules and heuristics from the literature.
We test our approach in several realistic scenarios with a
throughput rate between 2000-4000 orders per hour, in com-
parison to 300-500 orders in (Cals et al. 2021). We summa-
rize our contributions as follows.

• We show the Bayesian optimization approach to shape
reward functions effectively finds a good trade-off be-
tween two optimization objectives for the DRL agent.

• The proposed DRL based approach (DRL+RS) results in
a better performance in terms of both objectives than the
state-of-the-art heuristics for the order batching problem.

• We transform the learned deep neural network into a de-
cision tree to explain the learned policy. Interestingly, us-
ing the set of transparent heuristics rules given by the dis-
tilled decision tree, we obtain better-batching decisions
than the tested benchmark heuristics.

• As a practical implication, we show the proposed DRL
approach can handle real-world size instances. Together
with the approach of distilled decision trees for inter-
pretability, we demonstrate the DRL approach is very
promising to be applied and adapted to optimize ware-
housing operations in practice.

Related Work
Order Batching and Sequencing Problem. The majority
of existing work on the OBSP assumes both a single objec-
tive and an offline setting where all the orders are known
in advance. Won and Olafsson propose two heuristics for
the OBSP which minimize the weighted average of the to-
tal picking time of batches and the holding time of orders in
the batch. The work of Li, Huang, and Dai studies a method
for joint optimization of order batching and picker routing
in the online retailer’s warehouse in China. The authors pro-
pose an online order batching strategy that uses a similarity
coefficient that represents the similarity between two orders.
The main idea is to combine similar orders as one to obtain
a high order picking efficiency. The authors of Bustillo et al.
propose a General Variable Neighborhood Search (GVNS)
that performs an online batching operation. Chen, Wei, and
Wang study an online order batching problem with the as-
sumption that order splitting and batch modifying are possi-
ble. The authors of Pinto and Nagano introduce two genetic
algorithms to adjust better the trade-off between two objec-
tives, namely, the level of customer service and the effective-
ness of a warehouse. Gil-Borrás et al. propose a greedy ran-
domized adaptive search algorithm that constructs an initial
solution and then a variable neighborhood descent procedure
to improve. The objective is minimizing picking time.

DRL for Solving Optimization Problems. Deep rein-
forcement learning (DRL), which combines reinforcement
learning and deep learning (Mnih et al. 2015), has demon-
strated impressive results for solving combinatorial opti-
mization problems and dynamic sequential decision-making
problems. In the domain of warehousing management, Cals
et al. propose the first reinforcement learning approach

in optimizing warehousing operations. The authors use an
actor-critic DRL algorithm for order batching with a single
objective, i.e., minimizing tardy orders. The problem size of
their approach is rather small, with 300-500 orders per hour,
and the learning algorithm does not fully cope with the un-
certain, dynamic arrivals of orders.

We extend the work of Cals et al. by considering two ob-
jectives. Human decision-makers have intuitions about the
relative importance of weights of two objectives in differ-
ent situations, however, it is hard for them to pre-define
fixed weights. We treat the weight learning problem as a
hyper-parameter optimization problem and use Bayesian
Optimization (BO) (Snoek, Larochelle, and Adams 2012)
to learn appropriate weights in the reward function that
lead to high objective values. BO jointly tunes more hyper-
parameters with fewer experiments. Moreover, it evalu-
ates the objective function as less as possible and is ro-
bust to noisy evaluations. BO has been very popular in au-
tomated machine learning for algorithm selection (Hutter,
Hoos, and Leyton-Brown 2011), and its applicability in au-
tomated reinforcement learning is discussed in (Refaei Af-
shar et al. 2022). However, to the best of our knowledge,
the (Bayesian) optimization approach has not yet been ap-
plied to learn the reward function that contains parametrized
objectives for enhancing learning behavior of optimization
problems in multi-objective reinforcement learning (Hayes
et al. 2021).

Problem Description
The considered warehousing concept consists of a PtG
(Person-to-goods) and a GtP (Goods-to-person) storage ar-
eas (Figure 1). In the PtG storage area, a picker has to walk
to pick goods using a picking cart. In the GtP storage area,
goods are automatically retrieved from the warehouse using
an Automated storage and retrieval system (AS/RS), one tote
at a time. The PtG storage area leverages flexible picking ca-
pacity, whereas the GtP storage area provides faster picking
times. In both storage systems, two different picking strate-
gies can be enforced: Pick-by-order or Pick-by-batch. Dur-
ing a pick-by-order picking tour, only items from a single or-
der are retrieved, and logically, during a pick-by-batch pick-
ing tour, orders from multiple orders (batch) are retrieved. A
pick-by-batch picking strategy has relatively short picking
times per order but has a higher lead time. A pick-by-order
strategy has relatively long picking times per order (no syn-
ergy of picking several orders simultaneously) but short lead
times. After picking, orders are transferred to consolidation
workstations: Pack station, Sort-to-order station, and Direct-
to-order station.

