
Talking Trucks: Decentralized Collaborative Multi-Agent
Order Scheduling for Self-Organizing Logistics

Geert L.J. Pingen1, Christian R. van Ommeren1, Cornelis J. van Leeuwen1, Ruben W. Fransen1,
Tijmen Elfrink1, Yorick C. de Vries1,2, Janarthanan Karunakaran3,

Emir Demirović2, Neil Yorke-Smith2

1The Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands

3Van Berkel Logistics B.V., Veghel, The Netherlands
{geert.pingen, christian.vanommeren, coen.vanleeuwen, ruben.fransen, tijmen.elfrink}@tno.nl,

y.c.devries@tudelft.nl, jkarunakaran@vanberkellogistics.eu, {e.demirovic, n.yorke-smith}@tudelft.nl

Abstract

Logistics planning is a complex optimization problem involv-
ing multiple decision makers. Automated scheduling systems
offer support to human planners; however state-of-the-art ap-
proaches often employ a centralized control paradigm. While
these approaches have shown great value, their application is
hindered in dynamic settings with no central authority. Moti-
vated by real-world scenarios, we present a decentralized ap-
proach to collaborative multi-agent scheduling by casting the
problem as a Distributed Constraint Optimization Problem
(DCOP). Our model-based heuristic approach uses message
passing with a novel pruning technique to allow agents to co-
operate on mutual agreement, leading to a near-optimal so-
lution while offering low computational costs and flexibility
in case of disruptions. Performance is evaluated in three real-
world field trials with a logistics carrier and compared against
a centralized model-free Deep Q-Network (DQN)-based Re-
inforcement Learning (RL) approach, a Mixed-Integer Lin-
ear Programming (MILP)-based solver, and both human and
heuristic baselines. The results demonstrate that it is feasible
to have virtual agents make autonomous decisions using our
DCOP method, leading to an efficient distributed solution. To
facilitate further research in Self-Organizing Logistics (SOL),
we provide a novel real-life dataset.

Introduction
Logistics planning is arguably the most complex task in sup-
ply chain management. In current-day logistics, human plan-
ners function as orchestral conductors, orchestrating assets
and directing people to complete deliveries on time. It is
therefore not surprising that algorithmic approaches classi-
cally perform centralized optimization and scheduling (ter
Mors, Zutt, and Witteveen 2007).

Such centralization is problematic, however, when multi-
ple parties are involved in the supply chain: it assumes data
can be sufficiently centralized, and precludes localized au-
tonomy, for example when local disruptions occur. More-
over, large real-world scheduling problems can become in-
tractable for centralized solvers and place a heavy demand
on compute resources.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Self-organizing logistics (SOL) systems provide an alter-
nate approach. A SOL system is an agent-based system in
which agents can be actors (e.g., shippers) or assets (e.g.,
trucks). Although there is a common goal, a SOL system
should respect the individual constraints and objectives of
its agents (Pan, Trentesaux, and Sallez 2016).

This paper studies the real-life logistics problem of or-
der scheduling, which resembles a combination of job-
shop scheduling and vehicle routing with time-window con-
straints. Building on previous work of van Ommeren et al.
(2020), we provide a decentralized model-based method
of solving the logistics problem with three centralized al-
ternatives: human domain expert planning; model-free RL
planning; and model-based planning executed by a MILP-
based solver. In addition we incorporate two decentralized
heuristic-based baselines. Cooperative Constraint Approxi-
mation (CoCoA) (van Leeuwen and Pawełczak 2017) is ap-
plied in a novel logistics setting by adding a new pruning
step to regulate complexity. These methods were examined
in three field-trials with real order scheduling problems.

Embedding these methods in an operational context
brings great challenges, because logistics is characterised by
supply chain dynamics and an environment of continuous
change. In real-life, human planners monitor and evaluate
many variables and flexible objective functions that go far
beyond straightforward cost optimization.

We show that it is feasible in real-world scenarios to yield
autonomy to digital twins representing actual vehicles, and
to enable autonomous decision-making on order schedul-
ing in a decentralized collaborative fashion. In doing so,
the agents can generate more efficient solutions than human
planners while incorporating driver preferences, truck char-
acteristics, and many additional constraints, such as interde-
pendence between rides.

