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Abstract

Police patrol aims to fulfill two main objectives namely to
project presence and to respond to incidents in a timely
manner. Incidents happen dynamically and can disrupt the
initially-planned patrol schedules. The key decisions to be
made will be which patrol agent to be dispatched to re-
spond to an incident and subsequently how to adapt the patrol
schedules in response to such dynamically-occurring inci-
dents whilst still fulfilling both objectives; which sometimes
can be conflicting. In this paper, we define this real-world
problem as a Dynamic Bi-Objective Police Patrol Dispatch-
ing and Rescheduling Problem and propose a solution ap-
proach that combines Deep Reinforcement Learning (specif-
ically neural networks-based Temporal-Difference learning
with experience replay) to approximate the value function and
arescheduling heuristic based on ejection chains to learn both
dispatching and rescheduling policies jointly. To address the
dual objectives, we propose a reward function that implicitly
tries to maximize the rate of successfully responding to an
incident within a response time target while minimizing the
reduction in patrol presence without the need to explicitly set
predetermined weights for each objective. The proposed ap-
proach is able to compute both dispatching and rescheduling
decisions almost instantaneously. Our work serves as the first
work in the literature that takes into account these dual patrol
objectives and real-world operational consideration where in-
cident response may disrupt existing patrol schedules.

Introduction

In policing, occurrences of unexpected incidents often dis-
rupt the execution of an existing plan. This paper focuses
specifically on how police patrol agents should be dis-
patched and how patrol schedules need to be adapted to
respond to dynamically-occurring incidents while fulfilling
the two often conflicting objectives of projecting police pres-
ence (proactive patrol) and responding to incidents in a
timely manner (reactive patrol). In addition, such complex
decision needs to be made rather quickly and sometimes in-
stantaneously. To add to the complexity and practicality to
the problem, changes to the existing schedules need to be
kept as minimal as possible.

In this paper, we propose a Reinforcement Learning (RL)
approach to enable human planners to derive such deci-
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sions quickly and intelligently. We define this real-world
problem as a Dynamic Bi-Objective Police Patrol Dispatch-
ing and Rescheduling Problem (DPRP) which is a variant
of Dynamic Vehicle Routing Problem (DVRP) with some
elements of a university time-tabling problem. We formu-
late the problem as a route-based Markov Decision Process
(MDP) (Ulmer et al. 2020).

To solve the MDP, we propose a Deep Reinforcement
Learning (DRL) approach that combines neural networks-
based Temporal-Difference (TD) learning with experience
replay to approximate the value function and a rescheduling
heuristic based on ejection chains to learn both dispatching
and rescheduling policies jointly. The learnt policies need
to be anticipatory meaning that decisions made at a partic-
ular moment is not solely based on the present incident but
also on future occurring incidents. To manage the trade-offs
between the two opposing objectives, we propose a reward
function that implicitly tries to maximize the success rate of
responding to an incident within a response time target while
minimizing the reduction in patrol presence without the need
to manually set predetermined weights for each objective. It
is intuitive to observe that responding to an incident means
that some proactive patrol times are being taken up, result-
ing in reduction in patrol presence.

This paper makes the following contributions:

* We define a new variant of DVRP that incorporates el-
ements of university time-tabling problem called DPRP
and formulate it as a route-based MDP.

* We propose a solution approach that combines neural
networks-based TD learning with experience replay to
approximate value function and our proposed reschedul-
ing heuristic based on ejection chains to learn dispatching
and rescheduling policies jointly.

* We address the trade-offs between the opposing patrol
objectives by designing a reward function that implicitly
maximizes the gain in one objective while minimizing
the loss in the other objective at the same time, without
the need to manually set predetermined weights.

* We show experimentally on a real-world problem set-
ting that our joint learning approach outperforms existing
learning-based approaches which solve similar problem
in two stages while is still able to compute the decision
in an operationally realistic time.



Related Works

The DPRP belongs to a larger class of problem called po-
lice patrol problem. There are many aspects within the scope
of police patrol problem ranging from designing of patrol
district, resource allocation within a district, route design to
combinations of any of these elements (Samanta, Sen, and
Ghosh 2021). The discussion in this paper will mainly be on
the routing and scheduling aspects of police patrol problem.

