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Abstract 
We compare two planner solutions for a challenging Earth 
science application to plan coordinated measurements (ob-
servations) for a constellation of satellites. This problem is 
combinatorically explosive, involving many degrees of 
freedom for planner choices. Each satellite carries two dif-
ferent sensors and is maneuverable to 61 pointing angle op-
tions.  The sensors collect data to update the predictions 
made by a high-fidelity global soil moisture prediction 
model. Soil moisture is an important geophysical variable 
whose knowledge is used in applications such as crop health 
monitoring and predictions of floods, droughts, and fires. 
  The global soil-moisture model produces soil-moisture 
predictions with associated prediction errors over the globe 
represented by a grid of 1.67 million Ground Positions 
(GPs). The prediction error varies over space and time and 
can change drastically with events like rain/fire. The plan-
ner's goal is to select measurements which reduce prediction 
errors to improve future predictions. This is done by target-
ing high-quality observations at locations of high predic-
tion-error. Observations can be made in multiple ways, such 
as by using one or more instruments or different pointing 
angles; the planner seeks to select the way with the least 
measurement-error (higher observation quality). 
  In this paper we compare two planning approaches to this 
problem: Dynamic Constraint Processing (DCP) and Mixed 
Integer Linear Programming (MILP). We match inputs and 
metrics for both DCP and MILP algorithms to enable a di-
rect apples-to-apples comparison. DCP uses domain heuris-
tics to find solutions within a reasonable time for our appli-
cation but cannot be proven optimal, while the MILP pro-
duces provably optimal solutions. We demonstrate and dis-
cuss the trades between DCP flexibility and performance vs. 
MILP's promise of provable optimality.   

Science Problem and Application   
Soil moisture is an important geophysical variable that can 
forewarn of impending drought or flood conditions before 
other more standard indicators are triggered (NIDIS, 
2021). Other soil moisture applications include wildfire 
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and landslide forecasting, climate change, agriculture, wa-
ter supply monitoring, and other resource management. 
 Our goal is to improve soil-moisture predictions. We 
hypothesize predictions will be improved by observing 
ground positions with larger prediction-errors, using ob-
servations of higher quality (i.e., lower measurement er-
rors), then feeding this data back to the predictor. Thus, our 
planner has the objective to maximize the reduction of pre-
diction error for the Ground Positions (GP) which are 
planned to be observed.  
 Important need for planning to solve problem: The 
need for optimal usage of limited satellite resources for 
time, energy and computing provides strong motivation for 
planning.  Rapid responses to quick changing natural phe-
nomena like fire requires fast replanning to direct agile 
spacecraft to optimal observations with the optimal sensor 
selection.  Agile satellites that can change viewing angle 
provide opportunities for opportunistic planning, compared 
to satellites where the sensor angle is fixed. Planning is 
also required to optimize for complex metrics combining 
prediction and measurement-errors, compared to the rela-
tively simple metric of maximizing the # of GP observed.  
 Remote sensing missions in the past have re-pointed 
single instruments given ground-commanded waypoints 
(CHRIS on Proba (Barnsley et al., 2004)), 3-DOF imaging 
for Planet’s Skybox spacecraft (Augustein et al., 2016), 
and EO-1 re-tasking for monitoring of floods (Chien et al., 
2019), volcanoes (Chien et al., 2020), and wildfires (Chien 
et al., 2011). Missions without physical agility have shown 
to benefit from reactive planning to prioritize hyperspectral 
data collection, such as IPEX which served as the HyspIRI 
pathfinder (Chien et al., 2016) and the future EnMAP 
(Worle et al., 2014, Fruth et al., 2019), and to inform oper-
ational parameters like electronic beam steering to opti-
mize radar looks, such as TerraSAR-X (Werninghaus and 
Buckreuss, 2009) and TanDEM-X (Krieger et al, 2007). 
Power and bandwidth restrictions on small spacecraft has 
spurred literature on scheduling data download (Jian and 
Cheng, 2008) and use of crosslinks to propagate planning 
information via space nodes (Linnabary et al., 2019). 
However, these tools are optimized only for data downlink 
without a science-driven observation planner in the loop. 
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 The D-SHIELD application (Levinson, et al, 2021, 
Nag et al., 2020; 2019) uses a (proposed) constellation of 
satellites looking at Earth to reduce errors in global soil 
moisture prediction by making observations that target 
spatio-temporal points of rising prediction error.  
 The constellation consists of 3 maneuverable satellites. 
Each satellite carries two different instruments: L-band, 
and P-band Synthetic Aperture Radars (SARs). Each of the 
satellites is maneuverable to 61 different orientations, also 
referred to as pointing-options or viewing angles. On each 
satellite, both instruments share the same pointing option.  
The global land-area is represented by a grid with resolu-
tion of 9kmx9km, which results in 1.67 million GP. A soil 
moisture model predicts soil moisture and associated pre-
diction-errors across all GP. The prediction model uses 
machine learning to dynamically produce soil-moisture 
predictions based on prior observations. 
 The overall goal is a system which dynamically plans 
new observations to improve predictions of a science mod-
el (e.g., weather forecast, flood simulations). In the case of 
D-SHIELD's soil-moisture application, this is done by tar-
geting locations where the prediction error is greatest, us-
ing instrument parameters that minimize measurement er-
rors. The planner produces observation plans for each sat-
ellite. It decides what to look at, when to look at it, and 
how to look at it. The planner schedules coordinated <in-
strument, viewAngle> measurement pairs for each satellite.   
 Figure 1 shows the D-SHIELD system.  The solid lines 
show the closed-loop control flow while the dashed lines 
show static planner inputs and external data sources used 
to update the prediction model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Raw inputs are preprocessed into planner input files. The 
(simulated) satellites execute their plans, collect observa-
tion data and pass that back to the Soil Moisture Model, to 
update the model based on the new observations.   
 This paper compares two versions the planner: Dynamic 
Constraint Processing (DCP) and MILP.  The DCP plan-
ner was introduced in (Levinson et. al., 2021). The MILP 
formulation and comparison is new. 