The contributions of this paper to the literature are:
1. A novel decentralized collaborative agent-based method

to the order scheduling problem that outperforms hu-
man baselines on punctuality Key Performance Indica-
tors (KPIs) – validated in real-world experiments.

2. The incorporation of feedback from human planners on
generated allocations as an integral part of the algorithm
development cycle and the decision support system.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

480

3. A comparison with a centralized model-free DQN-based
RL approach, a MILP-based solver, and heuristic base-
lines.

4. A novel real-world scheduling dataset for benchmarking
SOL solutions, publicly available at:
https://zenodo.org/record/5777315.

Related Work
Order Scheduling Problem
The order scheduling problem is a combination of a classical
Vehicle Routing Problem (VRP) (Dantzig and Ramser 1959)
and a Job-Shop Problem (JSP). Orders have a list of stops.
The handling time at each stop and driving time between the
stops together make the processing time of a ‘job’, which
can be processed by a vehicle. The first stop and last stop
of an order can be different locations, therefore the problem
can also be considered a VRP. To optimize globally from the
trucking company’s point of view, the problem with time
windows can be formulated as a linear program, when us-
ing constraint relaxation. Subsequently it can be solved with
various exact algorithms (Baldacci, Mingozzi, and Roberti
2012). Meta-heuristic methods are widely used, e.g.: neigh-
bourhood search (Song et al. 2020). Chao (2002) presents
a formulation for a truck and trailer assignment problem: a
VRP with similar truck and trailer assignment decisions is
presented and approached with tabu search.

Using global problem formulations to solve the order
scheduling problem has some notable disadvantages. Cen-
tralized planning is difficult to scale to larger order or truck
sets. Additionally, centralized formulations prefer homoge-
neous constraints and objectives for orders and trucks in the
assignment problem. In practice, such homogeneity rarely
exists. Extensive coordination between stakeholders is re-
quired to align on common interfaces.

A different way of approaching the order scheduling prob-
lem is by devolving the level of decision making, from a cen-
tral point at a trucking company, to making the assignment
decision at, e.g., the truck level. This leads to a decentral-
ized decision structure known as SOL (Gerrits 2020). Quak,
van Kempen, and Hopman (2018) claim that SOL can be
considered an intermediate solution between central organi-
zation and full decentral organization.

We are not the first to implement decentralized decision-
making in logistics (Berndt 2011; Feng et al. 2017; Gerrits
2020). To our knowledge, however, we are the first to apply
and compare the decentralized method on a real-life case and
show the value of decentralized decision making compared
to current practice and centralized approaches. Further, to
our knowledge we present the first implementation of the
CoCoA negotiation algorithm in a logistics application.

Distributed Constraint Optimization
DCOPs are a class of distributed optimization problems
where discrete variables have to be assigned values, in such
a way that given constraints between the variables are sat-
isfied (Hirayama and Yokoo 1997). Each variable is con-
trolled by a separate agent. Constraint violations incur cost
(in R≥0). Agents co-operate by passing messages back and

forth to find assignments that minimize the sum of all con-
straint costs.

Since DCOPs are NP-hard, finding the optimal solution
is often not feasible for more than a few variables. Improv-
ing scalability of DCOPs is an active research topic (Yeoh
2018). Thus we use a local search method, the CoCoA al-
gorithm (van Leeuwen and Pawełczak 2017). The advan-
tages of CoCoA are that it is a non-iterative single step look-
ahead algorithm, and that it is capable of dealing with asym-
metric constraints, where the costs of an assignment differ
among the agents involved (Grinshpoun et al. 2013). Using
this strategy, it is possible to find assignments that are prac-
tically feasible.

Reinforcement Learning
Model-free RL algorithms such as DQNs (Mnih et al. 2013)
or Proximal Policy Optimization (Schulman et al. 2017) that
do not require explicit modelling of transition functions and
reward signals, are a promising alternative to methods where
utility functions or rules need to be manually constructed
by experts. A main problem in model-free RL approaches,
however, is their dependence on representative training data,
sample efficiency, and high computational cost (Nguyen,
Nguyen, and Nahavandi 2020).

