
Hyper-Heuristics for Personnel Scheduling Domains

Lucas Kletzander, Nysret Musliu
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling

DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria
{lucas.kletzander,nysret.musliu}@tuwien.ac.at

Abstract

In real-life applications problems can frequently change or
require small adaptations. Manually creating and tuning al-
gorithms for different problem domains or different versions
of a problem can be cumbersome and time-consuming. In
this paper we consider several important problems with high
practical relevance, which are Bus Driver Scheduling, Rotat-
ing Workforce Scheduling, and Minimum Shift Design. In-
stead of designing very specific solution methods, we propose
to use the more general approach based on hyper-heuristics
which take a set of simpler low-level heuristics and combine
them to automatically create a fitting heuristic for the prob-
lem at hand. This paper presents a major study on applying
hyper-heuristics to these domains, which contributes in three
different ways: First, it defines new low-level heuristics for
these scheduling domains, allowing to apply hyper-heuristics
to them for the first time. Second, it provides a comparison
of several state-of-the-art hyper-heuristics on those domains.
Third, new best solutions for several instances of the dif-
ferent problem domains are found. These results show that
hyper-heuristics are able to perform well even on very com-
plex practical problem domains in the area of scheduling and,
while being more general and requiring less problem-specific
adaptation, can in several cases compete with specialized al-
gorithms for the specific problems. These results help to im-
prove industrial systems in use for solving different schedul-
ing scenarios by allowing faster and easier adaptation to new
problem variants.

Introduction
Industrial applications of scheduling technology often have
to deal with changing requirements and the need to provide
good solutions to new problem variants or even new problem
domains in short time. However, often solution methods are
tailored to a specific application and are difficult to adapt to
changing constraints or different problems.

In contrast, hyper-heuristics are designed to work in
a domain-independent way to provide efficient solutions
across different domains, just requiring a set of low-level
heuristics (LLH) and comparably few or even no param-
eter inputs in order to create the appropriate heuristic for
solving a particular problem instance on the fly based on
the performance of the individual LLHs (Burke et al. 2013,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019). As part of the Cross-Domain Heuristic Search Chal-
lenge (Burke et al. 2011) the framework HyFlex (Ochoa
et al. 2012) was introduced for a uniform implementation
of different hyper-heuristics.

This paper presents a deep investigation of hyper-
heuristics to three challenging personnel scheduling do-
mains of high practical relevance for the first time, which are
Bus Driver Scheduling (BDS), Rotating Workforce Schedul-
ing (RWS), and Minimum Shift Design (MSD). We first
propose several new low-level heuristics for these domains.
Then we present a major comparison of 10 different versions
of state-of-the-art hyper-heuristics on all three domains.

We obtain very good results on these domains, includ-
ing several new best known solutions, and including prac-
tically relevant optimization goals that have been excluded
from previous work. This provides strong results to deploy
hyper-heuristics in practice to allow for easier adaptation to
changing requirements and new problem domains.

Problem Domains
There has been a lot of work on different types of personnel
scheduling problems for several decades which is summa-
rized in several surveys (Burke et al. 2004; Ernst et al. 2004;
Van den Bergh et al. 2013; De Bruecker et al. 2015). We fo-
cus on three different optimization domains in this area with
complex real-life constraints, which are used in practice by
our industry partner XIMES GmbH1, an Austrian company
providing consulting and well-known software packages for
various kinds of employee scheduling applications.

Bus Driver Scheduling
The first domain under consideration is Bus Driver Schedul-
ing (BDS), which is a part of crew scheduling in the process
of operating bus transport systems (Ibarra-Rojas et al. 2015).
It has been considered by many authors starting with Wren
and Rousseau (1995), but mostly focused only on cost.

In contrast, our domain deals with a complex real-life Bus
Driver Scheduling Problem that was recently introduced by
Kletzander and Musliu (2020), who also provided challeng-
ing instances that are publicly available. The best known so-
lutions for most instances were achieved by a highly special-

1www.ximes.com

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

462



start work

ℓ1

rest

ℓ2

rest

passive ride

ℓ3

end work

Working time Ws

? ?

Driving time Ds

Total time Ts

Figure 1: Example shift for BDS (Kletzander, Musliu, and
Van Hentenryck 2021)

ized Branch and Price approach (Kletzander, Musliu, and
Van Hentenryck 2021).

The domain deals with the assignment of bus drivers to
vehicles that already have a predetermined route for one day.
It encodes the real-life application of an Austrian collective
agreement that includes a very complex set of constraints,
and an objective function combining various cost and em-
ployee satisfaction goals to obtain practically useful shifts.

Bus routes are given as a set L of individual bus legs,
each leg ℓ ∈ L is associated with a tour tour ℓ (corre-
sponding to a particular vehicle), a start time startℓ, an end
time end ℓ, a starting position startPosℓ, and an end posi-
tion endPosℓ. The driving time for the leg is denoted by
driveℓ = lengthℓ = end ℓ − startℓ.

A tour change occurs when a driver has an assignment of
two consecutive bus legs i and j with tour i ̸= tour j . The
time it takes to change from position p to position q when not
actively driving a bus (passive ride time), is dp,q for p ̸= q.
dp,p represents the time it takes to switch tour at the same po-
sition, but is not considered passive ride time. Each position
p is further associated with an amount of working time for
starting a shift (startWorkp) and ending a shift (endWorkp)
at that position.