Planning Problem 
The planner's job is to create a coordinated multi-satellite 
observation plan which improves prediction quality by 
observing the GP with the highest prediction error using 
measurements with the least error. It produces a command 
sequence for each satellite to execute to take observations.
 Each satellite's plan specifies the time when one or both 
instruments will take images at a given pointing option 
(viewing angle).   Each observation by the L or P band 
instruments covers multiple and variable number of GPs. 
 The satellite coverage information maps each GP to 
time-points (TP) when it can be accessed (observed), and is 
produced by the EO-Sim software (Ravindra et al., 2021). 
GP coverage information specifies the observation oppor-
tunities for different satellites, instruments and pointing 
options This raw coverage information is converted to a 
format which defines the planner's search space, specifying 
which satellites can look at which GPs, at which times, 
with which instruments, using which viewing angles.  The 
planner also takes in a Slew Table specifying the time and 
energy required to maneuver between any two pointing 
options (Sin et. al., 2021).   
 Prediction and Measurement Error Tables: Planner 
inputs include global predicted soil moisture error for the 
next 24 hours (the “prediction error”), and a measurement 
error table which defines the expected measurement error 
for any combination of instruments and viewing angles and 
biome type (e.g., forest, marshland, urban).  Prediction 
quality is inversely proportional to the prediction error as-
sociated with each GP. The prediction error generally in-
creases over time and jumps after events like rain or fire. 
 Measurement error is a function of which instrument is 
used, the viewing angle, the type of ground cover (e.g., 
barren, shrubs, forest, croplands), and other ancillary pa-
rameters. Each GP is associated with a type of ground cov-
er ("biome type"). 
 
 Constraints: The planner enforces constraints within a 
single satellite and swarm-wide.  For each satellite, decon-
fliction constraints enforce that each satellite can do only 
one thing at a time. Each command must hold for 3 sec-
onds during which no other command can be scheduled. 
Additionally, no commands can be scheduled while the 
satellite slews to a new viewing angle. Image lock and 
slew time constraints are enforced per satellite. 

prediction-error 
 (∀ GP) 
ç 

Figure 1: D-SHIELD architecture 
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472



 
 

 
Image Lock Constraints - Each observation requires the 
instrument to hold viewing angle for 3 seconds, blocking 
out slewing to another viewing angle during that period.  
    Slew time Constraints - The satellite must slew to 
change viewing angles. Agility constraints on how quickly 
a satellite can change viewing angles depend on slew mag-
nitude. The planner ensures enough time to slew between 
each observation. The maximum slew time is 22 secs. 
 Duplicate observation Constraints (enforced swarm-
wide) - To cover more GP, we don't want the collective 
swarm to look at the same GP twice in the same 24-hour 
period. These are the only swarm-wide constraints.  
 Figure 2 shows the planner inputs and outputs. Prepro-
cessing involves assimilating a wide range of heterogene-
ous input data, to produce two the 2 search spaces as plan-
ner inputs, shown in figure 2. The TP choices (left) specify 
the search space of commands available at each TP. This is 
the satellite command space describing available observa-
tion choices of the form <TP, instrument(s), angle, list of 
GP covered by choice> for all satellites. It's the primary 
search space, corresponding to the required output: a 
command sequence for each satellite.  
 The GP choices (figure 2, middle) map each GP to 
choices for observing it with associated model and meas-
urement errors.  This is the scientific value search space, 
where each GP is mapped to its observation choices as 
<satellite, time, command, measurement error> tuples.  
 The planner produces a plan for each satellite (Figure 2, 
right), which assigns commands for every timepoint (TP) 
when it can observe any ground position (GP). Each TP 
has 1 second duration. The objective is to reduce the ag-
gregate prediction error by observing as many high-error 
GP as possible using the measurements with least error.  
 Planner Challenges Beyond the State of Art: This 
problem is combinatorically explosive. For 3 satellites over  