Gombolay et al. (2018) highlight the value of incorporat-
ing human expertise and heuristics in RL performance on
VRPs. Joe and Lau (2020) show that combining RL and a
meta-heuristic is effective for centralized solving of dynamic
VRP problems. In the SOL domain, Irannezhad, Prato, and
Hickman (2020) successfully incorporate a multi-agent RL
solution into a full-fledged port decision support system and
evaluate agent collaboration strategies, showing that a coop-
erative strategy, rather than one focused on individual reward
maximization, results in the highest overall vehicle utiliza-
tion and lowest travel distance and costs. Tang et al. (2021)
improve on another model-free RL method, Soft Actor-
Critic (SAC) (Haarnoja et al. 2018) – an off-policy model
like DQN – with improved sample efficiency by incorporat-
ing an entropy factor and regularization. The authors apply it
to an unmanned warehouse environment where autonomous
robotic platforms are used for order-picking.

Problem and Solution Methods
Problem Formulation
The order scheduling problem is a combination of a VRP
and JSP. The problem is defined by sets of trucks V , trailer
conditions C, orders O, locations L, driving times D, and
a notion of time Ω. The general objective is to maximize
the number of on-time deliveries of orders and minimize the
number of used trucks. The problem is formulated thus:

Parameters:

• Trucks V : A truck v has driver working hours defined by
time of start tS ∈ Ω and time of end tE ∈ Ω, Wt =
[tS , tE]. Further, start location lS ∈ L, end location lE ∈
L, truck-trailer state at start cS ∈ C. We define a truck
v ∈ V as v := (lS , lE , cS ,Wt)

481

Method Objectives (explicit) Constraints Design decisions

HUMAN Maximize number of
orders delivered, order
punctuality, and adher-
ence to driver preferences;
minimize number of used
trucks.

Drivers: Working hours, preferences, certi-
fications.
Trucks: Type (port, region, terminal), emis-
sion category, sleeper cabin (no overnight
stays), chassis.
Orders: Service type (decoupling, live-
handling).
Customers: Preferences w.r.t. strictness of
delivery time.

Learned driving and handling time (from ex-
perience); Order allocation process is similar
to earliest deadline first.

RAND &
EAR-D

Maximize number of or-
ders delivered.

Trucks same as HUMAN. For Drivers,
only starting time is considered. Orders not
before start of delivery window.

Randomized assignment for RAND, greedy
selection based on earliest deadline for EAR-
D. Great circle distance based driving time.

SOLV Maximize number of or-
ders delivered.

Same as HUMAN, except for Orders where
it uses no decoupling service type, and fixed
deadlines rather than delivery windows and
no Customer-specific constraints.

Late orders are not allowed. Incorporates
mandatory breaks and empty return trips after
delivery. Driving time based on Google Maps,
historical data, and a slack factor.

AGT-DCOP Maximize number of or-
ders delivered; minimize
number of used trucks.

Same as HUMAN, except strict Order de-
livery windows and no Customer-specific
constraints.

Late orders can not occur. Great circle dis-
tance based driving time.

RL Maximize order punctual-
ity.

Trucks same as HUMAN. For Drivers,
only starting time is considered.

Early orders are not allowed but late orders
are. Great circle distance based driving time.

Table 1: Differences in objectives, constraint modelling, assumptions and design decisions for all methods.

• Orders O: In practice, an order is a series of locations
and a delivery time window at each location. We de-
fine an order by the first location lS ∈ L, arrival time
window at first location WS , start condition cS ∈ C,
last location lE ∈ L, end condition cE ∈ C and or-
der handling duration δ from first to last location: o :=
(lS , lE , cS , cE ,WS , δ) In practice orders can consist of
multiple location visits with individual time windows, we
aggregate this to a start and end location, and a single
time window at the start location WS .

• Trailer conditions C: a truck can have no trailer, an
empty trailer or a trailer with a container.

• Driving times: di,j ∈ D between locations li, lj ∈ L.

Decision Variables:
The problem is to assign a sequence of orders oi ∈ O
to each truck v ∈ V . The arrival time λi at each order
oi depends on the sequence of the orders, the start time,
driving time to each subsequent order and the driving time
to the truck’s end location. The sequence of assigned or-
ders to a truck v is noted as Av and defines driving times
d̂Av with Av := ((oi, λi), (oj , λj), ..., (on, λn)) and d̂Av :=
(dS,i, di,j , ..., dn,E). Note that the trailer state of truck c can
change because of different order types, (de)coupling or live
(un)loading at customer. Picking-up or dropping an empty
trailer at the terminal is added as an optional order to O
which allows trucks to change trailer state, incurring driv-
ing time to home terminal and (de)coupling time.
Objective: The objective is to maximize the number of on-
time delivered orders. max