A worker at a DtO workstation removes items from a
product tote and collects items of a single order in an order
carrier. If an order consists of multiple order lines, multi-
ple product totes are provided. All associated product totes
arrive in sequence, and a picker places the items in an or-
der carrier. Besides fulfilling orders in order carriers, the
DtO workstation can batch items. In this process, product
totes from the GtP area arrive, a picker places all items in
a batch tote which is stored again in GtP area. After that,
the stored batch tote in the GtP area can be requested by

436

Figure 1: The warehousing concept (Cals et al. 2021)

either a pack station or a Sort-to-Order (StO) station. The
StO station includes three processes: sorting, buffering, and
packing. Within the sorting process, a picker removes items
from a batch tote and sorts them in a put wall. After that, the
operator places the sorted orders into carton boxes and trans-
fers them. Lastly, the pack station processes batch totes con-
sisting of only Single-item-Orders (SiO). A picker removes
items from batch totes and places them in carton boxes that
are subsequently sent for shipping. We refer to (Beeks 2021)
for more detailed descriptions of the processes.

This work extends the work of (Cals et al. 2021) by trans-
forming the original OBSP formulation to a multi-objective
problem in an online setting. Given a warehousing setting,
the proposed method needs to assign customer orders to pick
orders and, subsequently, sequence batched orders such that
capacity constraints are satisfied, maximize the orders that
are shipped on time, and minimize order picking costs. An
order is shipped on time when all picking and consolida-
tions steps are performed before the respected cutoff time.
The order-picking costs are defined by the amount of time
that a picker takes to pick a single order within a batch.

Consider a time horizon T and a set of orders O, We de-
fine the decision variables as follows. For order o ∈ O at
t ∈ T , PbOt

o ∈ {0, 1} represents the picking-by-order deci-
sion and PbBt

o ∈ {0, 1} denotes the picking-by-batch deci-
sion. Similar to (Cals et al. 2021), the sequencing decision is
performed using the Earliest Due Date sequencing heuristic.
For each order o ∈ O, it has arrival time ao ∈ {T}, its cut-
off time (or due time) do ∈ {T}, its cutoff category based
on urgency eo ∈ {e1, e2, e3}, and whether it is a single order
or multiple item order co ∈ {SIO,MIO}. An order has its
storage location lo ∈ {PtG,GtP, both}. We have a set of
resources X = {p, g, d, v, d} where p represents PtG, g for
GtP, d for DtO, v for StO and b for packing, and capx is the
capacity of x ∈ X . We denote the batch size as N .

Several parameters need to be computed, depending on
the state of orders that are already being picked and deci-
sions that were made concerning these orders. They are: the
service time of an order (so ∈ {T}); the picking time at-
tributed to an order (po,x); the batch information to which
an order is assigned (bao,b); and the number of resources
that are occupied (occtx).

Parameter Description

Oci,lj ,ek Orders that need to processed divided in or-
der categories with characteristics as order
composition (ci), storage location (lj) and
time until cutoff moment (ek)

occtx Capacity information on resources

n, t and u number of processed orders (n), number of
tardy orders so far (t), simulation time (u)

Table 1: State space definition

An order becomes tardy, i.e., tardyo = 1, if ao+so > do.
Each order is assigned to one and only one picking decision,
i.e.,

∑
t∈T PbOt

o+PbBt
o = 1 (∀o ∈ O). Orders can only be

picked after they have arrived, i.e., PbOt
o · t+PbBt

o · t ≥ ao
(∀o ∈ O, t ∈ T). Resource abide the predefined capacities,
i.e.,occtx ≤ capx (∀x ∈ X, t ∈ T). The maximum batch size
of batches is respected, i.e.,

∑
o∈O bao,b ≤ N (∀b ∈ B).

Lastly, orders cannot be split up and be allocated to multiple
batches, i.e.,

∑
t∈T PbBt

o =
∑

b∈B bao,b (∀o ∈ O).
Given the above mentioned constraints and stochastic pa-

rameters, two objectives are minimized: number of tardy
orders f1 =

∑
o∈O tardyo, and picking costs f2 =∑

o∈O po,x. In order to minimize f1, orders need to be pro-
cessed before their respective cutoff time. In order to mini-
mize f2, orders should have a pick-by-batch strategy. Hence,
there might be a trade-off between these objectives.

Solution Methods
SMDP Formulation for the OBSP
Based on a specific state of the system, an agent can take a
certain action that causes the system to go into a different
state. The SMDP variant of a Markov Decision Process is
defined by τ : the transition time, S : a finite state space, A :
a set of actions, and R : the reward function. In an SMDP,
the transition of time to the next state will depend on changes
in the environment. The state (S) is represented based on in-
formation of orders that still need to be processed Oci,lj ,ek ,
available resources in the system occtx, and other useful in-
formation for learning (see Table 1).