Police Patrol Routing and Scheduling Problem

Many existing works on police patrol problem adopt the
hotspot patrol strategy which mainly addresses the reactive
patrol. Such approaches typically begin by predicting crime
hotspots spatially and temporally based on past data and
then allocating police resources accordingly (Keskin et al.
2012; Leigh, Dunnett, and Jackson 2019; Chase et al. 2021).
However, there is a gap in current literature in addressing
proactive patrol. One such work that addresses both aspects
is Wang et al. (2019). The authors addressed the dual objec-
tives by decomposing the problem into two sub-problems.
In this paper, we propose a reward function to address the
dual objectives without the need to decompose the problem
into two smaller components.

Most of the existing works on police patrol routing and
scheduling problem assume that planned routes and sched-
ules are fixed and none takes into account the disruption to
the existing routes and schedules after an instance of inci-
dent response. This paper serves as the first work in ad-
dressing the dynamic version of the police patrol routing
and scheduling problem while taking into consideration both
proactive and reactive patrolling as discussed above.

There is a related stream of works that represents the po-
lice patrol routing and scheduling problem as Stackelberg
Security Games (SSG) (e.g. (Varakantham, Lau, and Yuan
2013; Brown et al. 2014)). However, Rosenfeld and Kraus
(2017) pointed that SSG may not always be applicable to
all patrol context. SSG assumes the existence of an attacker-
defender relationship which may not always be present in
many problem settings. In our context, the police handles
a variety of incidents ranging from traffic incidents, main-
taining order and crowd control or providing general assis-
tance to public. In security games, the underlying model is
a Stackelberg game which hinges on the ability to design an
accurate payoff matrix over a finite discrete set of actions,
but such a setup is neither possible nor suitable for our prob-
lem. The problem presented in this paper is about scheduling
the patrol agents across areas in space and time under vari-
ous complex constraints.

Reinforcement Learning Approach to Solve
Routing and Scheduling Problem

We focus our discussion on an offline decision support
where policies or values for decision-making are computed
prior to the execution of the plan. RL becomes a natural fit
to compute such policy offline. Recently, many works have
emerged that proposed learning-based approaches to solve
combinatorial optimization problems, including routing and
scheduling problems. The proposed RL-based approaches
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Notation Description
1 A set of patrol agents, I € {1,2,...,[I]}
J A set of patrol areas, J € {1,2,...,|J|}
T A set of time periods, T € {1,2, ..., |T|}
k Decision epoch
tr Time period where k occurs
0; (k) A schedule of patrol agent i at k
o(k) A joint schedule of all patrol agents at k
where §(k) = (0;(k))icr
0_;(k) A joint schedule of all patrol agents
except for agent i at k
5% (k) A joint schedule of all patrol agent
after executing action x at k
Ttarget Response time target
T Actual response time to incident at k
Dy (6',6) Hamming distance (in %) between §’ and &
d(j,7")  Travel time from patrol area j to j’
Qj Min patrol time (time period) for j
o(k) Patrol statuses of each patrol area in terms of
the ratio of the effective patrol time over @
where o (k) = (o;(k)) e
Table 1: Set of key notations used in this paper.

solve the problem either through constructing solution node-
by-node (Nazari et al. 2018; Kool, van Hoof, and Welling
2018) or through improving an existing solution (Chen and
Tian 2019; Lu, Zhang, and Yang 2019).

There also have been many recent works that addressed
the dynamic variants of those problems (Chen et al. 2019;
Joe and Lau 2020; Li et al. 2021; Chen, Ulmer, and Thomas
2022). Most of these works adopt a two-stage approach.
Chen et al. (2019) uses the terms dispatching-level and
routing-level to describe each component of the two-stage
approach. In this two-stage approach, the problem is decom-
posed into two stages and solved one after another. The first
stage involves learning the assignment/dispatch policy to de-
termine which agent or vehicle to be selected. After which,
routing/scheduling decision is executed based on the deci-
sion made in the first stage. In this second stage, the deci-
sion is either computed using an exact method or a heuristic.
This is done to reduce the action space. Unlike these works,
our proposed approach learns the dispatch and rescheduling
policies jointly rather than separately.

Problem Description and Model

Table 1 provides key notations and the corresponding de-
scriptions used in this paper.