 
a 6-hour period, the constellation has access to a total of  
764,197 unique GP distributed over 8,701 timepoints (TP). 
Each satellite has access to an average of 254,732 unique 
GP, distributed over an average of 2,900 TP. On average, 
each satellite has access to 87 GP per TP, with 55 com-
mand choices to view different subsets of those 87 GP. At 
any given second (TP) the swarm may have a choice of 
over 150 different commands, many of which are mutually 
exclusive, or cover duplicate GP, and each command is 
associated with a different measurement error. 
 Our goal for near-real time response to rapidly changing 
phenomena like wildfire and floods, combined with the 
combinatoric complexity of the problem, produces many 
planner challenges.  We can solve this problem for a 
swarm of 3 satellites quickly using Dynamic Constraint 
Processing (DCP), but it's unknown how close to optimal 
the solution is.  
 Preprocessing filters out infeasible and undesirable 
choices before building the planning model, thus reducing 
the search space significantly. Even with these measures, 
the problem is very large (90 million MILP constraints for 
3 satellites with 6-hour plan horizon). There are many de-
grees of freedom (choices of satellites, observation targets, 
times, and command choices).  
 Our goal of near real-time response seems out of reach 
for exact solutions, while fast heuristic solutions are avail-
able. We are interested in using MILP's exact solutions 
offline to evaluate and improve the online DCP approxi-
mate solutions which may meet our performance needs. 

Planning Model and Methods 
We now introduce formal terms which are shared by both 
the DCP and MILP planners. Given the following inputs: 
 

Figure 2: Preprocessing produces TP choices files for each satellite (left) and a single GP choice file (middle) for 
the swarm.   Planner Output (right) is a plan for each satellite containing scheduled observations and slew actions. 
 

Satellite 2 Timepoint (TP) choices:  
Command choices and times for viewing 
each GP (per satellite) 
• Command search space, 1 file for each 

satellite 
 
Command choice examples:  
L.32 = <L-band, angle 32> ,  
P.34 =  <P-band, angle 34>  
  
                Cmd 
Time     choices        GP covered by choice 
1311:      L.32:                   [3165]               
                L.34:                   [3445, 3446]    
                P.33:                   [3165]               
                P.34:                   [3445, 3446]    
                P.35:                   [3445, 3446] 
               L.32 & P.32:       [3165] 

Satellite 1 Timepoint (TP) choices:  
Command choices for each TP 
• Command search space = choices for 

every TP when a sat can observe GP 
• 1 file for each satellite 
 
Command choice examples:  
L.34 = <L-band, angle 34> ,  
P.32 =  <P-band, angle 32>  
  
  TP      Command 
(time)    choices        GP covered by choice 
1311:      L.32:                   [3165]               
                L.34:                   [3445, 3446]    
                P.33:                   [3165]               
               L.32 & P.32:       [3165] 

Ground Position (GP) choices:  
• Choices for when & how to view each GP  
• Science-value search space  
• Measurement error depends on  

GP biome-type (shrub, forest, baren) 
• One file for whole constellation 

 
Choices for GP: 3165 
 
                TP         Cmd                Pred.        Meas. 
Sat        (time)     Choices            Error         Error 
1            1311        L.32                 .008          .038 
1            1311        P.33                 .008          .017 
1            1311        L.32 & P.32    .008          .010 
2            1259        L.33                 .042         .028  
2            1259        P.33                  .042         .028  
  

Satellite 2 Plan:    
   
 Time      Com-
mand  
    [2-4]          P.48  
  [5-14]           Idle  
[15-17]          L.48  
[18-36]           Idle 
[37-40]          Slew 
[41-43]          L.44    

Satellite 1 Plan:    
   
 Time      Command  
    [2-4]          P.48  
  [5-14]           Idle  
[15-17]          L.48  
[18-36]           Idle 
[37-40]          Slew 
[41-43]          L.44   
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𝑁 = the # of satellites in constellation 
𝑠!  = satellite 𝑖,    1 ≤ 𝑖 ≤ 𝑁 
𝐺! = the set of all GP visible by 𝑠! in plan horizon  
𝑇!  = Set of all times in plan horizon when satellite 𝑠! 
         can see any 𝑔" ∈ 𝐺! 
𝐶!,$ = the set of command choices for 𝑠! at time t,    each 
command choice = <instrument(s), angle>,       ∀𝑡 ∈ 𝑇! 
𝐺!,%,$ = set of Ground Positions (GP) covered by sat i exe-
cuting command 𝑐 ∈ 𝐶!,$, at time t.   
𝑒𝑟𝑟&,$	    = the predicted error for GP 𝑔 at time t, including 
weather forecast but prior to new observation. ∀𝑔 ∈ 𝐺	 
𝑒𝑟𝑟%,()	 = measurement error for command c in biome type b 
 
𝑟&,%,$ = 𝑒𝑟𝑟&,$		 − 𝑒𝑟𝑟%,()	                                      (1) 
         = gpReward =  GP g's error improvement   
Note that 𝐺!,%,$ is filtered to remove GP in cases when 
 𝑟&,%,$ 	< 	0  (when GP prediction err at time t cannot be 
improved by any commands available at t).  
𝑠𝑙𝑒𝑤%!,%"