A solution to the problem is an assignment of exactly one
driver to each bus leg. A schematic example shift is shown
in Figure 1. It shows the three main measures of time that
are relevant for evaluating a shift: driving, working and to-
tal time. The constraints for each shift are summarized as
follows, for details refer to Kletzander and Musliu (2020):

• No overlapping leg assignments and enough changing
time in case of a tour change.

• Hard maximum for driving, working, and total time, ad-
ditionally a soft minimum for working time.

• Driving breaks after at most 4 hours of driving time,
with the options of one break of at least 30 minutes, two
breaks of at least 20 minutes each, or three breaks of at
least 15 minutes each.

• Rest breaks of at least 30 minutes for shifts between 6
and 9 hours, and at least 45 minutes for shifts of more
than 9 hours. Whether they are paid depends on their po-
sition within the shift.

Empl. Mon Tue Wed Thu Fri Sat Sun
1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Table 1: Example rotating workforce schedule

• Shift splits are breaks of at least 3 hours which are always
unpaid, but not rest breaks.

costs = 2 ·W ′
s + Ts + rides + 30 · chs + 180 · splits (1)

The objective (1) combines paid working time W ′
s as the

main objective with the total time Ts, the passive ride time
rides, the number of tour changes chs, and the number of
shift splits splits, and is based on the real-life requirements
of balancing cost optimization with the need to create prac-
tically workable schedules for the employees.

Rotating Workforce Scheduling
Once shifts are fixed, they have to be assigned to employ-
ees according to several constraints dealing with allowed se-
quences of shifts and limitations to the consecutive shift as-
signments. In many applications, a rotating schedule, where
each employee rotates through the same sequence of shifts
with different offsets, is a preferred way of scheduling.

The Rotating Workforce Scheduling (RWS) problem can
be classified as a single-activity tour scheduling problem
with non-overlapping shifts and rotation constraints (Baker
1976). Over the years several approaches were used to
solve the problem, including use in commercial software
by XIMES for almost 20 years (Musliu, Gärtner, and Slany
2002). A recent state-of-the-art complete method was intro-
duced by Musliu, Schutt, and Stuckey (2018) and further
extended by Kletzander et al. (2019), in particular by intro-
ducing several optimization goals from practice into the pre-
vious satisfaction problem. A decomposition approach for
classical RWS was recently introduced by Becker (2020).

Formally, a rotating workforce schedule consists of the
assignment of shifts or days off to each day across several
weeks for a certain number of employees. Table 1 shows
an example for four employees (or four equal-sized groups
of employees), assigning the three shift types day shift (D),
afternoon shift (A), and night shift (N). Each employee starts
their schedule in a different row, moving from row i to row
i mod n + 1 (where n is the number of employees) in the
following week.

The satisfaction version of RWS is based on definitions
and notation by Musliu, Gärtner, and Slany (2002) and Mus-
liu, Schutt, and Stuckey (2018):

• n: Number of employees.
• w = 7: Length of the schedule. The total length of the

planning period is n·w, as each employee rotates through
all n rows.

• A: Set of work shifts (activities), enumerated from 1 to
m, where m is the number of shifts. A day off is denoted
by a special activity O with numerical value 0, A+ =
A ∪ {O}.

463



• R: Temporal requirements matrix, an m × w-matrix
where each element Ri,j corresponds to the number of
employees that need to be assigned shift i ∈ A at day j.

• ℓw and uw: Minimal and maximal length of blocks of
consecutive work shifts.

• ℓs and us: Minimal and maximal lengths of blocks of
consecutive assignments of shift s for each s ∈ A+.

• Forbidden sequences of shifts: Any sequences of shifts
(like N D, a night shift followed by a day shift) that are
not allowed in the schedule. This is typically required
due to legal or safety concerns. The given instances use
forbidden sequences of lengths 2 (F2) and 3 (F3).

The task is to construct a cyclic schedule S, represented as
an n×w-matrix, where each Si,j ∈ A+ denotes the shift or
day off that employee i is assigned during day j in the first
period of the cycle.

The problem has mostly been treated as a satisfaction
problem, often providing a large number of solutions mak-
ing it difficult to choose the most suitable schedule. Instead,
in practice it is beneficial to include the choice criteria into
the problem, therefore, we focus on the optimization variants
of the problem introduced by Kletzander et al. (2019). Since
employees in shift work often have difficulties aligning their
free time with friends and family with more regular working
times, the three different objectives deal with the optimiza-
tion of free weekends, where a free weekend is defined as
having both Saturday and Sunday off:

• F1: Maximize the number of free weekends f .
• F2: Minimize the maximum distance dm between con-

secutive free weekends (dm = n + 1 if no weekend is
free).

• F3: Minimize the sum of squared distances between

weekends d =
∑n

i=1 D̂ist
2

i where D̂ist i is the distance
to the next free weekend if weekend i is free, and n oth-
erwise.

Minimum Shift Design
The third domain describes a very different approach to de-
signing shifts compared to BDS. Here, a certain demand is
given for each time of the planning period, and the objective
is to construct shifts within given limits to cover the demand
as well as possible. However, since a large number of very
different shifts is more difficult to handle, another objective
is to minimize the number of distinct shifts that are intro-
duced.