Problem Description

Our problem is concerned with scheduling patrol agents
within a given police sector. There are |I| patrol agents in-
charge of patrolling |.J| patrol areas within the sector in a
shift with a duration of |T'| time periods. At the start of
the shift, each patrol agent is assigned to an initial patrol
schedule. Throughout the shift, incidents occur dynamically
and a patrol agent is dispatched to respond to each incident
which results in the need to reschedule the initial schedules
so as to still fulfill both said objectives. We can observe that



Time Period
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Figure 1: A sample joint schedule, 0(k) assuming || = 3.

this problem shares many similarities with DVRP (Dewinter
et al. 2020).

Decision Epoch. A decision epoch k£ occurs whenever an
incident occurs and decisions to dispatch agent to respond
to the incident and to reschedule the existing schedules are
required. k£ = 0 indicates the start of the shift.

Schedule. Each patrol schedule includes the sequence of
patrol areas to visit (routes) and when and how long to patrol
each areas (schedule). A sample joint patrol schedule can be
found in Figure 1. It is similar to a university time-table with
an additional key constraint whereby in between two differ-
ent patrol areas, there must be sufficient time periods to cater
for travel time. At the start of the shift, each patrol agent is
assigned to an initial patrol schedule, d;(0) that forms a joint
schedule, §(0). In this paper, we assume that the initial joint
schedule is available and computed independently.

Incident. A dynamic incident, wj occurs at decision
epoch k and is described as the following tuple: (wy , w, w§)

where wj, € J refers to the location of the incident, w}, € T
refers to the time period when the incident occurs and w}
refers to the number of time periods needed to resolve the
incident. We assume deterministic resolution time.

Patrol Presence. We define patrol presence in terms of the
number of time periods each patrol area is being patrolled in
a shift. Each patrol area j needs to be patrolled for at least
Q; time periods in a given shift. We define a fitness function,
fp(0(k)) to quantify the goodness of a given schedule (k)
in terms of its ability to project presence. f,,(6(k)) consists
of two components namely patrol utilization (ratio of effec-
tive patrol time over total shift time) and penalty cost for
failure to meet the minimum patrol time. Thus, a schedule is
deemed to have good patrol presence if agents spend most
of the time patrolling rather than travelling between patrol
areas and each patrol area is being patrolled for at least the
required number of time periods.

Zie],teT 17(die) — ZjeJ(Qj(l — min(o;,1)))
T < [1]

fp((s) =
(H

where 1;(x) = {1796 €7

0,z¢J
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Response Time. The response time to an incident at de-
cision epoch k, 7, is computed as the time taken by the as-
signed agent, 2, to act upon the dispatch call from the point
where incident occurs (!, —w}) plus the travel time from its
current location to the incident location. A successful inci-
dent response happens when 7j, < Ty4pget. We assume that
any dispatch call must be acted upon within 7,4,
— (ot t ; J
T = (2}, — wi) + d(ju, wy,) (2)

where 7§, — wi < Thas,t’ = .

Problem Objective. The objective of the problem is to
make dispatching and rescheduling decisions at every epoch
that maximize the number of successful incident responses
while minimizing the reduction in patrol presence.

MDP Formulation

Since the problem that we are addressing is a sequential
decision-making problem, we model the problem as a route-
based MDP. This modelling framework suits our problem
since a rescheduling decision must include the updated pa-
trol schedules instead of simply the next patrol area to visit.

State. A state of this MDP consists of two parts, pre-
decision state Sy, and post-decision state Sj. S) captures
the necessary information required to make the dispatching
and rescheduling decisions. Sy, is represented as the follow-
ing tuple: (tx, 6(k), o(k), wg). Meanwhile, the post-decision
state Si captures the changes to the state upon executing a
decision. t; remains the same while the other three compo-
nents are updated depending on the decision taken.

Action/Decision. z}, is the action of dispatching an agent
to an incident and updating the joint schedule at deci-
sion epoch k. xj is represented as the following tuple:
(x4, xt,67(k)) where 2 € I is the agent assigned to re-
spond to the incident, x;, € T' the time period which the
assigned agent starts to act upon the dispatch call and 6* (k)
the resulting joint schedule after executing action xy.

In a real-world operational setting, the disruption to the
initially-planned schedule must be minimized. We propose
the use of Hamming distance to quantify the extent of dis-
ruption to the original schedule and this distance must be
within a given threshold, P, 4.