*  = slew time duration between angles for 𝑐+	and 𝑐,  
 

Dynamic Constraint Processing (DCP): A Constraint 
Processing System (Dechter, 2003) is defined by a set of 
variables, a set of variable domains for each variable, and a 
set of constraints on valid variable combinations.  
 In our application, there are too many GP to observe 
them all. This is an oversubscription planning problem so 
it's inherently a Constraint Optimization Problem rather 
than pure constraint satisfaction/feasibility problem. Our 
DCP planner is written in Python 3.8.  
 Decision Variables: We define a set of decision varia-
bles 𝑥!,$, each representing the command choice for sat 𝑠! 
at time t. ∀	𝑡	 ∈ 	𝑇!,   𝑇!= {All TP for sat 𝑠!}. We don't 
model every second in the horizon. We only define 𝑥!,$for 
times t when 𝑠! has access to a GP. Each satellite has only 
about 9000 TP (seconds) out of a 6-hour plan horizon 
when it can see any GP, but on each TP it may have access 
to more than 50 GP.  
Complexity:     # of 𝑥!,$	 vars = O[  |𝑇!| ] = the # of TP. 
 Variable Domains: 𝑥!,$ 	 ∈ {𝑑!,$}. The variable domain 
𝑑!,$ is the set of command choices for each 𝑥!,$. The do-
main of choices for 𝑥!,$ is the set of all command options 
for sat 𝑠! at time t.  𝑑$-	 ∈ 		{<instrument(s), viewAngle>}  
 The search space is a node tree. Each node represents a 
plan consisting of a set of variable assignments (command 
choices). Each branch/edge in the tree represents a variable 
assignment.  
 
 
 

 
Figure 3: Decision variables for the root node 

Figure 3 shows and example of the decision variables for 
the root node. 𝑥!,$ = the command for sat 𝑠! at time t. The 
root node is initialized with variables for every TP for eve-
ry satellite. There is 1 variable per TP per satellite. Root 
node variables are sorted chronologically, so all variables 
for time N precede all variables for times > N. This exam-
ple shows that we don't model every second in the horizon. 
Figure 3 shows there are variables for only sat 1 at times 0, 
1, and 6. There are variables for both satellites at times 2 
and 3, and variables for only sat 2 at times 4 and 5. This is 
because those are the only times when the given sat has TP 
choices. We may choose to solve the variables in any or-
der, but our default is to solve them in chronological order.  
  
 Objective: maximize reduction of error in soil moisture 
predictions.  This means maximizing the sum of  
gpRewards (eq 1).    
 
maximize Σ!		.		/,%		∈	1,$		∈	2$,&∈	3$,&,'		𝑟&,%,$	 	

                       (2)  
where P = a list of commands c in a plan, and 𝑣!,%,$= the set 
of all GP which are visible to 𝑠! using command c at time t.                              
 
Equation 2 maximizes the sum of all gpRewards for all GP 
covered by all commands in the plan, for all satellites.  The 
𝑟&,%,$	  in (eq 2) is defined by equation (1). Equation (2) is 
the called the plan score, associated with each node in the 
planner's search space.  
 Search Control: On each loop of the search process: The 
planner chooses a beam width of nodes to expand based on 
each node's plan score (eq. 2). The planner then chooses an 
an unassigned 𝑥!,$ variable in each beam node to expand, 
then heuristically chooses a value (command) for the cho-
sen variable in each of the beam nodes. Search terminates 
when a valid plan is found (when all variables have been 
assigned values without constraint violations).  
 Choice propagation: We use a form of Dynamic Con-
straint Processing (Mittal and Falkenhainer, 1990), where 
mutually exclusive variables are removed after each plan 
choice. Constraints are enforced through choice propaga-
tion which uses forward checking (Russell and Norvig, 
2021) after each choice, to remove any future variable as-
signments which are inconsistent with that choice. For ex-
ample, the 3-sec image lock is implemented as follows: 
when a choice is made to take an image at TP 10, then all 
choices for timepoints 11 and 12 are removed so nothing 
else will be scheduled during that 3-second hold.  Choice 
propagation also enforces constraints for slew time and 
duplicate observations.  After each command is selected by 
the planner, choice propagation dynamically removes GP's, 
commands, and TPs. This means the search space size is 
reduced significantly after each choice. Constraints are 
enforced on-demand, by calling software constraint han-
dlers after each variable assignment is made. Constraints 
are only 'realized' for assignments selected for the plan. 
 The following example shows how choice propagation 
removes duplicate GP observations from future variables.  