The action space (A) is based on a pick-by-order or pick-
by-batch decision for a specific order category. Based on the
configuration of an order (SiO c1 or MiO c2) and the stor-
age location l (PtG: l1, GtP: l2 or PtG & GtP: l3), there are
five different order categories (single-item-orders only have
a single storage location, so PtG & GtP is not applicable).
This results in an action space of 10 actions. Lastly, the 11th
action is a wait action that the agent can take in case there
are no resources left to process a certain set of order cate-
gories. This wait action ’waits’ until the state of the system
changes. This can happen either by the arrival of an order or
by a resource becoming idle.

The reward function is displayed in Equation 1. The first
two components account for the first objective, the mini-
mization of the number of tardy orders, and provide a neg-
ative reward to the agent every time an order leaves the

437

Figure 2: Reward shaping with Bayesian optimization

warehouse after its cutoff time. The second component pro-
vides a reward when an episode terminates where u =∑

o∈O tardyo is defined as the number of tardy orders, and
|O| is defined as the total number of orders. With fewer tardy
orders, this reward grows larger. The third component in this
reward function penalizes the agent when it makes an in-
feasible action. This can happen when it provides a picking
action for a certain order category where no resources are
available. In this case, it ideally provides a wait action until
resources become available. The fourth component provides
an incentive to the agent to pick large batches and minimize
the order picking costs. In this equation, v =

∑
o∈O bao,b is

defined by the actual batch size and N is defined by the max-
imum batch size. In this case, an agent is not punished when
the number of orders within a batch is equal to the maximum
batch size. In any other case, the agent is punished. Lastly, if
no other components provide a positive or negative reward,
the agent receives reward 0.

r(s, a, s′) =

−1.5 if tardy order (tardyo = 1)

(1− u/|O|)2 If an episode terminates
−0.5 if infeasible action
− (1−v/N)

50 If order is picked
0 otherwise

(1)
The Proximal Policy Optimization (PPO) algorithm

((Schulman et al. 2017)) is used to interact with the envi-
ronment and strikes a favorable balance between sample ef-
ficiency, simplicity, and computational efficiency. The PPO
is an extension of the Trust Region Policy Optimization
(TRPO) algorithm proposed by Schulman et al. and the Ac-
tor Critic with experience replay (ACER) presented by Wang
et al.. Compared to off-policy learning methods such as
DQN, PPO is an on-policy learning method that learns di-
rectly from experiences the agent has encountered. The en-
vironment has been modeled using a discrete event simula-
tion method that represents the dynamics of the system and
is used to interact with the DRL agent is implemented with
the help of Hill et al..

Bayesian Optimization for Reward Shaping
Finding an aligned reward function for multi-objective opti-
mization problems is difficult (Nguyen et al. 2020). The es-
sential components of a reward function can be hand-crafted

by domain experts based on their knowledge. However, the
exact weights for different components representing differ-
ent optimization objectives are difficult for human experts
to define. Therefore, We propose to use Bayesian optimiza-
tion (BO) to find appropriate weights of different perfor-
mance objective measures in the reward function (i.e., re-
ward shaping); see Figure 2. The idea of using an optimiza-
tion algorithm to enhance the learning behavior of a DRL
approach is adapted from Chiang et al. where the authors
used Bayesian optimization for hyperparameter tuning of the
DRL approach to a navigation task.

Bayesian optimization has been widely used for hyper-
parameter optimization in supervised learning, where an ini-
tial set of hyper-parameters is selected, and then a model
is trained and tested. Based on the testing results, the BO
updates the surrogate function, and a new set of hyper-
parameters is provided. Very often, a Gaussian Process is
used as a surrogate function. We aim to find an aligned re-
ward function for DRL in our case. Hence, two weights
W1 and W2 are considered as hyper-parameters, reflecting
the importance of corresponding two optimization objec-
tives (i.e., minimizing tardy orders and minimizing picking
costs) in the reward function for learning. Subsequently, we
update the reward function in Equation (1) to assign weights
to corresponding components as follows.

r′(s, a, s′) =

W1 × (−1.5) iftardyo = 1

W1 × (1− u
|O|)

2 If episode terminates
−0.5 if infeasible action
W2 × (− (1−v/N)

50) If order is picked
0 otherwise

(2)
By optimizing the weights in the reward function for a spe-
cific scenario, the DRL agent can cope with different envi-
ronments throughout the day. In other words, the BO frame-
work will suggest a set of weights for the reward function
based on each scenario. The starting weights and ranges
have been set by a domain expert.

We illustrate the Bayesian optimization approach, adapted
from O’Hagan, for reward shaping in Figure 2 and Algo-
rithm 1. The hyper-parameter space X consists of two pa-
rameters, W1 and W2, which range between 0.5 and 1.5.
This range is determined with a set of preliminary exper-
iments. The objective function evaluates the solution by
training and testing a DRL agent with the newly proposed
weights. The two optimization objectives are transformed
into a single objective function f using a multiplication
scalarization method: f =

∑
o∈O tardyo

|O| ×
∑

o∈O po,x

|O| . In this
way, an increase or decrease in each of the objectives at-
tributes proportionally to the single objective value.