Dp(6%(k),6(0)) < P 3)
Transition. There are two main transitions in the model
namely, from pre-decision state, S}, to post-decision S}; and
from S} to the next pre-decision state, Sj;4i. The transi-
tion from Sy to S{ takes place after executing action zy.
Meanwhile, during transition from S} to Sy, a realiza-
tion of a dynamic incident, w41 takes place and Si11 =
(S, Wi+1)-

Reward Function. The reward function, R(Sy, z\) is de-
signed in such a way that high reward is given to a successful
incident response while minimizing the reduction in patrol
presence at the same time. We introduce f,.(zx) to quantify



the success of an incident response when executing xj.

R(Sk, k) = fr(zr) X fp(67(K)) = fp(6(K)) (4
17Tk < Ttarget
fT‘(xk) =4 05,7 > Ttarget (5)

0, =9

The last case in Eq. 5 indicates that the incident cannot
be responded to due to unavailability of agents within 7,4,
or the existing schedule simply cannot be disrupted beyond
Pruaz. As this is beyond the scope of our work, we make
the assumption that additional resources may be activated to
ensure that all incidents are responded to.

Our proposed reward function implicitly maximizes the
success rate of responding to an incident within 7;4,.4¢; While
minimizing the impact to the patrol presence. Unlike the
commonly adopted linear scalarization method to address
multiple objectives, there is no need to manually determine
a set of weights attached to each objective.

Objective Function. The objective at every decision
epoch £ is to select action x}, which maximizes the imme-
diate reward and the expected future reward from yet-to-
realized dynamic events which is represented by the approx-

imated value function, V (S¥).

Ty = argmary, cx (s,) 1 R(Sk, ) + 'yV(S,f)} 6)

Solution Approach

Our paper adopts the solution framework proposed by Joe
and Lau (2020) where we do not reduce the action space
by decomposing the problem into two stages or two sub-
problems; instead we learn the dispatching and rescheduling
policies jointly by combining Value Function Approxima-
tion (VFA) with a rescheduling heuristic.

The key idea of our proposed approach is to learn the ap-
proximate value function offline via simulation and use the
learned value function to guide the rescheduling heuristic
(see Figure 2). The approximate value function represents
the value of the state in terms of its expected future rewards.
The proposed reward function ensures that the learned val-
ues take into account the need to maximize both objectives.
In other words, given a state and an incident, we need to
choose an action that results in a schedule with better in-
cident response capability with minimal reduction in patrol
presence.

Value Function Approximation

As shown in Figure 3, we propose to approximate the
value function for each post-decision state, V( 7,6) with
neural networks. Our approach learns the dispatching and
rescheduling policies jointly because the value function rep-
resents the value of a state after executing both dispatch and
reschedule decisions. To learn the parameter 6, we propose
the use of on-policy TD learning with experience replay. We
refer our readers to Joe and Lau (2020) for the detailed de-
scription of the learning algorithm. We propose the use of
VFA because the decision variable, x, is multi-dimensional.
Off-policy TD learning method like Q-learning and policy
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Figure 2: The learned value function approximation is
utilised by the rescheduling heuristic to compute reschedul-
ing decisions during run-time.
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Figure 3: Neural network is used to approximate the value
function of a post-decision state. Handcrafted features and
encoded schedules are used to reduce the state space.

gradient method may not be applicable directly since the ac-
tion space changes depending on the current state.

State Representation

To reduce the state space, we represent the joint schedule
by extracting its key features and also encoding it into low-
dimensional vector representations. Our encoder network is
a multilayer perceptron which takes in the one-hot vector
encoding of each agent’s schedule. In addition, we introduce
the following handcrafted key features to describe a joint
schedule:

* Patrol Utilization. The ratio of effective patrol time over
the total shift time of each agent’s schedule.

* Patrol Penalty. Penalty cost for failure to meet the min-
imum patrol time.
Figure 3 shows how our proposed state representation en-

hances the learning process by supplementing handcrafted
features with encoded schedules as inputs to the network.

Rescheduling Heuristic Based on Ejection Chains

To compute the rescheduling decision almost instanta-
neously, we propose a rescheduling heuristic based on ejec-
tion chains. Ejection chain is a complex neighbourhood
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Figure 4: Assuming Agent 1 is dispatched to respond to an
incident at patrol area 4 at time period 2 and it takes 1 time
period to travel from patrol area 1 to 4 and a resolution time
of 1 time unit, direct insertion of the incident into the ex-
isting schedule will create a defect to the schedule. This is
unlike in the classical VRP where additional stop can be di-
rectly inserted into a route.

structure which was first introduced in Glover (1996) and is
commonly used as perturbation operator to escape local op-
timum. Although originally designed for TSP, ejection chain
moves have been used by many authors for various optimiza-
tion problems such as VRP (Rego 1998), knapsack prob-
lem (Peng et al. 2016) and time-tabling problem (Kingston
2016).