Minimum Shift Design (MSD) was introduced by Musliu,
Schaerf, and Slany (2004) where a tabu search is proposed.
This is the only work that also partially considers a forth ob-
jective that is not used further in literature, but often very
relevant in practice. It sets limits for the average number of
shifts per week that will be assigned to an employee. If this
objective is not included, it might not be possible to find
a good or even feasible assignment regarding sequences of
consecutive shifts or the total number of shifts when assign-
ing the shifts to individual employees. While this objective
has been dropped in other work on this problem, we deal

0 6 12 18 24

Start End E.
6:00 18:00 3

12:00 24:00 2
21:00 9:00 1

Figure 2: Example demand and solution for MSD

with the full practical problem formulation. The state-of-the-
art method (Kletzander and Musliu 2020) uses a network-
flow based formulation to provide optimal solutions to all
benchmark instances, however, without the forth objective.

The specification is based on Musliu, Schaerf, and Slany
(2004). The problem input is defined as follows:

• n consecutive timeslots [a1, a2), [a2, a3), . . ., [an, an+1),
each slot [ai, ai+1) with the same slotlength sl in minutes
and with a requirement for workers Ri indicating the op-
timal number of employees required at that timeslot.

• s shift types t1, . . . , ts, each of them associated with a
minimum and maximum start time smins and smax s,
given in timeslots of the current day, as well as mini-
mum and maximum length lmins and lmax s in times-
lots. Shifts can extend to the following day, shifts extend-
ing beyond an+1 continue from a1.

A feasible solution only uses shifts within the time windows
specified by the shift types. Among feasible solutions, the
following criteria have to be minimized as a weighed sum:

• T1: Excess of workers (minute scale).
• T2: Shortage of workers (minute scale).
• T3: Number of shift classes in use. A shift class is con-

sidered in use if there is any day in the planning period
where employees are assigned to this shift.

• T4: Deviation of the average shift length from the defined
window. This window is derived from a minimum and
maximum number of shifts per week that are supposed to
be assigned to each employee in average and the number
of working hour per week per employee.

A small example demand with a solution with no under-
staffing or overstaffing and three different shifts in use is
shown in Figure 2.

Hyper-heuristics Setup
In this paper we investigate for the first time hyper-heuristics
for the three scheduling domains described in the previous
section. We provide an extensive comparison of several dif-
ferent hyper-heuristics on existing benchmark instances. For
each of the domains we propose new low-level heuristics
which are an essential part of hyper-heuristics.

Low-level Heuristics
For each of the problem domains we use three categories of
low-level heuristics (LLH), which are improvement heuris-
tics that are guaranteed to result in either better or same qual-
ity solutions, mutations which can change solution quality in
any direction, and destroy-and-repair heuristics that are sup-
posed to structurally change the solution. These categories

464



are based on three of the four possible categories in the
HyFlex framework. Since the first two of these are similarly
implemented for all three domains, we describe the common
heuristics first, and the used moves of the individual domains
as well as the much more specific destroy-and-repair heuris-
tics afterwards.

Improvement and Mutation Heuristics. Improvement
heuristics are various versions of hill climbers. While each
domain uses different moves, the algorithms in use are:
• First improvement with at most 1 or 10 steps
• Best improvement with at most 1 or 10 steps
• Random improvement with at most 1000 iterations or 10

consecutive iterations without improvement
Mutations are based on two different sets of heuristics:
• Random improvement with metropolis acceptance cri-

terion for mutations with a tendency to move towards
improving or slightly worsening solutions, with at most
1000 iterations or 10 consecutive iterations without im-
provement and the following acceptance probability for
worsening solutions (where ∆ is the change in solution
value):

p = exp

(
−∆

t

)
(2)

Values for t are fixed to 1, 10, and 100.
• Random walk is used for mutations which typically sig-

nificantly worsen the solution. Randomly chosen moves
are applied 1 or 10 times in a row.

Specific implementations for BDS. The heuristic for the
initial solution assigns bus legs to the shifts where they cause
the least cost increase or to a new shift if cheaper. The fol-
lowing two moves based on Kletzander and Musliu (2020)
are used for improvement and mutation heuristics:
• Swap: Choose one bus leg ℓ from one employee e1 and

a second employee e2. Move ℓ from e1 to e2 and move
back all bus legs in e2 which now overlap with ℓ to e1.

• SequenceSwap: Choose a consecutive sub-sequence
ℓi, . . . , ℓj from one employee e1 and a second employee
e2. Then move the whole sub-sequence from e1 to e2 and
move back all bus legs in e2 which now overlap with any
bus leg ℓi, . . . , ℓj to e1.

Since the SequenceSwap neighborhood is rather large,
first and best improvement are only used with a single step.
The random improvement mutations are only used with
SequenceSwap to prevent an excessive number of muta-
tion heuristics.

The new destroy-and-repair heuristics focus on removing
one or multiple employees from the solution and rebuilding
it using the construction heuristic. They are particularly im-
portant as they are the only LLHs for this domain that can
change the number of employees in the solution, which can
be very important for solution quality:
• RemoveEmployee: An employee is chosen randomly

and removed from the solution. All bus legs previously
assigned to this employee are reassigned by the construc-
tion heuristic. An employee might be fully removed if it
is possible to reassign all bus legs to other employees.

• RemoveTour: A tour is randomly chosen from the in-
stance, all employees assigned to any part of this tour are
removed from the solution. The tour might be arranged
in a less fragmented way during reassignment.

Specific implementations for RWS. For the representa-
tion of this domain the shifts are already fixed to their
columns corresponding to all workforce requirements al-
ready fulfilled, resulting in the following moves:
• SimpleSwap: Choose a column c and two rows r1 and
r2, and replace the corresponding two shifts.