The algorithm (Algorithm 1) first samples an initial set of
weights (x0) from the hyper-parameter space and evaluates
it with the objective function f after testing the trained DRL
agent. Then, the algorithm iterates until the predefined max-
imum number of evaluations are reached. In each iteration,
first, a new set of hyper-parameters (weights) is selected
with the expected improvement (EI): uEI(x) = (f(x∗ −
µ(x))Φ(Z) + ϕ(Z), where Φ is the standard normal cumu-

438

Algorithm 1: Pseudo-code of Bayesian optimization
for reward shaping

Input hyper-parameter space X = W1,W2, objective
function f(x), max evaluations nmax

Output x∗, y∗

Select an initial hyper-parameter configuration x0 ∈ X
Evaluate the initial score of x0 by training and testing the

DRL approach: y0 = f(x0)
Set x∗ = x0 and y∗ = f(x0)
for n ∈ {1, ..., nmax} do

uEI(x) = (f(x∗ − µ(x))Φ(Z) + ϕ(Z)
Select a new hyper-parameter xn ∈ X by maximizing

the expected improvement uEI(x)
xn = argmax

x
u(x)

Evaluate f for xn to obtain a new objective score
yn = f(xn)

Update the Gaussian Process with (xn, yn)
if yn < y∗ then

x∗ = xn and y∗ = yn

lative distribution function, ϕ its derivative, Z = f(x∗−µ(x))
σ(x)

and µ is the current posterior predictive mean function of
the Gaussian Process. Hereafter, this newly sampled set of
weights is evaluated using the objective function (f(xn)).
The weights and objective values are appended to S, and
herewith, the Gaussian Process distribution is updated. Fi-
nally, x∗ and y∗ are updated if the obtained objective value
is the best so far.

Distillation of DRL Policy
A noteworthy disadvantage of DRL methods is the lack of
clarity as to how specific actions are selected. The root of
this difficulty lies in the distributed nature of the represen-
tations embedded in the hidden layers of the DNNs (Frosst
and Hinton 2017). Decision trees offer an alternative where
actions can be traced back through sequences of decisions
based directly on input data. Using structured data that has
been computed by the learned policy, a decision tree is fitted
on certain state-action combinations. It infers a set of rules
that separates different actions from each other (Che et al.
2016). We will use this approach to increase the explainabil-
ity of learned DRL models.

Experiments
Experiment Setup
The dataset used for order arrivals is from a large e-
commerce company in The Netherlands. This dataset in-
cludes 257,585 orders with around 376,522 items, where
70% of the orders have only 1 item, 14% of the orders have
two items, 9% of the orders have three, and 4% of the or-
ders have four items. This is a well-known pattern in the
e-commerce business. For this scenario, it is assumed that
100,000 SKUs (Stock Keeping Units) are in the warehouse.
For these experiments, hourly cutoff times from 17:00 until
24:00 are randomly allocated to each arriving order within
3 hours to provide a challenging context. It is ensured that
a cutoff moment of an order is planned a minimum of 30

Figure 3: Distributions of order data

minutes after the arrival time of the order. So orders that ar-
rive before 23:30 are included in the model and have to be
processed before 24:00. This is in line with most of the de-
livery requirements of these e-commerce companies where
they ensure next-day delivery, and this represents real-world
characteristics where orders leave the warehouse in specific
groups. With this set of rules for determining the cutoff mo-
ments, a distribution of cutoff moments per day is depicted
in Figure 3. In total, 30% of the SKUs are stored in the PtG
storage location, 40% of the SKUs are stored in the GtP stor-
age location, and lastly, 30% of the SKUs are stored in both
storage locations. In cases where a Multi-item-Order, for ex-
ample, consists of an item stored in the PtG area and an
item that is stored in both areas, the model picks the item
that is stored in both areas in the PtG area. We vary several
parameters in experimental settings. Firstly, to reflect real-
world characteristics, throughput rates between 2000 and
4000 orders per hour are used. Secondly, based on the se-
lected throughput setting, an appropriate set of resources are
adjusted to the desired throughput rate such that the tardy
orders and picking costs are at reasonable levels in a pre-
liminary analysis. Thirdly, total simulation time consists of
either two hours or an entire day. In both options, it is in-
teresting to analyze the behavior of the proposed methods
and observe whether these methods can cope with changing
characteristics in terms of a changing order arrival pattern.
Lastly, orders are released in real-time, making this an on-
line problem. We have four experimental settings.

• Setting A: Processing 6000 orders from 15:00 - 17:00
• Setting B: Processing 7000 orders from 20:00 - 22:00
• Setting C: Processing 6500 orders from 22:00 - 24:00
• Setting D: Processing 50,000 orders from 10:00 - 24:00

Benchmark Heuristics
We compare the proposed DRL approach, including reward
shaping (DRL+RS), with three heuristics from literature.
The first is the LST rule that sorts orders on the due date, cre-
ate batches with a batch size of N , and computes the slack
time by subtracting the processing and arrival time from the
cutoff time. If there is a negative slack time, the batch size is
reduced iteratively.