Root Node variables: 
𝑥!,#	 , 𝑥!,!	 , 𝑥!,%	 , 𝑥%,%	 , 𝑥!,&	 , 𝑥%,&	 , 𝑥%,',	 𝑥%,(	 , 𝑥!,)	 , . .. 
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Figure 4 shows two examples of choice propagation to 
enforce the no duplicates constraint. Assume GP 123 is 
observed before TP 25. Case (a) shows the command 
choices for 𝑥+,,4	 , satellite 1 at TP 25.  After GP 123 is ob-
served, it is removed from the list of GP covered for every 
choice for all future variables.  In this example, that was 
the only GP covered by command choice L.32, so the 
command L.32 is removed from the domain of choices for 
variable 𝑥+,,4	 . Case (b) shows that when the last choice is 
removed from a variable's domain (producing an empty 
domain), then the variable is removed from the node (be-
cause there are no commands available for that TP). In this 
case, after GP 123 is observed, it's removed from the GP 
list for command P.42, leaving an empty GP list. The 
command P.42 is removed from the domain for variable 
𝑥+,56	 , leaving an empty variable domain, so 𝑥+,56	  is re-
moved from the list of open variables. Choice propagation 
removes variables which have no valid assignments based 
on the path dependencies of the current plan (node).  
 Heuristics: We tested a wide range of local heuristics, 
which sort command choices at each TP. See (Levinson et. 
al., 2021) for more details about DCP heuristics.  
 
Mixed Integer Linear Programming (MILP) is an ex-
tension of Linear Programming where decision variables 
may be integers, often binary integers (Williams 2013).  
    
Decision Variables: 
We define 2 binary variables: 𝑥!,$,%	, 𝑦&,!,%,$	 ∈ {0,1} 
 
𝑥!,$,% 		= 	1		 ↔ 	 𝑠! 	executes	𝑐𝑜𝑚𝑚𝑎𝑛𝑑	𝑐	at	time	𝑡	(binary) 
∀𝑖 ≤ 𝑁, ∀	𝑡 ∈ 𝑇!, ∀𝑐 ∈ 𝐶!,$ 
  
Complexity: This requires the same # of variables as 𝑥!,$ in 
the DCP model (|𝑇!|), multiplied by  ∑ 	7,8  | 𝐶!,$|, the sum of 
the number of commands per satellite ∀  𝑡 ∈ 𝑇!.  
• O [	|𝑇!| 			∑ 	!.9,$∈2$ P𝐶!,$P  ] = the total # of command 

choices c for all satellites 𝑠! at all times t.  
 
𝑦&,!,%,$ = 	1	 ↔ GP g is observed by sat i using command c 
at time t (binary variable).  
∀𝑖 ≤ 𝑁, ∀𝑔 ∈ 	𝐺!, ∀	𝑡 ∈ 𝑇!, ∀𝑐 ∈ 𝐶!,$ 
• Complexity:   # of y vars = (# of x vars)  * (# of GP) 
•  O [	|𝐺	|	x 	∑ 	!.9,$∈2$ P𝐶!,$P ],  where 𝐺 =∪7./ {𝐺!} = 

set of all GP visible to all satellites.   
• Equals complexity for 𝑥!,$,%		 times |𝐺| 

• This y variable is not part of the DCP model (the # of 
vars in the DCP = # TP).  

 
duplicateGpLimitConstraints:  
Ensure no more than 𝑑):;	duplicate obs of any GP g 
∑ 𝑦&,!,%,$	 ≤ 𝑑):;!,%,$		 											∀&∈ 𝐺!,%,$                              (3) 
 
where 𝑑):; = max # of duplicate observations allowed. 
(default 𝑑):; = 1) 
• Complexity: O [|G| x (avg # commands/GP)] 
 
mutexConstraints: For each satellite	𝑠!, any pair of com-
mand choices which occur within 2 seconds + slew dura-
tion are mutually exclusive. Mutual exclusion constraints 
(equation 4) are created to enforce: 
• One command at a time  
• Image lock (each command c must be held for 3 sec-

onds)  
• Slew duration (no commands allowed while slewing) 

 
𝑥!,%!,$! + 𝑥!,%",$" ≤ 1						                                                    (4)  
                                                    
∀𝑖 ≤ 𝑁,			∀𝑡+, 𝑡, ∈ 𝑇!        :  𝑡+ ≤ 𝑡, ≤ 𝑡+ + 2 + 𝑠𝑙𝑒𝑤%!,%"

*    
∀𝑐+	 ∈ 𝐶!,$! , ∀𝑐,

	 ∈ 	𝐶!,$"   : 𝑐+ ≠ 𝑐,		 
• Complexity: O [ ∑ 	!.9,$!,$"∈2$:	$,=$+.	->?@&!,&"

( P𝐶!,$P	]    
 
gpCoverageConstraints (constrain 𝑦&,!,%,$ by relating each 
GP g to commands c which cover it)  
𝑦&,!,%,$ 	≤ 𝑥!,%,$																		                                                    (5) 
 
	𝑖	 ≤ 𝑁,								∀	g ∈ 𝐺!,%,$ ,							∀𝑡 ∈ 𝑇! ,						∀𝑐 ∈ 𝐶!,$                             
• Complexity: O [ |G| x (avg # cmds/GP)], where avg # 

cmds/GP =  ∑ 	A.	!B9,$∈2$ P𝐶!,$P/|𝐺| 
 
Objective: 
maximize ∑ 		𝑟&,%,$			𝑦&,!,%,$∀&∈D	                                         (6)  
       where 𝑟&,%,$	  is defined by equation (1)                                                                    
• Complexity:   same as complexity for 𝑦&,!,%,$	vars  

=   O [	|𝐺	|	x 	∑ 	!B9,$∈2$ P𝐶!,$P ] 
 
The solver terminates when optimality is proven or when a 
specified time limit has been reached before proving opti-
mality. Optimality is proven when the gap between MILP's 
the "primal" objective (6) and the "dual" objective reaches 
zero (within some tolerance).  