• Swap: Choose a column c, two rows r1 and r2, and a
length ℓ ≤ 7, and perform a simple swap for ℓ consec-
utive cells starting from column c (moving to the next
rows and first column when going past the last column).
This exchanges up to a week of consecutive work assign-
ments.

The moves are similar to those used by Musliu (2006). The
initialization is more sophisticated than in previous heuris-
tics for the problem. Instead of just randomly assigning
shifts within each column, shifts are assigned according to
the following algorithm: For each column, for each shift that
needs to be assigned to the column, assign it to the row with
the least increase in objective value. This already forms use-
ful sequences of shifts during the construction process.

Again, first and best improvement with the larger Swap
neighborhood are only used with a single step. For the mu-
tations only the full Swap neighborhood is used, since it
includes the smaller SimpleSwap anyway.

Two new destroy-and-repair heuristics are used:
• RemoveDay: A random column c is chosen, all assign-

ments for this day are removed and reassigned using the
construction heuristic. The significance is that all rows
are affected at once with this heuristic.

• RemoveWeeks: A random range of up to 10 con-
secutive weeks is chosen, all assignments from these
weeks are removed and reassigned using the construc-
tion heuristic. This allows to reorganize larger consecu-
tive blocks of shifts.

Specific implementations for MSD. Three different new
neighborhoods are used for this domain:
• NewShift: A day d and shift type t are chosen. Then,

a shift within the bounds set by the chosen shift type t is
added to the schedule on day d.

• RemoveShift: A shift s is chosen and removed from
the schedule.

• ChangeShift: A shift s is chosen and removed from
the schedule. Then, a shift type t is chosen and a new
shift within the bounds set by t is created and added to
the schedule on day d(s), the previously assigned day of
shift s. This combines the previous two moves without
the need to deal with a potential situation of low cover
in-between.

Compared to these moves, Musliu, Schaerf, and Slany
(2004) use a larger set of different moves more focused on
shift classes, while we use fewer moves focused on individ-
ual shifts, to prevent dealing with an excessive number of

465



LLHs. NewShift and RemoveShift are used with 1 and
10 steps, the larger ChangeShift only with one step for
first and best improvement. Additionally a best improvement
heuristic with alternating RemoveShift and NewShift
applications and at most 10 steps is used. It randomly starts
with any of the two neighborhoods. Further a version of this
alternating search is included where only the combination of
the two neighborhoods needs to show an improvement in the
solution value rather than each individual neighborhood.

Due to the objective for reducing the number of differ-
ent shift classes, it is often more beneficial to try to assign
another shift to an already existing shift class instead of a
new one. Therefore, when shifts are randomly generated for
random improvement and random walk, the following pro-
cedure is applied: With 50% probability, an already existing
shift class is randomly chosen and the corresponding shift
returned, else any shift within the bounds a randomly chosen
shift type is generated. The different neighborhoods are ran-
domly selected with equal probabilities in each iteration of
the randomized heuristics. The initialization heuristic uses
random improvement with this setting for up to 10000 itera-
tions or 100 iterations without improvement.

The new destroy-and-repair heuristics we propose for the
MSD combine two different remove operators with two dif-
ferent repair operators resulting in four heuristics. The re-
move operators are:

• RemoveClass: A shift class is randomly chosen and
all shifts within this class are removed. This is supposed
to help getting rid of potentially less useful shift classes.

• RemoveDay: All shifts on a particular day are removed,
allowing to reschedule this day at once while leaving the
other days untouched.

The repair operators are based on best improvement to focus
on the best replacement shifts rather than introducing addi-
tional shift classes by using randomized repair operators:

• RepairExisting: Use only shifts from shift classes
already in use to repair the schedule, filling the gaps as
well as possible without introducing new shift classes.

• RepairFull: Use full best first search, setting the fo-
cus more on covering the demand .

Hyper-heuristics
We critically evaluate and compare ten state of the art
hyper-heuristics including approaches that provided very
good results in the hyper-heuristic competition and recent
approaches that were implemented by Mischek and Mus-
liu (2021). All used hyper-heuristics are implemented in
HyFlex. This ensures that they are applied under the same
conditions.

• ALNS: Self-adaptive large neighborhood search based
on Laborie and Godard (2007) with alternating perturba-
tion and reconstruction moves, learning weights for the
LLHs based on their performance.

• BSW-ALNS: Bigram sliding window ALNS is a version
of ALNS where the weights for the reconstruction moves
are not learned independently, but based on the preceding

perturbation move. The moving time windows based on
Thomas and Schaus (2018) are supposed to deal with the
fact that different LLHs take different amounts of time
by taking this into account when calculating the weights.

• SW-ALNS: Sliding window ALNS extends ALNS only
with the time windows, but not the bigram extension.

• CH-BI (Bigram): Chuang (2020) describes several meth-
ods in his thesis based on solution chains. If any solution
in the chain is better than the starting solution, it is ac-
cepted and the chain stopped, otherwise the whole chain
is discarded. Chain lengths are chosen according to the
Luby sequence. The way to choose heuristics is different
for the four variants in this comparison. For CH-BI the
probability to select a heuristic depends on the previous
heuristic in the chain and the number of times this pair of
heuristics occured in successful chains.

• CH-FR (Frequency): In this case the probability to
choose a heuristic depends on the number of times it ap-
peared in successful chains.