Ejection chain move consists of a sequence of operators
that forms a chain reaction. In our problem, the ejection
chain consists of a sequence of defect-checking and repair
operations. Insertion of an incident into the schedule po-
tentially introduces a defect to the schedule (see Figure 4).
Repairing a defect at one part of a schedule may introduce
a defect in another part. Thus, a chain of CHECK and
REPAIR operations is formed until termination condition
is met or until no defect is present. Two types of defects exist
in our problem:

e Type 1: Patrol Consecutiveness. There must be suffi-
cient time periods in between two different patrol areas
in a schedule. The time periods must be at least able to
cater to the travel time between the consecutive patrol ar-
eas. This is a hard constraint since the existence of this
defect deems the schedule to be infeasible. There are two
types of cases for this defect type namely Insufficient
case and Excess case. Insufficient case refers to a case
where there are insufficient time periods to cater for the
required travel time while Excess refers to a case where
the time periods in between two different patrol areas are
more than the required travel time periods.

e Type 2: Minimum Patrol Presence. Each patrol area
must be patrolled for at least a minimum required amount
of time periods, ();. This is a soft constraint since the ex-
istence of this defect results in a penalty cost that reduces
the goodness of a schedule.

Algorithm 1 describes how this rescheduling heuristic
works for every (z},z!) pair. A tabu list is introduced to

Algorithm 1: Rescheduling Heuristic Based on
Ejection Chains

Input : Joint schedule 6(k), incident wy, agent a:};,
action time x,
Output: Post-decision joint schedule 6% (k)
1 07(k) := Insert incident w], into agent z’s schedule
at time period z},
2 6%(k) := (67 (k), 0-i(k))
3 while 6% (k) is defective do
4 | if 0%(k) in TabuList then

5 if 0% (k) is feasible then
6 | return 7 (k)
7 else
8 | return None
9 end
10 end

1 Add 6® (k) into TabuList
12 defects == CHECK (6*(k))
13 if Dy, (6%(k),6(0)) > Ppq. then

14 | return None

15 end

16 if defects is not empty then

17 Select a defect, d from de fects
18 0%(k) := REPAIR(6*(k),d)
19 end

20 end

21 return 6% (k)

avoid cycling (lines 4-9). To speed up the heuristic, we pro-
pose to explore only one ejection chain instead of exploring
multiple ejection chains at the same time with priority given
to repair Type 1 defect (line 17). This simplified approach
results in 5x speed-up on average with minimal impact to
the solution quality.

REPAIR Operation. Each ejection chain consists of
a series of CHECK and REPAIR operations (lines 4-
19). We omit the implementation details for CH ECK to
simplify the discussion as it is fairly straightforward to
implement it. Meanwhile, Algorithm 2 describes how the
REPAIR operation works. For each type of defect, we in-
troduce corresponding repairOperator.

* Repair operators for Type 1 defect. We introduce two
repair operators namely Insert and Replace. Figure 5 il-
lustrates how these operators repair a schedule with Type
1 Defect (Insufficient case). Meanwhile, for the Excess
case, the Insert operator will insert either the origin or
destination patrol area to the excess time period.

Repair operator for Type 2 defect. We introduce Re-
place operator which simply selects patrol areas that have
extra patrol time and replace them with patrol areas that
require more patrol time.

Each repair operator is akin to a local neighbourhood
search which explores the neighbouring schedules by repair-
ing the defect and return the neighbouring schedule with the
highest getScore value (line 7). However, we introduce an
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Figure 5: Assuming a patrol sector in the form of 3x3 grid,
Insert operator inserts the necessary travel time into the
schedule (see n1). Meanwhile, Replace operator replaces the
infeasible destination with the feasible ones (see ny and n3).

Algorithm 2: REPAIR

Input : Joint schedule 6% (k), defect d
1 Create a set of neighbouring schedules, N := {}
2 for each repair operator do
3 n = repairOperator(6* (k), d)
4 | NU{n}
5 end
6 With probability €, bestSolution ~ U(N)
7 Otherwise,

bestSolution := argmaznengetScore(n)

8 return bestSolution

e-greedy policy to explore chain that results from possibly
selecting a poorer solution so as to escape possible local op-
timum (line 6). The learned value function is being utilized
in getScore function to determine the exact neighbourhood
move to take. In fact, getScore is equivalent to Eq. 4 plus
the learned value function and a penalty term for infeasible
solution since the neighbouring schedule may still contain
some defects. For example, in Figure 5, only ng has zero
penalty term since nq and no still contain Type 1 defect.