Evaluation and Comparison 
  The GP reward (equation 1) is the basis for the plan 
score metric (objective) for our tests comparing DCP and 
MILP methods. Note the similarity between MILP objec-
tive (6) and DCP objective (2) and the GP Reward (1). 
This shared metric, along with identical input data, enable 
the apples-to-apples comparison between the two methods.   

Figure 4: Choice propagation examples 
 

(a)   [𝑥+,,4	 : {L.32: [123],  
                   L.33: [436349, 436350, 436351],  
                   P.32: [436350, 436351, 436352]] 
 
(b)  [𝑥!,&)	 : {P.42: [123]}] 
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All experiments were run on a 2020 MacBook Pro 13-inch, 
2.3 GHz Quad-Core Intel Core i7 processor, 32 GB RAM. 
The MILP solutions were generated using Gurobi 9.5 
(Gurobi, 2022). All data sets and code will be released as 
open source.  
 Table 1 shows details of the search complexity and solv-
er performance for each scenario.  The table columns are as 
follows: Case # is followed by # of satellites in the con-
stellation, the plan horizon, and the # of TP in the horizon, 
then #GP visible (number of GP visible) during horizon. 
The next column, #cmd/TP is the average number of com-
mand choices at each TP (the average of all |𝐶!,$ |).   # GP 
obs is the # of GP observed by the commands in the plan. # 
Vars is the # of decision variables created. # Constraints is 
the # of constraints created.  Constraints are pre-
enumerated only for the MILP solver so there are no en-
tries for DCP. Time to best solution is the solver time re-
quired to find the best solution (which is optimal for MILP, 
but suboptimal for DCP). Time to prove opt is the time it 
takes the MILP solver to prove the best solution it has 
found is optimal. Note how long it takes to prove optimali-
ty after the optimal solution is found.  The last column, 
makespan, is the # of commands in the plan.  
 We compare the DCP and MILP methods using six test 
cases (Table 1). Note there are far fewer rainy GP than GP 
where it hasn't rained, so the search space for case 1, the 
only case with rainy GP, is far smaller than all other cases. 
 
Case 1: 3 satellites, rainy GP, plan horizon = 6 hours 
Case 2: 1 satellite, no rain, horizon = 1000 sec (~17 mins) 
Case 3: 1 satellite, no rain, horizon = 1800 secs   (30 mins) 
Case 4: 1 satellite, no rain, horizon = 6 hours, top 15% 
most needy GP only. This case includes only the top 15 % 
 

 
 
of GP with largest model error (sorted in decreasing model 
error). This percentage was selected empirically such that 
the scenario produced around 20 million constraints (for 
acceptable solver times < 50 hours). 
 Case 5: 3 satellites, no rain, horizon = 2 hours, Top 15 
% most needy GP only (like case 4). 
 Cases 4 and 5 are 'triage' scenarios where the top 15 per-
cent of GP which need the most help (have the largest 
model error) are prioritized over less 'needy' GP. This 
helps to separate the wheat from the chaff so the solver 
spends less time trying to optimize the chaff which we may 
have limited effect on the objective.   
 Case 6: 3 satellites, no rain, horizon = 6 hours. This case 
can be solved by DCP but we haven't been able to solve it 
with the MILP model because it includes 90 M constraints 
and resulting the file is too large to write out, which is re-
quired for us to pass it to Gurobi. MILP entries for this 
case are marked DNF to indicate that test did not finish.  
  The cases are roughly in order of increasing com-
plexity (measured in # of constraints). The difference be-
tween rainy and non-rainy is seen comparing the # GP vis-
ible column for case 1 (rainy case) vs. case 6 (non-rainy). 
Both cases have 3 satellites and a 6-hour planning horizon. 
Note that case 1 has only 968 visible GP vs. 764,197 for 
case 6. This shows the larger number of observation oppor-
tunities for non-rainy GP.   
 Increasing complexity can also be seen by noting how 
the time to best sol and time to prove optimal columns 
scale between cases 2 and 3. The only difference between 
cases 2 and 3 is the horizon increases from 17 minutes to 
30, but time to prove optimal increases from 16 hours to 
38-hours, while DCP case 3 time barely increases at all and 
remains less than 10 seconds. This shows superior perfor-
mance and scaling of DCP vs. MILP on larger problems.  