• CH-PR (Pruning): Heuristics with bad performance are
pruned after a warm-up period, otherwise uniform ran-
dom selection.

• CH-UN (Uniform): Here the heuristics are chosen ac-
cording to a uniform random distribution.

• GIHH: This approach by Misir et al. (2011) was the win-
ner of CHeSC 2011. It uses an adaptive dynamic heuris-
tic set to monitor the performance of each heuristic to
select heuristics in different phases, finds effective pairs
of heuristics, and uses a threshold accepting method.

• L-GIHH (Lean GIHH): This hyper-heuristic was ob-
tained by performing Accidental Complexity Analysis
on GIHH by Adriaensen and Nowé (2016), and was re-
ported to provide similar or even slightly better perfor-
mance while greatly reducing the complexity of GIHH.

• HAHA: Lehrbaum and Musliu (2012) proposed a hyper-
heuristic which switches between working on a single so-
lution and a pool of solutions together with an adaptive
strategy for selecting LLHs.

Evaluation
All problem domains and low-level heuristics were imple-
mented in Python and run using PyPy 7.3.5 for adequate
speed. The hyper-heuristics were implemented in the Java
HyFlex framework and run using OpenJDK 8u292. A gen-
eral interface that allows hyper-heuristics to run on domains
outside of HyFlex is implemented and used to connect the
different parts of the software. All evaluations have been per-
formed with one hour of runtime, which was also the maxi-
mum runtime for compared methods except when stated oth-
erwise. This includes both PyPy and Java execution, but not
the transmission times of the interface to transparently be
able to compare hyper-heuristics implemented in HyFlex or
externally. The experiments were run on a computing clus-
ter with Intel Xeon CPUs E5-2650 v4 (max. 2.90GHz, 12
physical cores, no hyperthreading), but each individual run
was performed single-threaded. Each method was run on
each instance 5 times to account for random variations. For

466



Instance SA HC BP SW-ALNS CH-PR GIHH L-GIHH HAHA
10 14717.4 14904.4 14709.2 14875.6 14805.6 14787.0 14773.6 14966.6
20 30860.6 30931.4 30290.3 30941.4 30671.2 30731.6 30694.0 31222.4
30 50947.4 51544.2 49846.4 51164.2 50903.6 50765.8 50854.2 51642.6
40 69119.8 69533.6 67000.4 69360.2 68847.6 68639.6 68645.4 69866.8
50 87013.2 86718.6 84341.0 87375.8 87034.0 86762.0 86729.8 88062.8
60 103967.6 103780.0 99727.0 103876.8 103464.8 103138.8 103149.8 104434.4
70 122753.6 122912.8 118524.2 122597.8 122025.6 121671.8 121660.6 122688.2
80 140482.4 139765.2 134513.8 139747.2 139209.2 139123.0 139041.6 140504.4
90 156385.0 156239.4 150370.8 155374.4 154972.4 155093.8 155113.2 156052.4
100 173524.0 172327.8 172582.2 172406.4 171182.4 171278.2 171325.4 172318.0

Table 2: Best results for BSD with different solution methods

brevity, this section shows the most important results, full
result tables are available online2. The evaluation uses pub-
licly available benchmarks, which include randomly gener-
ated, but also real-world examples, to allow comparison with
previous and future work.

Bus Driver Scheduling
This domain was evaluated on the set of 50 benchmark in-
stances used by previous work3. They span 10 size cate-
gories from around 10 tours (70 legs) to around 100 tours
(1000 legs) based on real-life demand distributions.

Table 2 shows the average of the best results per in-
stance category for the hyper-heuristics (only best version
for ALNS and CH) in comparison to the previous best results
(Simulated Annealing, Hill-climber, Branch and Price). The
entry in bold highlights the best heuristic result (all methods
except BP), the value in italics the best overall result. All five
included hyper-heuristics can outperform previous heuristic
results on at least 3 categories, with CH-PR, GIHH, and L-
GIHH outperforming them in 8 categories.

Branch and Price is an exact method that provides near-
optimal solutions for most instances except the largest ones
in the data set. However, it has two major disadvantages.
First, it has problems scaling to larger instances. Real-life
instances are often even larger than the largest benchmark
instances. However, even on the largest size of the given in-
stances the hyper-heuristics provide better results than BP,
despite BP using twice as much time for these instances. In
fact, several methods improve the previous best known solu-
tions for two out of the five instances in the largest category
for this problem. Therefore, hyper-heuristics can be consid-
ered the new state-of-the-art method for very large instances.
Second, compared to the rule-specific implementation of the
sub-problem in BP, hyper-heuristics can be adapted to differ-
ent rule-sets easily, which is often important in practice.

Rotating Workforce Scheduling
This domain was evaluated on the original set of 20 real-life
benchmark instances4. While there are more randomly gen-

2https://cdlab-artis.dbai.tuwien.ac.at/papers/hyper-heuristics-
personnel/

3https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
4https://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

erated instances available, we compare to previous results
for the optimization objectives (Kletzander et al. 2019).

In contrast to the other domains this domain has a much
stronger emphasis on feasibility. For several instances, it is
already difficult to find a feasible solution. We used a con-
stant weight of 100 for hard constraint violations and scaled
the optimization objectives to be small enough to reliably
receive feasible solutions. Table 3 shows the number of fea-
sible results per method and objective. GIHH and L-GIHH
obtain feasible results on all instances, with only few excep-
tions in some individual runs. The other methods, however,
are not able to solve some of the more challenging instances.
The versions of CH and HAHA perform in a similar way,
ALNS can solve even fewer instances.