Experiments

The objective of the experiment is to evaluate the solu-
tion quality and the computational time of our proposed ap-
proach against a real-world problem setting. While we try
to mimic the real-world problem setting as close as possi-
ble, we evaluate our proposed approach with synthetically-
generated data due to classified nature of the data.

Experimental Setup

Environment Setup. Hexagonal grids of diameter 2.22
km each are drawn over the local police sectors. Each grid
represents a patrol area. We assume that patrol agents have
the flexibility to plan their own routes within a patrol area.
To evaluate the robustness of our approach, we consider 4
patrol sectors with different parameter settings and profiles
to represent different problem complexities (see Table 2 and
Figure 6). Sectors A and B represent a slightly less complex
problem with most of the patrol areas having relatively ho-
mogeneous patrol density while C' and D represent a more
complex problem with more diverse patrol areas. We de-
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Sector Parameter Description
A Il =71, High agent-to-area ratio,
|J| =14 relatively homogeneous
patrol densities (medium)
B |I| =4, Low agent-to-area ratio,
|J| =23 relatively homogeneous
patrol densities (low)
C || =3, High agent-to-area ratio,
|J| =6 more diverse patrol densities
(low to high)
D Il =7, Low agent-to-area ratio,
|J| =23 more diverse patrol densities

(low to high)

Table 2: Different patrol sectors representing different prob-
lem structures and complexities.

Sector A Sector C

2.0
15
1.0
2 0.5

0 0.0

Sector B Sector D

10.0

No. of Patrol Area

10 7.5
5.0

25

O 50 100 150 200 250 300 006750 100 150 200 250 300

No. of Patrol Nodes (Proxy to Minimum Patrol Time Requirement)

Figure 6: Histogram showing the structure of each patrol
sector in terms of the distribution of its patrol areas by their
patrol density.

fine patrol density as the number of minimum patrol time
required in a given hexagonal grid. Meanwhile, B and D
have added complexity of lower agent-to-area ratio.

We define T as a 12-hour shift discretized to 10-minute
time periods. We model the inter-arrival time of the dynamic
incident using a Poisson process with A as the rate of occur-
rences of dynamic incidents per hour.

Model Parameters. The value function network is rep-
resented as fully connected neural network with 2 hidden
layers with 64 nodes and 32 nodes respectively. Here are
the values of some key hyperparameters used in the model:
batch size = 64, learn and update frequencies of once in ev-
ery 10 steps, learning rate = 0.005, v = 0.99 and ¢ = 0.3.
We set the number of training episodes for both our approach
and DQN to be 10000 episodes. We observe that the cumu-
lative rewards (represented as % improvement over myopic)
stabilize after around 5000 training episodes (see Figure 7).

Training & Testing Setup. In the learning phase, we syn-
thetically generate 100 samples of initial joint schedules.
Each sample represents a joint schedule of a single shift in
a given day. 75% of the samples are used as training data
while 25% withheld as testing data. We derive the initial
schedule samples by formulating and solving a mathemat-
ical model based on the static version of the problem (which
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Figure 7: Average cumulative rewards over last 250 training
episodes.

is in essence a set cover model). During the testing phase,
we run 30 experiments to simulate a month’s worth of patrol
schedules. For each experiment, we run 20 different real-
izations of dynamic incidents to simulate different scenarios
that may take place in a given day.

Performance Measure. We propose to evaluate the ap-
proach based on the % improvement over myopic in terms
of the success rate i.e. number of incidents that are success-
fully responded within 7¢4,4c¢ and patrol presence in terms
of its f,,(6) value. The myopic approach is simply choosing
a decision that gives the maximal immediate reward using
the proposed heuristic. Instead of presenting mean value as
a point estimate to represent the solution quality, we also use
95% Confidence Interval (CI) of the mean since the problem
is stochastic in nature.

Baseline Models. Given that there is no prior work in
solving DPRP, we propose to the following two common
approaches in solving similar problem as baseline models:

¢ Two-Stage. This corresponds to the earlier-mentioned
technique commonly used in many learning-based ap-
proaches. We implemented DQN as the learning algo-
rithm to learn the dispatch policy with slight differences
in the state representation since DQN approximates Q-
value around S}, rather than S},.