The second heuristic proposed by Li, Huang, and Dai for
joint optimization of online order batching and picker rout-
ing in the online retailer’s warehouse in China. The BOC
heuristic uses a similarity coefficient between two orders
to obtain a high order picking efficiency. To optimize also

439

Algorithm 2: Adapted BOC heuristic
Input Set of unprocessed orders I , batch capacity

constrains, max simulation time tmax

Output Set of batched orders B
B ←− list
t←− 0
while I is not empty and t < tmax do

Choose the order with the most imminent cutoff time
i∗

while i∗ does not violate capacity constraints do
Compute Si∗j =

size of Ai∗∩Aj

size of Aj
for all j ∈ I

Sort orders by Si∗j in descending order
Select order (i∗j) with the highest Si∗j

if Multiple orders have same similarity then
Choose the order j with most imminent cutoff

time
Combine order j and i∗ as a new order i∗

Append i∗ to B
Remove all orders within i∗ from I

update simulation time t

for the number of tardy orders, we adapt BOC by initiat-
ing the seed order with an order that has the most imminent
cutoff time. Furthermore, in the case of an equal similar-
ity score, orders with an imminent cutoff time have priority.
The adapted BOC is shown in Algorithm 2. The algorithm
outputs a set of batches to which all orders have been as-
signed. This process iterates until there are no orders left in
I and when the simulation time exceeds the max simula-
tion time tmax. The first step of the batching operation is to
select a seed order and subsequently iterate until the capac-
ity constraints of a batch are reached. Within this iteration,
the similarity coefficient is computed, and a suitable order
is selected based on this coefficient. This selected order is
combined with the seed order, and this process iterates un-
til the batch-specific capacity constraint has reached. If so,
the compiled batch is appended to a list B, and the included
orders are removed from the unprocessed order list I .

The third benchmark heuristic, GVNS (General Variable
Neighborhood Search) algorithm by Bustillo et al., exploits
the idea of neighborhood change in a systematic way. The
aim is to descend to a local optimum or, alternatively, to es-
cape from the basin of attraction from that local optimum. To
adapt this algorithm for optimizing two objectives, the eval-
uate function computes both expected order pickings costs
and the expected tardy orders (algorithm 3).

Starting from an initial batching solution s based on the
Earliest Due Date (EDD) batching heuristic, the entire ap-
proach iterates until the maximum simulation time (tmax)
has been reached. First of all, given a solution S, the shaking
procedure performs a swap move that generates a new solu-
tion S

′
in k consecutive times where items between orders

are exchanged. The insert move will transfer a certain item to
a new order. After this shake operation, the VND operation
performs both of the local search moves in order to improve
the solution. If one of the two moves improves the current
solution, it is accepted as the new current solution. The so-
lutions are evaluated using a function that computes average
picking time and expected tardy orders. After the VND oper-

Algorithm 3: Adapted GVNS algorithm
Input Largest neighborhood to be explored kmax, max

computing time tmax and initial solution S
Output Improved solution s
while t < tmax do

k ←− 1
while k < kmax do

for i ∈ {0, ..., k} do
S

′
←− Swap(S)

k ←− 1
while k < kmax do

S
′′
←− Insert(S

′
), S

′′′
←− Swap(S

′
)

if evaluate(S′) < evaluate(S
′′
) then

S
′
= S

′′

k ←− 1
else if evaluate(S

′
) < evaluate(S

′′′
) and

evaluate(S
′′
) < evaluate(S

′′′
) then

S
′
= S

′′′

k ←− 1
NeighborhoodChange(S, S

′′
, k)

t←− CPUTime()

ation, all solutions are evaluated, and a new current solution
is selected in the function NeighborhoodChange.

The implementation of our approach is available at https://
github.com/ai-for-decision-making-tue/drl-order-batching.

Results
The model parameters for training a PPO agent are mostly
similar to the original parameters of the work of Schulman
et al.. The training consists of 4-16 million steps according
to the specific experiment. This training is done in an en-
vironment where four agents are trained in parallel. Real-
world order data is used to fit an order arrival distribution
function, which is then used to sample training data at each
iteration. So training was done on the different data sets over
iterations. The actor and critic network is updated by all the
agents simultaneously, whereby the agent can learn more
state-action pairs at the same time. The discount factor has
been set at 0.9999 as the episodes can be fairly long. The
neural network consists of fully-connected multi-layer per-
ceptrons with two hidden layers of 64 units and tanh activa-
tion layers. The PPO algorithm has been implemented using
the python package Stable-baselines ((Hill et al. 2018)). This
package has been built upon the Tensor flow framework.