Looking at the optimization results, there is a strong divi-
sion between easy and hard instances that was already visi-
ble in previous work: For several instances, all methods reli-
ably reach the optimum on every single run. E.g., for F1, for
5 out of 20 instances every method obtained the optimum in
each of the 5 runs, for 3 further instances at least one of the
5 runs reached the optimum for each method. On the other
hand, for several of the hard instances previously no result
was obtained in the timeout of one hour.

Table 4 shows a comparison of hyper-heuristic results
with the previous Minizinc solutions (Kletzander et al. 2019)
only on those instances where GIHH, L-GIHH and MiniZ-
inc did not all find the optimum. Instances are shown as
objective-instance. Note that objective 1 is a maximization
objective, while 2 and 3 are minimization objectives. The
results show that the hyper-heuristics can improve previous
best known results for 12 out of 27 hard instances. In par-
ticular, solutions can be provided for all 5 instances which
previously ran into timeout. On the other hand, for those in-
stances where the optimum could not be reached, the dis-
tance to the optimum is often very small.

In comparison regarding the optimization, GIHH is able
to provide more best solutions than L-GIHH which is still
the second best method. HAHA can provide one signifi-
cantly better best known solution (1-20), showing also for
other instances that if it can provide feasible solutions, those
are often of good quality, but those values are not reached
reliably. While the other hyper-heuristics are less competi-
tive, they can still improve some of the results compared to
Minizinc on the very difficult instances.

467



Objective ALNS BSW-ALNS SW-ALNS CH-BI CH-FR CH-PR CH-UN GIHH L-GIHH HAHA
F1 62 50 67 82 79 74 78 98 97 79
F2 64 59 67 78 83 78 80 99 98 79
F3 68 57 68 82 80 76 77 100 99 78

Table 3: Number of feasible solutions out of 100 per hyper-heuristic

Obj-Inst MiniZinc GIHH L-GIHH HAHA
1-9 34 35 35 34

1-11 4 6 6 5
1-12 8 7 8 7
1-15 - 15 13 10
1-18 23 21 20 22
1-19 24 26 23 18
1-20 - 32 26 37
2-9 2 3 3 3

2-10 3 4 4 5
2-11 5 6 6 13
2-12 4 5 5 5
2-13 4 5 5 6
2-15 - 7 8 -
2-16 4 5 6 6
2-17 4 5 5 6
2-18 4 6 7 8
2-19 28 8 11 23
2-20 - 11 15 25
3-9 26522 26522 26524 26524

3-10 8772 8784 8778 8778
3-11 21710 20783 20783 23596
3-12 4836 5243 4836 4836
3-15 - 196806 200887 209213
3-16 16868 16900 16888 16890
3-18 84414 87218 87218 87218
3-19 1456141 1253063 1267498 1339601
3-20 3855876 3268396 3295030 -

Table 4: Best result comparison for hard RWS instances

Minimum Shift Design
For this domain a large set of instances is available5. In par-
ticular we use 93 instances in four data sets, but focus on
sets 3 (30 realistic instances) and 4 (3 real-life instances),
where demand and shifts will not align perfectly, since the
first sets are artificially created to allow an exact cover which
is unrealistic in practice.

However, the forth objective was only considered by Mus-
liu, Schaerf, and Slany (2004), but with evaluation only on
the first data set. Furthermore, the weight of T4 is set to 0
in the instance generator as soon as the objective interferes
with the perfect cover. Therefore, either T4 is not considered
or does not have an effect anyway. In our evaluation, we use
the bounds in the provided instances, but with a fixed weight
of 1000 instead of the weight from the instances which is ei-
ther 1000 or 0.

To have a baseline comparison, Figure 3 provides the de-

5https://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html

0 10 20 30 40 50

ALNS
BSW-ALNS

SW-ALNS
CH-BI
CH-FR
CH-PR
CH-UN

GIHH
L-GIHH

HAHA

Figure 3: Best result deviations for reduced MSD

0 20 40 60 80

ALNS
BSW-ALNS

SW-ALNS
CH-BI
CH-FR
CH-PR
CH-UN

GIHH
L-GIHH

HAHA

Figure 4: Best result deviations for full MSD

viation from the optimal results by Kletzander and Musliu
(2019) in percent for each hyper-heuristic on the realistic
data sets 3 and 4 without using T4. This provides two conclu-
sions. First, it shows the differences in the hyper-heuristics.
Here, L-GIHH clearly provides the best performance. In
contrast to the previous domains, however, GIHH shows a
larger gap to L-GIHH. While regarding the worst deviation
GIHH is still on the second place, the CH methods (except
CH-UN) provide very good results in the average case and
CH-BI outperforms GIHH in the median as well as upper
and lower quartile. ALNS and HAHA perform significantly
worse.

Second, the results show that especially L-GIHH can pro-
vide high quality results on those real-life instances, with
the upper quartile at a gap of 5 %. While the exact method
is clearly stronger on the reduced problem formulation, it
would be much more difficult to adapt to the forth objective.
For the hyper-heuristics setup, however, this is very easy to
achieve and we can for the first time provide benchmark re-
sults on all instances with the forth objective enabled.