* Greedy. A commonly adopted dispatching policy by hu-
man decision-makers is to dispatch the nearest available
agent to an incident.

The same reward function and rescheduling heuristic are
used in the experiment for fairer comparison. Here, we
do not include the commonly-used online approaches to
solve DVRP such as Multiple Scenario Approach (MSA)
(Bent and Van Hentenryck 2004) as baseline because such
sampling-based approaches takes longer computation time
and may not be operationally suitable (see experiments done
in Joe and Lau (2020)).

Experiment Results and Analysis

Solution Quality. There are 3 main observations that we
can gather from the experiments.

1. Our proposed approach is statistically able to produce
decisions that result in higher success rate as compared

459

Sector Our Approach Two-Stage Greedy
A 18.4+1.9% 16.0+1.8% —-11.7+1.7%
B 36.6+9.1% 24.1+10.6% 48.5+10.4%
C —51+1.7% -224+25% —6.2 +2.0%
D 33.9+5.3% 0.8 +4.0% 10.1 +5.6%

Table 3: Our approach statistically outperforms the other two
baseline models in terms of % improvement (success rate)
over myopic across 30 experiments in most sectors.

to the other two baseline models in 3 out of 4 sectors (see
Table 3). However, our approach performs poorer than
myopic in Sector C'. This is because C represents a very
small police sector with very small numbers of agent and
patrol areas. Thus, a myopic approach will suffice given
that the decision space is rather limited.

2. Our proposed approach outperforms the Two-Stage ap-
proach in more complex problems. For ease of illustra-
tion, we intentionally present the results as line charts
in Figure 8. We observe that when the problem scenarios
are less complex (A and B), the performances of both ap-
proaches do not differ much. However, the performance
gap widens with our approach outperforming the Two-
Stage approach when it comes to more complex prob-
lems (C' and D). Furthermore, our approach has slight
edge over Two-Stage approach when the agent-to-area
ratio is low (B and D). In fact, the Two-Stage approach
performs rather poorly and even worse off than myopic
when the problem is both diverse and the agent-to-area
ratio is low (D). This may be due to the fact that in our
joint learning approach, the rescheduling heuristic is also
learning and adapting while, in Two-Stage approach, the
rescheduling heuristic provides the reward signal to learn
the dispatch policy but the learned policy does not inform
how the heuristic works. Thus, there is in fact no learn-
ing in the second stage. The joint learning mechanism in
our approach may be crucial in addressing more complex
problem scenarios.

3. Greedy approach is outperformed by the other models in
almost all the scenarios except for B. This shows that
the common notion of dispatching the nearest available
agent may be sub-optimal for most cases except for some
specific cases.

Computational Time. Although our proposed approach
is slower than the two baseline models, it is still able to com-
pute the decision within operationally realistic time of < 10
seconds on average across all sectors (see Figure 9).

The computational time may seem to be relatively long
given the simplicity of the rescheduling heuristic. This is be-
cause the heuristic needs to be run for every (x,z}) pair.
We allow z, to take values other than w!, (see Eq. 2) which
means that agent may not need to respond to the incident im-
mediately. The intuition behind this waiting strategy which
myopically may not make sense, is that it allows agent to
respond to another more urgent incident in the meantime or
by responding late to this current incident, it may result in
more incidents being responded successfully later on.



Sector A

—<— Our Approach
50 Two-Stage

A A

I A ANV A SV S v

Sector C

Sector B

Sector D

A
\
A A [\ A

‘ AN A
\/\/ SV \/ v\

50

% Improvement (Success Rate) over Myopic

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Experiment Number

Figure 8: The gap in performance between our approach and

the Two-Stage approach widens with more complex prob-

lem scenarios.

Computational Time per Incident (in seconds)

Sector A Sector D

15 ‘
10 ‘
|
. Jl

0

Our Approach Two-Stage Greedy Our Approach Two-Stage Greedy

Figure 9: Our proposed approach, although slower, is still
able to compute decision within seconds. Only results from
2 largest sectors, A and D are shown as results from the
other sectors also exhibit similar trends.