∑
v∈V |Av|. Empty trailer or-

ders do not count for this objective.
Constraints: For all trucks, ∀v ∈ V :

• At most one order per truck at each point in time. λi+1 =
λi + δi + di,i+1 ∀oi ∈ Av

• Each order’s first stop must be made within its time win-
dow. λi ∈ WS

i ∀oi ∈ Av

• All orders must be executed within truck working hours.
For 1 being the first and n being last order in Av: λ1 −
dS,1 ∈ Wv

λn + δon + dn,E ∈ Wv

• The end trailer state and start trailer state of subsequent
orders must match. cSi+1 = cEi

This general formulation covers the most essential con-
straints of the problem. There are additional constraints on
container size, container weight and location limitations for
trucks. This means that some orders cannot be assigned to
specific trucks. Further, note that the definition of the util-
ity or reward evaluation is crucial. It might be possible to
move constraints to the utility function to change the solu-
tion space.

The diverse methods used in this work apply slightly vary-
ing definitions. We explicitly outline these differences in Ta-
ble 1 to make a balanced comparison. We harmonized con-
straints between all six methods within the operational char-
acter of this work. For human planners, constraints and ob-
jectives are naturally flexible. For our AGT-DCOP method,
the goal was to incorporate as many real-world (HUMAN)
constraints and actions as possible, while maintaining the
capability to generate plannings in real-time. Any additional
constraints not incorporated in the system are delegated to
human decision makers. The RL method is implemented as a
machine-learning alternative, and required minor relaxing of
constraints to produce feasible plannings. The MILP-based

482

solver is inherently different in design, and in active use by
the logistics carrier. These were important reasons to include
it in this work, despite it allowing limited control over model
parameters.

Baseline Approaches
To quantitatively evaluate the decentralized agent-based
DCOP and centralized model-free RL approaches, the fol-
lowing baselines are included.

Human Approach (HUMAN) A planner has two con-
crete tasks: validate that sufficient trucks are available the
next day, and communicate orders to drivers for the current
day.

The goal of both tasks is to ensure that orders reach their
destinations at the time the customer desires. To do so, a
planner follows a four-step process:

1. All orders are sorted based on their maximum departure
time at the terminal and iteratively assigned to drivers
by adding the order identifier and its desired delivery
time to a spreadsheet. During this process the planner
accounts for constraints (e.g. driver working hours) and
driver preferences (e.g. long drives versus shuttling or-
ders to the same customer).

2. Mornings are typically characterised by peak volume and
insufficient truck capacity. A planner knows which cus-
tomers allow deviation from the delivery time and uses
this knowledge to ensure that time-critical orders are de-
livered on time.

3. At the start of the day, all first orders are communicated
to the drivers and usually executed as planned.

4. Follow-up orders are assigned at the moment a truck is
within a 30-minute radius of the inland-terminal when re-
turning from a delivery. The initial planning receives only
limited attention from the human planners: what matters
most is ensuring containers arrive at their destinations in
time.

Heuristic Approach (RAND & EAR-D) Two simple
heuristic-based methods are included in the set of baselines.
The first method is a straightforward random selection on
the available orders whenever a truck is ready to pick up a
container. This method is not expected to produce competi-
tive results, but serves as a worst-case scenario benchmark.

The second, more intelligent heuristic, selects orders on
the basis of earliest deadline. Whenever a truck is available,
it will select the order that has the closest upcoming deadline
for transport. Conflicts are mitigated by forcing agents to
decide on orders sequentially through random ordering.

Centralized MILP Approach (SOLV) The final baseline
is a centralized approach in active use at the logistics car-
rier. It is adapted from the MILP case in Karunakaran (2020)
(Matching truck model) that uses a one-to-many matching
assignment technique – greedily assigning as many orders
as possible to a truck within the given delivery time win-
dows to achieve maximum utilisation of the fleet. It incor-
porates mandatory 30 minute breaks for drivers after every 6
hours, driver preferences and license restrictions. A notable

difference with other methods is that orders are forced to
be a round-trip: trucks start from the origin (base terminal),
serves a client, and returns back to the origin. This results in
more conservative plannings. The objective function is given
in Eq. (1). Full design decision details are listed in Table 1
and available in Karunakaran (2020).