Table 2 shows the results of the proposed DRL approaches
with reward shaping (DRL+RS), without reward shaping
(DRL), and the heuristics (BOC, LST, GVNS) on solving
the multi-objective OBSP in terms of tardy orders and or-
der picking costs. These results are obtained by simulation
per setting for respectively 228, 554, 168, 172 runs. The val-
ues between brackets represent the standard deviation. For
the DRL+RS approach, an agent was trained and tested for
experiment settings A, B, and C. Then, for setting D, the ob-
tained weights from the previous settings are used for train-
ing the agent due to the computational complexity of exper-
iment D. During the different time windows of the day, dif-

440

Setting A Setting B Setting C Setting D
Model TA PC TA PC TA PC TA PC
BOC 3.17 46.80 6.24 49.00 11.80 45.42 23.91 35.40

LST 17.6 65.12 18.7 68.83 21.15 67.21 25.76 53.34

GVNS 6.82 47.41 13.05 48.92 18.78 45.48 26.46 35.52

DRL 2.03 48.65 4.18 50.70 6.65 42.22 13.39 34.15

DRL + RS 1.68 43.02 2.60 46.87 5.53 42.90 12.40 33.96

Table 2: Experimental results of the DRL approach with and
without reward shaping (RS) and three heuristics where TA:
Tardy orders(%) and PC: Picking Costs

ferent weight settings are applied to the reward function of
the agent for setting D. In this way, the agent’s reward func-
tion is dynamically shaped according to the moment in time
of the day. The mean values of all approaches for setting A,
B, and C are tested using a student t-test. These provide sta-
tistical evidence that the means are different from each other
with an α of 0.05. For every setting, the DRL approach with
reward shaping outperforms all the tested heuristics in both
objectives. Only DRL without reward shaping outperforms
the DRL+RS slightly in setting C in terms of picking costs.

In the DRL approach with reward shaping and setting A,
after 50 iterations, the value of 0.86 for tardy orders and 0.90
for picking costs have been found. The best set of weights
for setting B is 1.34 for tardy orders and 0.52 for picking
costs. For setting C, the weight of tardy orders seems to have
a slightly larger impact on the objective value than in the
other two settings. This could be explained by the fact that
within this setting, all orders have their respected cutoff time
at the end of the setting, and therefore, the agent focuses
on picking these orders in time. For setting C, the best set
of weights are 1.20 for tardy orders and a weight of 0.45
for order picking costs. The weight for order picking costs
is decreasing over setting A, B, C. This could indicate that
order picking costs become less important near the end of
a day and tardy orders become more important. For DRL
without reward shaping, the weights have been defined using
expert knowledge, which reflects the business objectives of a
typical system owner. Weight number 1 that punishes tardy
orders was set to 1, and weight number 2 that stimulates
efficient order picking, was set to 0.5. All heuristics have
used a similar same weight definition as for DRL without
reward shaping provided by a domain expert.

To assess robustness, all experiment settings have been
adjusted so that 10% more orders require to be processed
with the same resources. These results have been displayed
in Table 3. For setting A, B, and D, the picking costs in-
creased slightly, where it is assumed that this can be at-
tributed to the lower percentage of tardy orders. For the
DRL approach in setting C, both the percentage of tardy or-
ders and the picking costs are lower than the BOC heuris-
tic results. The DRL approach with reward shaping out-
performs the BOC heuristic in almost all settings based on
tardy orders and picking costs. As the DRL+RS approach
remains the dominant method, this is somewhat robust to
small changes in their current experiment settings.

Setting A Setting B Setting C Setting D
Model TA PC TA PC TA PC TA PC
BOC 1.98 46.83 5.91 48.80 10.23 45.23 23.83 35.34

DRL 1.23 48.29 3.54 50.65 6.83 41.74 15.28 35.37

DRL + RS 0.9 45.69 1.9 49.65 5.82 41.5 9.4 33.12

Table 3: Robustness analysis DRL approach where TA:
Tardy orders(%) and PC: Picking Costs

Lastly, this section presents the learned weights by the
DRL+RS approach for each setting A: (0.86, 0.94), B: (1.13,
0.52), and C: (1.28, 0.45). These weights represent the pri-
ority for tardy orders W1 and the weight for order picking
costs W2 respectively. For setting C, the weight of tardy or-
ders has a larger impact on the objective value than the other
two settings. This could be explained by the fact that by the
end of this setting, all orders must have left the warehouse
in order to be on time and that the agent prioritizes this over
efficient order picking. The weight for order picking costs
is decreasing over all settings. This could indicate that order
picking costs become less important near the end of a day
and that tardy orders become more important.