468



Method BDS F1 F2 F3 MSD +T4

ALNS 3 10 7 7 10 11
BSW-ALNS 4 9 6 5 16 16
SW-ALNS 5 11 6 7 16 18

CH-BI 4 12 11 11 28 32
CH-FR 9 13 13 8 25 30
CH-PR 11 12 13 8 25 38
CH-UN 5 12 12 9 18 19
GIHH 13 17 20 16 28 25

L-GIHH 15 16 15 15 76 46
HAHA 1 13 8 11 9 14

Table 5: Number of wins for each hyper-heuristic

Figure 4 shows the deviations for MSD with the forth ob-
jective compared to the optimal solutions for reduced MSD.
These are now only a lower bound that is not reachable for
most instances, but it allows the same relative comparison
which shows that the relative performance of the individual
hyper-heuristics is very similar to before. However, this time
the lowest median is actually achieved by CH-BI, while the
best quartiles are still achieved by L-GIHH, but less distinct.
It also shows that for a majority of instances, including this
additional objective will raise the objective value by a few
percent, while for a few instances it raises quite significantly.

Comparison of Hyper-heuristics
Table 5 shows the number of times a hyper-heuristic ob-
tained the best result out of all 10 hyper-heuristics in com-
parison on an instance (ties are awarded to all hyper-
heuristics involved in the tie). This final comparison sums up
the picture from the previous sections regarding the relative
performances of the hyper-heuristics: L-GIHH is the best
heuristic on two out of the three domains, especially clearly
in MSD, and only beaten by the original GIHH on the RWS
domain. The CH versions (except CH-UN) perform well on
all domains, sometimes even outperforming GIHH. HAHA
shows reasonably good performance for RWS, but struggles
with the other domains.

The versions of ALNS did not perform well. While sev-
eral options were tried before the comparison for its param-
eters (5 minutes warmup, 1 minute window length), perfor-
mance might increase with more careful tuning. However,
no tuning was required for the other hyper-heuristics. Note
that even though the LLHs have several parameters as well,
different options of LLHs with different parameter settings
were successfully used across all three domains to prevent
the need for detailed tuning.

While the quality of the best results seems to depend on
the set of available LLHs, the winning hyper-heuristics show
to be very efficient at selecting a good mix relative to their
competitors in different scenarios (even in filtering out ill-
behaving LLHs when a bug occurred for one of the do-
mains). We tracked the number of heuristic applications for
each heuristic and each run and found some interesting pat-
terns: First, different hyper-heuristics show several different
LLH preferences. Second, the same hyper-heuristic usually
favors similar LLHs for different instances of the same do-

main, but some heuristics are actually swapped depending
on the instance.

Specifically looking at the destroy-and-repair heuristics
shows that for most of the instances and hyper-heuristics
in the different domains, the destroy-and-repair heuristics
are frequently used. Further, some additional experiments
showed that without any destroy-and-repair heuristics, e.g.,
on BDS the winning method L-GIHH looses its ability to
outperform the results from literature on all but one instance,
clearly showing that these are relevant to the performance.
They seem similarly important for MSD, while less impor-
tant for RWS.

Conclusion

In this paper, we provided a major study on using var-
ious hyper-heuristics to solve different domains in per-
sonnel scheduling which include complex constraints and
combined optimization goals from practical applications.
We provided new low-level heuristics for three different
scheduling domains used by our industry partner, applying
hyper-heuristics to them for the first time. We compared
several versions of state-of-the-art hyper-heuristics and pro-
vided multiple comparisons for the relative performance of
the hyper-heuristics on the individual domains. The results
showed that especially Lean GIHH, but also the original
GIHH are very well suited to efficiently solve the different
scheduling domains.

With these methods we were able to provide several ad-
vances for the individual domains. For BDS, we were able to
outperform previous heuristic approaches and find two new
best known solutions for the benchmark data set. For RWS,
we could provide several new best known solutions for the
different optimization goals including several solutions for
instances previously running into timeouts without a solu-
tion. For MSD, for the first time we provided comprehen-
sive results using the forth objective that has high practical
relevance, hopefully fuelling more research into this more
realistic version of the problem.

In practice, these results are very useful in many ways.
Besides the specific improved solutions, the results show
that using hyper-heuristics for complex practical problems
is a very useful approach to provide high-quality solutions
without spending too much time for highly problem-specific
solution methods. In real-life applications there are often
different variations of these problems, frequently including
customer-specific constraints or adapted optimization goals.
However, the LLHs are independent from the additional con-
straints or different objectives, so they do not need to be
adapted to different customers, allowing rapid adaptation for
changing requirements. Therefore, deployment of the lead-
ing hyper-heuristics in the industrial software of our partner
will be targeted next.

In future work we plan to investigate the effects of the
different LLHs in more detail, including the analysis of the
chosen combinations of LLHs and the importance of specific
sets of these heuristics for the solution quality.

469



Acknowledgments
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.