Case	
#	

#	
sats	

Plan	
Hori-
zon	
(secs)	

#	TP		 #	GP	
visible	

#cmd
/TP	

#	GP	
obs	

#	Vars	 #Con-
straints	

Time	to			
best	sol	

(*	=	optimal)	

Time	
to	

prove	
opti-
mal	

Makespan	
(#	
com-

mands	in	
plan)	

1	 3	 21,600	 1,705	 968	 12.55	 	 	 	 	 	 	
MILP	 	 	 	 	 	 1,032	 26,959	 914	K	 *	156	s	 156	s	 403	
DCP	 	 	 	 	 	 948	 1,705	 	 7	s	 	 449	

2		 1	 1,000	 900	 666	 70.98	 	 	 	 	 	 	
MILP	 	 	 	 	 	 620	 89,118	 14.4	M	 *	5	h	 16	h	 195	
DCP	 	 	 	 	 	 666	 900	 	 5	s	 	 254	

3	 1	 1,800	 1,468	 1,181	 55.83	 	 	 	 	 	 	
MILP	 	 	 	 	 	 1,212	 122,675	 16.8	M	 *	13	h	 38	h	 295	
DCP	 	 	 	 	 	 1,181	 1,468	 	 8	s	 	 377	

4	(15%)	 1	 21,600	 7,463	 55,779	 53.85	 	 	 	 	 	 	
MILP	 	 	 	 	 	 4,010	 244,207	 20.8	M	 *	10.7	h	 10.8	h	 1,468	
DCP	 	 	 	 	 	 3,113	 7,464	 	 1.5	m	 	 1,656	

5	(15%)	 3	 7,200	 7,527	 47,929	 52.41	 	 	 	 	 	 	
MILP	 	 	 	 	 	 4,200	 244,363	 20	M	 *	24	h	 45.2	h	 1,473	
DCP	 	 	 	 	 	 3,140	 7,527	 	 2.5	m	 	 1,636	

6	 3	 21,600	 8,701	 764,197	 55.46	 	 	 	 	 	 	
MILP	 	 	 	 	 	 DNF	 1,856,154	 90	M	 DNF	 DNF	 DNF	
DCP	 	 	 	 	 	 16,732	 8,701	 	 28	m	 	 6,104	

Table 1: Comparison of scenario search space complexity and branching factors 
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 Figure 5 (left) compares the objective values achieved 
by both planners on the 5 cases which we could solve with 
MILP. All MILP objective values are optimal. DCP 
achieves 67% optimal for case 1, 56% for case 2, 59% for 
case 3, and 58% for case 4, and 57% for case 5. The objec-
tive value for DCP on case 6 is 286.94, so much larger than 
all other cases, it's not included in figure 5 for readability.  
 Figure 5 (right) shows MILP solutions observe more GP 
for all cases, except case 2.  Table 1 shows in case 6, DCP 
observes 16,732 GP in 6 hours, much more than any other 
case, so it was omitted from figure 5 for readability. 
 Figure 6 shows the MILP solution is always more effi-
cient than DCP, reaping higher objective rewards per 
command. Figure 6 (left) shows the average error reduc-
tion (objective contribution) from each command. Figure 6 
(right) shows the average error reduction per observed GP. 
Table 1 shows MILP plans always have fewer commands 
(shorter makespan), while still achieving superior results.   
  
Analysis: MILP performance is dominated by the expo-
nential scaling in the number of constraints for some sce-
narios. The number of mutex constraints are dominated by 
deconfliction within 25-second windows.  This means the 
number of mutex constraints is a function of how many TP 
and choices occur within any given 25 sec time window. 
MILP optimality ensures no local minima, but scaling cre-
ates so many more variables and constraints that solve time 

 

 
becomes impractical (> 3 days) for desired plan horizons 
of even 6 hours.   
 
 Table 1's cases illustrate the edge of problems we can 
solve with MILP. If we increase the horizons for any of the 
non-rain cases, the model becomes so large due to so many 
constraints, that our Mac laptop runs out of memory and/or 
takes longer than our time limit of 50 hours, so we don't 
yet know the optimal solution for those cases.  
 
 Table 2 summarizes the pros and cons for each method. 
DCP benefits include constraint and heuristic expressive-
ness and flexibility, and solver time. MILP offers the im-
portant "certificate of optimality" at the cost of impractical-
ly long solver times. DCP is prone to local minima but has 
a far smaller search space (fewer vars and constraints).  
The DCP variable domain is symbolic vs. the MILP's re-
quirement for quantitative domains. For example, in DCP, 
a variable 𝑥!,$ may be assigned a value such as "L.32", 
from the domain shown as "command choices" in figure 2 
(left). Another difference is the DCP planner only consid-
ers constraints which are required for a given plan.  This is 
in contrast with MILP where 10's of millions of constraints 
are preconstructed and the solver must consider them, alt-
hough they involve variable assignments which are mutu-
ally exclusive with choices selected for any given plan.  