Explaining DRL policy with DT Decision trees (DT) can
make learned policies more interpretable and provide ex-
planations for certain predicted actions on given state rep-
resentations. The work of Che et al. provides insights in
a DRL policy using these DT and is used to provide in-
sights to the DRL approach with reward shaping for set-
ting A in Figure 4. Using the DRL approach with reward
shaping trained on experiment setting A, a dataset has been
compiled with a state representation of 20 features (state
space representation) and 10-class (action space represen-
tation) predicted actions. This experiment is conducted be-
tween 15:00 and 17:00 and does not contain a lot of cutoff
moments. Using this structured dataset, a classification ap-
proach is taken, and a decision tree is fitted. The dataset is
unbalanced where the following list indicates the occurrence
per class [7224, 13008, 20441, 59091, 1550, 1778, 9463,
20415, 17601, 5284]. Using a 10-fold cross validation evalu-
ation method, the decision tree obtained an f1-score of 47%.
Using this decision tree in Figure 4, several ’rules’ can be

Figure 4: Decision Tree trained on DRL agent of setting A

441

Figure 5: Decision Tree trained on DRL agent of setting C

inferred where the colors represent similar predicted actions
and the entropy in all nodes refers to the ’disorder’ of this
node in providing a certain decision rule when classifying
the data. First of all, the decision tree makes a split based on
whether there are orders within the order category sio-ptg-
e3. This order category contains orders that are single-item,
are stored in the PtG storage area, and have a cutoff time
that is more than 40 minutes from the current moment. Fur-
thermore, in node 2, the decision tree splits the data based
on orders within order category mio-ptg-gtp. If there are or-
ders within this order category and the condition in node 5
is true, a pick-by-order action for order category mio-ptg-
gtp is predicted. In all other cases, the decision tree predicts
a pick-by-batch action for order category sio-ptg (node 4,
8, 9, 5, 11). On the right side of figure 4, the decision tree
makes a split based on order category mio-gtp-e3 where if
there are less than 25 orders in this category, the decision
tree predicts a pick-by-batch action for order category sio-
gtp (node 6, 12, 13). If this is not the case, the model makes
a cut in node 7 where based on the simulation time, either a
pick-by-batch action for order category mio-gtp is made of
a pick-by-order action for order category mio-ptg-gtp.

Experiment C is conducted between 22:00 and 24:00 and
contains a lot of cutoff moments for orders arriving within
this window and poses a different dynamic than in experi-
ment A. Using the DRL + RS approach, a generated dataset
with 20 features and 10-class predictions is used to fit a deci-
sion tree. Similar to the setup for setting, this yielded an un-
balanced dataset but still managed to obtain a f1-score of 56
%. The DT in Figure 5 makes the first split based on the sim-
ulation time, indicating the importance of time dependency
in selecting actions learned by the DRL approach. Then it is
checked whether there are orders within the order category
sio-gtp-e3 in node 2. This order category contains orders that
are single-item, are stored in the GtP storage area and have
a cutoff time that is more than 40 minutes from the current
moment. If there aren’t any orders within this category, the
DT prescribes to choose a batching action for mio-gtp orders
in node 4. Most of the time, there are orders within this cate-
gory (node 4), and the tree describes picking a batch of SiO
GtP orders. On the other side of the tree, the simulation time
is again used for forming two branches where it is checked

Setting A Setting C

Model Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

BOC 3.17 (1.1) 46.8 (0.8) 11.8 (1.8) 45.4 (0.9)

DRL 2.03 (0.8) 48.65 (0.8) 6.65 (0.8) 42.22 (0.7)

DRL + RS 1.68 (0.7) 43.02 (0.6) 5.53 (1.1) 42.90 (0.6)

Distilled DT 3.06 (0.9) 45.59 (0.7) 9.24 (1.0) 44.84 (0.7)

Table 4: Results of the distilled decision tree as heuristic

whether the current simulation time is lower than 23:58 and
higher than 23:21 in node 3. Furthermore, on the right side
of the tree, a split is made on the sio-ptg-e2 order category
in node 6, where if there are less than 24 orders within this
category, the tree describes picking a batch of MiO orders
with storage areas PtG and GtP in node 12. The only pick-
by-order action is predicted for order category mio-ptg-gtp
in node 14 when there are very few orders in order category
sio-ptg-e1. This appears to be logical as the system does not
have to spend pick-by-order action to this popular order cat-
egory and can allocate its resources somewhere else. With
some of the decisions of the DT explained, some dependen-
cies can be identified based on simulation time and the num-
ber of orders within order categories.

The DT infers batching rules from the DRL agent and is
subsequently used as a heuristic for solving the OBSP for
experiment settings A and C. Table 4 shows the results. In
terms of tardy orders and order picking costs, the distilled
DT outperforms the BOC heuristic significantly (α = 0.05).
As decision trees are not able to capture all behavior of DRL
approaches, there is no equal performance.

Conclusion

Optimizing operations in warehousing has become very
challenging for online retailers. In this work, we develop
a deep reinforcement learning approach with reward shap-
ing that can solve a multi-objective variant of the online
order batching problem. We show the proposed DRL ap-
proach can handle real-world size instances and gives better
solutions than the existing heuristics in terms of both perfor-
mance measures, i.e., reducing tardy orders to increase cus-
tomers’ satisfaction and reducing picking costs to save oper-
ation costs. This shows the advantage of learning in tackling
stochastic sequential decision-making problems. After train-
ing, the model can be used in the real-time warehousing sys-
tem. Together with the approach of distilled decision trees
for interpretability, we demonstrate the DRL approach is
very promising to be applied and adapted to optimize ware-
housing operations in practice.