max
wmax

wt

ubtrips∑
m=1

∑
o∈O

Ym,o +

ubtrips∑
m=1

∑
o∈O

θm,o (1)

where:
wt = Utility cost of truck t ∈ T
wmax = Max. value of the utility cost of trucks ∈ T
ubtrips = Max. no. of daily trips possible for any truck
Ym,o = Binary for delivery of order o in trip m
θm,o = Binary for on-time delivery of order o in trip m
O = The set of orders

Decentralized Agent-Based Approach
(AGT-DCOP)
Scheduling decisions at a truck level are implemented as
agent logic. Agents have three main functionalities: commu-
nication; a scheduling heuristic to make daily schedules of
orders; and preference negotiation. Communication is used
to share information on available and assigned orders.

Best-First Search Daily Schedule Generation The
scheduling heuristic is based on best-first search. In the
search tree, each node is a daily schedule and new branches
are added by iteratively adding orders to previously made
daily schedules. For each node, a utility value is calculated
with the formula below. To bound the search there is a max-
imum of 100 nodes at the start of each iteration, so only the
most promising daily schedules are extended with new or-
ders. This is considered to be a valid pruning method as daily
schedules with a low utility, high waiting times or many kilo-
metres without load, should be avoided.

The utility function was defined such that the best-first
search leads schedules that maximize the number of sched-
uled orders. Utility (U) is based on valuing transport activ-
ity over the time it takes for execution, together with reduc-
ing deadline slack to valuate orders with tight time windows
higher than orders with broader time windows:

UA =
µA

λA
+

µA

λw
t

+ wo ·No
A + wd · f(λ̂d

A)− we · λe
A (2)

where:
uo = Distance for order o
so = TEU(Twenty-foot Equivalent Unit) for order o
µA = Transport activity: Σo∈Aso · uo

λA = Total duration of daily schedule A
λw
t = Total time of truck working day W v

No
A = Number of orders in schedule A

λ̂d
A = Array of time slack before deadline per stop

f(λ̂d
A) = Function to prioritize small time windows

λe
A = Time driving without load

wo = Weight factor for number of bookings
wd = Weight factor for deadline utility
we = Weight factor for empty driving time

483

Cooperative Constraint Approximation (CoCoA)
CoCoA works by having agents share the incurred costs of
other agents’ assignments, and then making a decision that
is the best for themselves and their immediate neighbours.
This heuristic strategy balances the solution costs and
optimality in practice.

In order to represent the problem as a DCOP, the agents’
top n schedules (s) of all trucks are used to construct a bipar-
tite graph in which every truck is connected to every order
(o) it considers taking. The order nodes are then collapsed
and a graph is created, indicating which trucks have common
interests in an order, and hence which trucks share a con-
straint. This pruning stage is critical, since simply connect-
ing all trucks to all others would make the problem graph
fully-connected, and hence infeasible to solve using a DCOP
formulation.

Firstly, constraint costs for picking a different assign-
ments can now be computed as follows:

Ci,j =
{
τ if ∃o (o ∈ si) ∪ (o ∈ sj),

0 otherwise,
(3)

where:
Ci,j = The cost between schedules for trucks i and j
τ = A large penalty factor for taking the same order

Ideally τ = ∞, which would mean that not having equal
assignments is a hard constraint; however, in CoCoA we
cannot handle hard constraints, therefore we chose a large
value such that Umax ≪ τ , where Umax is the maximum
utility.

Secondly, a preference constraint is added for every truck
in which the utility of a schedule is expressed as the sum of
the utilities of its orders according to Eq. (2).

A no-assignment utility of 10 · Umax is also added to the
domain, allowing the option of not assigning a schedule at
all. This indicates that no assignment is still better than a
conflicting assignment. All truck agents are now connected
to others through their shared constraints, the CoCoA al-
gorithm can run, which will make them negotiate who gets
which schedule.

A fully detailed description of the CoCoA algorithm is
provided by (van Leeuwen and Pawełczak 2017), but in
essence it comes down to the following. When an agent A
is triggered, it sends messages to its neighbours (agents they
share a constraint with) to gather information on the implied
cost for the global utility when A picks any specific assign-
ment. A neighbour B then replies with a message contain-
ing a cost map, which contains for any assignment for A,
what the lowest cost for B is, given that assignment. Note,
that what that assignment is, is not part of the reply, which
increases the privacy for agent B. When all cost maps are
received, agent A makes a decision, taking into account the
incurred costs for itself and for its immediate neighbours.
As long as there is a unique minimizer, this schedule will be
assigned, and the agent will inform its neighbours.