15.8 9.7
22.9

99.6 101.2

23.7 17.2
38.7

171.6 174.7

0

50

100

150

Case	1 Case	2 Case	3 Case	4 Case	5

Objective	(total	err.	reduction)	=	

DCP MILP	(optimal)

∑ 𝑟!,#,$	!,#,$
(eq. 1)

Figure 5: Comparison of DCP and MILP objective scores (left) and # of GP observed (right) 
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Figure 6: Efficiency metrics show average error reduction per command (left), and # per GP (right) 
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Table 2: Trades between DCP and MILP methods 
 
 
 
 
 
 
 

 

 Related Work 
(Küçük and Yıldız, 2019) present a constraint program-
ming approach to observation scheduling for a single agile 
satellite. However, their formulation is extremely MILP-
like, with two binary decision variables ∈ {0,1}, compared 
to our DCP approach where the decision variables have 
symbolic values like "P.34". They present results using the 
commercial product CP Optimizer (CP Optimizer, 2022) 
for a small problem with a maximum of 55 GP targets.   
 MILP has previously been used for scheduling observa-
tions for agile satellite constellations. See (Wang et al. 
2021) for a good survey of the field.  
 (Chen et al., 2019) present a MILP for multiple satellites 
with multiple heterogeneous sensors and slew constraints.  
Their MILP formulation differs from ours in several ways. 
For example, instead of modelling each satellite explicitly 
as we do, they model a pool of resources (instruments) 
which is the set union of all instruments on all satellites. 
The problem scale is significantly smaller than ours. The 
total # of visible GP in their tests range from 100 to 1000 
GP in a 24-hour horizon, while ours range from 968 to 
764,197 GP in a 6-hour horizon (see Table 1).  

  (Kim et al., 2020) present a MILP solution for schedul-
ing multiple agile satellites, with slew time constraints and 
multiple heterogeneous instruments. The objective reward 
(profit) for each GP is a static input rather than a function 
of time, instrument, and angle as with D-SHIELD.  They 
present results for a small problem with maximum of 100 
visible GP. They also present a heuristic preprocessing 
method to prune undesirable choices before creating the 
MILP. This is similar to our 'triage' cases 4 and 5 where we 
sort GP by decreasing error and prune out the bottom 85% 
(keep the top 15%) of GP with the highest error, then we 
create the MILP for only that top 15%. 
 
 Several differences distinguish our work from the above. 
First, D-SHIELD uses very high-fidelity engineering mod-
els of satellite physics to calculate slew time (Sin et al. 
2021). Instrument physics models are used to calculate 
instrument measurement errors, which is used in our objec-
tive. A second difference is we have many more target GP. 
For 3 satellites with 24-hour plan horizon, we have 
764,197 potential targets (visible GP) and 16,732 observed 
GP. These are orders of magnitude larger numbers than 
we've seen in other work.  A third difference is an extra 
degree of freedom between observations and targets which 
adds complexity. While other systems have a 1:1 mapping 
between each observation and target GP, each D-SHIELD 
observation covers ~2.7 unique GP.  

Future Work and Conclusion 
We will work on improving DCP towards the MILP-
proven optimal solutions and explore alternative MILP 
formulations. There are several constraints which are yet to 
be developed. DCP includes an energy model to track en-
ergy consumed by instruments and slewing and energy 
produced by solar panels, to ensure no satellite dips below 
a minimum energy. The MILP formulation for that exten-
sion is still being developed. We also plan to integrate new 
sensors and multiple, independently developed planners for 
downlinking data and for intersatellite communications. 
 We have described an important climate change moni-
toring application which requires online planning capabili-
ties beyond the state of art. We have presented two meth-
ods to solve the problem, DCP and MILP, and described 
the practical and challenging trades between them. Our 
conclusion is it makes sense to use them together because 
they serve complementary purposes.  DCP offers practical 
solve times for suboptimal solutions, while MILP provides 
"ground truth" for provably optimal solutions at the cost of 
solve times which are impractical for our near real-time 
requirements. Additionally, the process of comparing the 
two methods head-to-head on identical inputs with identi-
cal metrics, helped to identify implementation asymmetries 
which led to improvements on both sides.   

DCP 
Pro 
• Search control over of node, var, and val choices  
• Flexible for model prototyping. Can model any 

constraint and use symbolic (vs. numeric) vars.  
• Leverages domain heuristics. Easy to swap be-

tween different heuristics.  
• Fast, amenable to running onboard 
• Explanations for why a GP is not in plan. 
• Dynamic constraints improve performance 
Con 
• Suboptimal solutions 
• Subject to local minima and path dependencies 

MILP 
Pro 
• Provably optimal solutions 
• Relies on 3rd party solver (has benefit of robust 

heavily tested tool) 
Con 
• Slow 
• Limited modeling flexibility 
• Difficult to include domain-specific heuristics 
• Limited to no explainability 
• solvers (many orders of magnitude different).  
• Requires predefining all constraints in advance 

(10's of millions must be created but most are 
not required for any specific solution). 

• Requires all variable domains be quantitative. 
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