In this work, we use a rather straightforward method to
extract decision rules from the policy network. As future
work, we will investigate more tailored approaches to infer
DRL agent’s policy.

442

References
Bartholdi III, J.; and Hackman, S. 2018. Warehouse & distri-
bution science: release 0.96. Atlanta, GA: The Supply Chain
and Logistics Institute, School of Industrial and Systems En-
gineering, Georgia Institute of Technology.
Beeks, M. 2021. Deep reinforcement learning for solving
a multi-objective online order batching problem. Master’s
thesis, TU Eindhoven.
Boysen, N.; De Koster, R.; and Weidinger, F. 2019. Ware-
housing in the e-commerce era: A survey. European Journal
of Operational Research, 277(2): 396–411.
Bustillo, M.; Menéndez, B.; Pardo, E. G.; and Duarte, A.
2015. An algorithm for batching, sequencing and picking
operations in a warehouse. In 2015 international conference
on industrial engineering and systems management (iesm),
842–849. IEEE.
Cals, B.; Zhang, Y.; Dijkman, R.; and van Dorst, C. 2021.
Solving the Online Batching Problem using Deep Rein-
forcement Learning. Computers & Industrial Engineering,
107221.
Che, Z.; Purushotham, S.; Khemani, R.; and Liu, Y. 2016.
Interpretable deep models for ICU outcome prediction. In
AMIA annual symposium proceedings, volume 2016, 371.
American Medical Informatics Association.
Chen; Wei, Y.; and Wang, H. 2018. A heuristic based batch-
ing and assigning method for online customer orders. Flex-
ible Services and Manufacturing Journal, 30(4): 640–685.
Chiang, H.-T. L.; Faust, A.; Fiser, M.; and Francis, A. 2019.
Learning navigation behaviors end-to-end with autorl. IEEE
Robotics and Automation Letters, 4(2): 2007–2014.
De Koster, R.; Le-Duc, T.; and Roodbergen, K. J. 2007. De-
sign and control of warehouse order picking: A literature
review. European journal of operational research, 182(2):
481–501.
Frosst, N.; and Hinton, G. 2017. Distilling a neural network
into a soft decision tree. arXiv preprint arXiv:1711.09784.
Gademann, N.; and Velde, S. 2005. Order batching to min-
imize total travel time in a parallel-aisle warehouse. IIE
transactions, 37(1): 63–75.
Gil-Borrás, S.; Pardo, E. G.; Alonso-Ayuso, A.; Duarte, A.;
et al. 2020. GRASP with Variable Neighborhood Descent
for the online order batching problem. Journal of Global
Optimization, 1–31.
Hayes, C. F.; Rădulescu, R.; Bargiacchi, E.; Källström, J.;
Macfarlane, M.; Reymond, M.; Verstraeten, T.; Zintgraf,
L. M.; Dazeley, R.; Heintz, F.; Howley, E.; Irissappane,
A. A.; Mannion, P.; Nowé, A.; Ramos, G.; Restelli, M.;
Vamplew, P.; and Roijers, D. M. 2021. A Practical Guide
to Multi-Objective Reinforcement Learning and Planning.
arXiv:2103.09568.
Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto,
A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol,
A.; Plappert, M.; Radford, A.; Schulman, J.; Sidor, S.; and
Wu, Y. 2018. Stable Baselines. https://github.com/hill-a/
stable-baselines. Accessed: 2021-04-16.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In International conference on learning and
intelligent optimization, 507–523. Springer.
Li, J.; Huang, R.; and Dai, J. B. 2017. Joint optimisation
of order batching and picker routing in the online retailer’s
warehouse in China. International Journal of Production
Research, 55(2): 447–461.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Nguyen, T. T.; Nguyen, N. D.; Vamplew, P.; Nahavandi, S.;
Dazeley, R.; and Lim, C. P. 2020. A multi-objective deep re-
inforcement learning framework. Engineering Applications
of Artificial Intelligence, 96: 103915.
O’Hagan, A. 1978. Curve fitting and optimal design for pre-
diction. Journal of the Royal Statistical Society: Series B
(Methodological), 40(1): 1–24.
Pinto, A. R. F.; and Nagano, M. S. 2019. An approach for
the solution to order batching and sequencing in picking sys-
tems. Production Engineering, 13(3-4): 325–341.
Refaei Afshar, R.; Zhang, Y.; Vanschoren, J.; and Kay-
mak, U. 2022. Automated Reinforcement Learning: An
Overview. arXiv, 2022.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practi-
cal bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25.
Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.;
Kavukcuoglu, K.; and de Freitas, N. 2016. Sample ef-
ficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224.
Won, J.; and Olafsson, S. 2005. Joint order batching and or-
der picking in warehouse operations. International Journal
of Production Research, 43(7): 1427–1442.

443