If there is no unique minimizer, the decision is delayed
until more information is provided, i.e. until a neighbours
has picked a schedule. If all decisions are delayed, this
uniqueness constraint is relaxed. Additionally, in order to

prevent race conditions, if – since the start of an informa-
tion gathering loop – a neighbour informs A that an assign-
ment has been made, the process is restarted. This ensures
that the most up-to-date information is always taken into ac-
count, and prevents any two neighbours from picking the
same schedule.

Centralized Model-Free Reinforcement Learning
Approach (RL)
As an alternative to the DCOP approach – where one needs
to define utilities manually to model how the truck plan-
ning problem needs to be solved – one can also consider
how these agents can learn to solve the problem themselves.
RL enables agents to automatically learn what the opti-
mal scheduling decisions are, based on previous experiences
without requiring extensive modelling of the utility of a re-
sulting planning. In addition, new ‘intelligent’ behaviour,
not considered yet by human planners, may arise.

Due to the episodic nature of the optimization problem,
RL has been applied via the use of a DQN as described in
de Vries (2021). Table 1 lists the used constraints. When a
truck needs to make a decision, the state information of all
orders and other trucks is included in the input of the DQN.
A truck then iterates over the list of available orders to cal-
culate the quality (Q-value) of transporting each order. This
Q-value represents how valuable an action is (e.g., transport
order, wait, chassis change) based on the expected future re-
wards obtained, and is given in Eq. (4). In this setting, a neg-
ative reward will be given to trucks when the chosen order is
finished late. Minimizing the reward leads to the least total
lateness.

Q(st, at) =
R(γk − 1)

k(γ − 1)
+ γkV (st+k) (4)

where:

Q(st, at) = Q-value of action a in state s at time t
k = Number of timesteps to consider
γ = Discount factor
R = Reward when doing action at in state st
V (st+k) = Value at state st+k defined as max

a Q(st, at)

The model is trained centrally on a historical dataset span-
ning 4 years totalling roughly 250,000 orders. To obtain ex-
perience during training, actions are chosen via an ϵ-greedy
mechanism. When a truck needs to choose an order, it does
so randomly with chance ϵ (starting at 0.9 and decreasing
over time). Alternatively, it chooses an order based on the
policy network. Execution was done centrally in our experi-
ments, but can also take place locally in a decentralized man-
ner, provided that truck state information is shared between
the truck agents.

Due to the differences in method execution (specifically,
the need for a training phase), a second simulator was built
to train the DQN. This simulator generates a random set of
orders and trucks for a day from a distribution modelled af-
ter historical data. Order characteristics, such as pickup lo-
cation, destination, and time windows were also varied.

484

Platform
Database

Order data

Metrics and
Analysis
Service

Platform API

Internal
External

Truck
Agent

DCOP
Agent

Logical agent

DriverPlannerResearcher

Message bus

Experiment
Manager

Planner
Dashboard

Driver
Dashboard

Agent
Generator

DCOP
Service

Figure 1: Talking Trucks system architecture.

System Overview and Implementation
As shown in Figure 1, the implemented system is comprised
of multiple components, each running as containerized ap-
plications. The following main constructs are employed by
these components to reason about the planning problem: an
Order, consisting of a booking identifier and container char-
acteristics – Twenty-foot Equivalent Unit (TEU), weight,
etc. – which represents the main unit to be allocated to ve-
hicles for transportation; a Route stop, which is associated
with an order and holds specific location information and
pickup windows; a Sequence, which is a list of sequential
orders; an Assignment, which assigns a specific agent to a
sequence and contains attributes to (in)validate or rate it; and
finally, a Planning, which is a list of assignments.

Central in this architecture is a distributed message bus
which is used by virtual agents to communicate preferences
for picking up particular orders. Agents react on new or-
ders which become available to them. These are published
through an API to the message bus (either manually or via
the planner dashboard). Agents listen to this bus for infor-
mation regarding new orders, updates to orders, and updates
to assignments.