Response Vs. Presence In all 3 approaches, we observe
that an increase in success rate will correspondingly result
in a reduction in patrol presence. To evaluate how our re-
ward function performs in managing this trade-off, we run
our approach on the same set of experiments data but with
a modified reward function that is based on linear scalariza-
tion of the two objectives, R'(Sg,xx) = wy X fr(zg) +
wy X fp(67(k)). In this experiment, we select two sets of
weights (wy,wz) = (0.5,0.5) and (0.7,0.3) to represent
the notions of “balance” and greater emphasis on incident
response respectively; and Sectors A and D (2 largest sec-
tors with one representing a more complex problem struc-
ture than the other).

Table 4 summarizes the experiment results. Comparing
against the linear scalarization method, our reward function
enables our proposed approach to respond to 2 and 4 more
incidents while trading-off < 5% and < 10% less proac-
tive patrol time in A and D respectively. This translates to
an average of about 15 minutes less proactive patrol time
per agent for 1 more successful incident response. This rep-
resents a reasonable trade-off operationally. In addition, our
proposed reward function avoids the difficulty of manually
assigning weights which have been shown to produce differ-
ing outcomes depending on the problem structures.

Experiment Discussion and Path to Deployment

We have shown experimentally that our proposed joint learn-
ing approach outperforms the popular Two-Stage approach
especially when the problem scenario becomes more com-
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Sector Reward No. of Successful Patrol Presence
Function  Incident Response o

R 16.3 0.77

A R(0.7,0.3) 14.2 0.80
R’(0.5,0.5) 14.0 0.81

R 14.1 0.71

D R'(0.7,0.3) 13.1 0.74
R'(0.5,0.5) 9.5 0.80

Table 4: Comparison of our approach with proposed vs.
modified reward functions over 30 experiments. Results pre-
sented are average values across 30 experiments.

plex within an operationally realistic time. We have also
shown empirically how our reward function is able to im-
plicitly maximize one objective while minimizing the loss
in the other without the need to manually assign weights
to each objective. More importantly, our proposed approach
is performing better than the greedy and myopic policies
which are commonly adopted by human decision-maker in
most of the problem scenarios.

In the following paragraphs, we present several chal-
lenges in deploying our proposed solution and show how
they can be addressed to ease the path towards deployment.

Data & Training. Learning value function based on sam-
ple realization of dynamic incidents can be done directly
from real data (Powell 2011). This means that there is no
need to model the underlying probability distribution of the
dynamic incidents and learning can take place directly from
available historical data, which eases the deployment effort.

Weighing Dual Objectives. Our proposed reward func-
tion, unlike the usual linear scalarization approach to multi-
objective problem, does not require human to set predeter-
mined weights (which may be subjective and difficult to
compute and justify).

Generality. We assume one generic learned policy that is
applicable to any given shift in any given day within a police
sector. This may not always be true as a certain day of the
week may have different incident pattern. Thus, for deploy-
ment, distinct policies may need to be learnt from different
set of data and applied to different problem scenarios.

Scalability. Scalability can be addressed through sev-
eral engineering means such as decomposing the problem
into smaller police sectors or parallelizing the rescheduling
heuristic. Instead, we have evaluated the robustness of our
approach against different problem complexities which may
not necessarily be determined solely by scale.

Future Works

We are working with relevant security agencies to further
evaluate our approach’s applicability and performance on
specific real-world patrol problem scenarios. In addition,
one interesting and challenging direction for future works
will be to look at a multi-agent setting where police agents
from different sectors collaborate to balance between main-
taining patrol presence and response capability across all the
sectors and within their own sectors.



Ethics Statement

Al in policing may bring about significant benefits to soci-
ety and also serious ethical and adverse societal impacts. In
fact, any policing initiative that is driven by data is inevitably
susceptible to data manipulation and abuse by human oper-
ators. In addition, the existing public perception of the law
enforcement agency would also have significant impact on
how the proposed initiative is perceived and the subsequent
impact to the society after its implementation. We acknowl-
edge that these factors exist with or without Al and they dif-
fer in both form and extent from country to country.

Notwithstanding the above-mentioned factors, the ad-
verse ethical/societal impact resulted from the research work
presented in this paper is minimal because our work (1) aims
to achieve efficiency and better service quality for the pub-
lic, (2) covers wide-ranging incidents beyond crimes, (3)
takes into account both reactive and proactive patrol and (4)
learns directly from raw data. We believe that Al does not
replace human operators entirely but it complements human
decision-makers in making informed decision. Thus, human
operators still have the responsibility to use data with in-
tegrity for public good.
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