References
Adriaensen, S.; and Nowé, A. 2016. Case study: An analysis
of accidental complexity in a state-of-the-art hyper-heuristic
for HyFlex. In 2016 IEEE Congress on Evolutionary Com-
putation (CEC), 1485–1492. IEEE.
Baker, K. R. 1976. Workforce allocation in cyclical schedul-
ing problems: A survey. Journal of the Operational Re-
search Society, 27(1): 155–167.
Becker, T. 2020. A decomposition heuristic for rotational
workforce scheduling. Journal of Scheduling, 23(5): 539–
554.
Burke, E. K.; De Causmaecker, P.; Berghe, G. V.; and
Van Landeghem, H. 2004. The state of the art of nurse ros-
tering. Journal of scheduling, 7(6): 441–499.
Burke, E. K.; Gendreau, M.; Hyde, M.; Kendall, G.; McCol-
lum, B.; Ochoa, G.; Parkes, A. J.; and Petrovic, S. 2011. The
cross-domain heuristic search challenge–an international re-
search competition. In International Conference on Learn-
ing and Intelligent Optimization, 631–634. Springer.
Burke, E. K.; Gendreau, M.; Hyde, M. R.; Kendall, G.;
Ochoa, G.; Özcan, E.; and Qu, R. 2013. Hyper-heuristics:
a survey of the state of the art. JORS, 64(12): 1695–1724.
Burke, E. K.; Hyde, M. R.; Kendall, G.; Ochoa, G.; Özcan,
E.; and Woodward, J. R. 2019. A classification of hyper-
heuristic approaches: Revisited. In Handbook of meta-
heuristics, 453–477. Springer.
Chuang, C.-Y. 2020. Combining Multiple Heuristics: Stud-
ies on Neighborhood-base Heuristics and Sampling-based
Heuristics. Ph.D. thesis, Carnegie Mellon University.
De Bruecker, P.; Van den Bergh, J.; Beliën, J.; and Demeule-
meester, E. 2015. Workforce planning incorporating skills:
State of the art. European Journal of Operational Research,
243(1): 1–16.
Ernst, A.; Jiang, H.; Krishnamoorthy, M.; and Sier, D. 2004.
Staff scheduling and rostering: A review of applications,
methods and models. European Journal of Operational Re-
search, 153(1): 3–27.
Ibarra-Rojas, O.; Delgado, F.; Giesen, R.; and Muñoz, J.
2015. Planning, operation, and control of bus transport sys-
tems: A literature review. Transportation Research Part B:
Methodological, 77: 38–75.
Kletzander, L.; and Musliu, N. 2019. Modelling and Solving
the Minimum Shift Design Problem. In International Con-
ference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 391–408. Springer.
Kletzander, L.; and Musliu, N. 2020. Solving Large Real-
Life Bus Driver Scheduling Problems with Complex Break
Constraints. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, 421–
429.

Kletzander, L.; Musliu, N.; Gärtner, J.; Krennwallner, T.;
and Schafhauser, W. 2019. Exact methods for extended ro-
tating workforce scheduling problems. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 29, 519–527.
Kletzander, L.; Musliu, N.; and Van Hentenryck, P. 2021.
Branch and Price for Bus Driver Scheduling with Complex
Break Constraints. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11853–11861.
Laborie, P.; and Godard, D. 2007. Self-adapting large
neighborhood search: Application to single-mode schedul-
ing problems. Proceedings MISTA-07, Paris, 8.
Lehrbaum, A.; and Musliu, N. 2012. A new hyperheuris-
tic algorithm for cross-domain search problems. In Interna-
tional Conference on Learning and Intelligent Optimization,
437–442. Springer.
Mischek, F.; and Musliu, N. 2021. A collection of hyper-
heuristics for the HyFlex framework. Technical Report CD-
TR 2021/1, TU Wien.
Misir, M.; De Causmaecker, P.; Vanden Berghe, G.; and Ver-
beeck, K. 2011. An adaptive hyper-heuristic for CHeSC
2011. In OR53 Annual Conference, Date: 2011/09/06-
2011/09/08, Location: Nottingham, UK.
Musliu, N. 2006. Heuristic methods for automatic rotating
workforce scheduling. International Journal of Computa-
tional Intelligence Research, 2(4): 309–326.
Musliu, N.; Gärtner, J.; and Slany, W. 2002. Efficient gen-
eration of rotating workforce schedules. Discrete Applied
Mathematics, 118(1-2): 85–98.
Musliu, N.; Schaerf, A.; and Slany, W. 2004. Local search
for shift design. European Journal of Operational Research,
153(1): 51–64.
Musliu, N.; Schutt, A.; and Stuckey, P. J. 2018. Solver In-
dependent Rotating Workforce Scheduling. In International
Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, 429–445.
Springer.
Ochoa, G.; Hyde, M.; Curtois, T.; Vazquez-Rodriguez, J. A.;
Walker, J.; Gendreau, M.; Kendall, G.; McCollum, B.;
Parkes, A. J.; Petrovic, S.; et al. 2012. Hyflex: A benchmark
framework for cross-domain heuristic search. In European
Conference on Evolutionary Computation in Combinatorial
Optimization, 136–147. Springer.
Thomas, C.; and Schaus, P. 2018. Revisiting the self-
adaptive large neighborhood search. In International Con-
ference on the Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research, 557–566.
Springer.
Van den Bergh, J.; Beliën, J.; De Bruecker, P.; Demeule-
meester, E.; and De Boeck, L. 2013. Personnel scheduling:
A literature review. European Journal of Operational Re-
search, 226(3): 367–385.
Wren, A.; and Rousseau, J.-M. 1995. Bus Driver Schedul-
ing — An Overview. In Fandel, G.; Trockel, W.; Daduna,
J. R.; Branco, I.; and Paixão, J. M. P., eds., Computer-Aided
Transit Scheduling, volume 430, 173–187. Berlin, Heidel-
berg: Springer Berlin Heidelberg.

470