Additionally, the message bus is used to inform the man-
aging components to apply updates to the agents they are
monitoring. The distributed nature of the message bus al-
lows agents to autonomously react on incoming messages
(or be offline for extended periods of time). Furthermore,
this design is highly scalable, easily converted into opera-
tional software, and allows for individual differences to in-
ternal agent logic in a multi-fleet scenario.

A logical agent – the virtual representation (a digital twin)
of a truck in the fleet – consists of two components running
in parallel: a truck agent implemented in Python to gener-
ate locally optimal sequences of orders, and a DCOP agent
using an existing CoCoA Java implementation. The truck
agent is responsible for executing scheduling operations
and scheduling communication with the DCOP-algorithm.
Truck agents subscribe to the main topic on the message bus,
where new orders are published for a given experiment, and,

after calculating their individual loss for a sequence as de-
scribed in Section , publish that back to the topic for other
agents interested in the same orders to see. Truck agents
also react to any order updates relevant to them. During
a scheduling round, the corresponding DCOP agent is in-
formed about these loss messages and, after solving the as-
signment problem of trucks to sequences, publishes these
solutions back on the bus. Both types of agents are managed
by control components, the agent generator and the DCOP
service, which are responsible for creation, updating, and re-
moval of individual agents, respectively.

Several User Interface (UI) components communicate
with the system backend via the API. Notably, the plan-
ner dashboard UI is used by the human planner to add new
daily order information to the system; view the generated
planning resulting from negotiation between agents; and ac-
cept or reject, and provide feedback on specific assignments
or the overall planning. The system is backed by a single
relational database. Note therefore that, while planning is
done decentrally by the agents, the experimentation plat-
form including API and UI components are set up in a cen-
tralized manner. By replacing the current distributed mes-
sage bus with a fully decentralized alternative, and mov-
ing to a database-per-stakeholder model, this setup is eas-
ily extended to a completely decentralized multi-fleet envi-
ronment. Finally, an analysis service listens to the message
bus for agent and planning messages and, when triggered
through the API, will calculate KPIs relating to truck capac-
ity utilisation. Full KPI details are presented in Section .

We are working to provide this cloud-native simulation
framework – including agent logic – as open-source tool-
ing available to the academic SOL community under a non-
commercial license to further research in the SOL domain.
It is currently available on request.

Experimental Design
Experimental data was gathered during three separate ex-
periments at a multi-modal logistics service provider in the
Netherlands, taking into account all regional orders sched-
uled for the same day; Table 2 summarizes. This dataset
includes order data – comprised of an identifier, location
code, stop type (pickup or delivery), and time window in-
formation – and truck data – comprised of an identifier,
truck type (regional or port), emission Euro norm, cost of
driving 1km, cost of driving an hour, maximum allowed
TEU, maximum allowed order weight, and working hours
– and is publicly available in pseudonymized form at: https:
//zenodo.org/record/5777315.

Notably, for Experiment 1, all order time windows were
strict (15 minutes), whereas for the Exp. 3, 12 of 41 total or-
ders had large time windows, spanning the full length of the
day (up to 12 hours). This type of flexibility has pronounced
repercussions for the generation of a daily schedule, separat-
ing Exp. 3 from the other two other experiments. This means
that the SOLV method, which does not apply time windows
but rather employs fixed deadlines (Section), has a consid-
erable disadvantage in this specific experiment. Truck char-
acteristics also vary over the experiments, with Exp. 1 and 2
containing similar truck types, while Exp. 3 has trucks that

485

Exp. # # Orders

No. Trucks Live handling Decoupling Total

1 8 22 (57.9%) 16 (42.1%) 38
2 9 15 (40.5%) 22 (59.5%) 37
3 9 30 (73.2%) 11 (26.8%) 41

Table 2: Truck and order statistics in the three experiments.

are more complex, e.g., in working hours that are more het-
erogeneous and, in part, constrained.

Any particulars during experiments, such as notable cargo
not included in the input data, were annotated. The MILP-
based solver, different from other methods, also explicitly
takes into account mandated 15- and 30-minute breaks for
drivers. Other methods do not, as domain experts noted that
these typically take place during handling and are therefore
largely already present in the dataset.

During the experiments, the full platform ran on a sin-
gle machine equipped with a 6-core AMD Opteron 6328
CPU and 16GiB RAM. A system consisting of a 12-core
Intel Xeon E5645 CPU and 24GiB RAM was used to train
the DQN-based model over the course of 24 hours, with ob-
served signs of convergence after 2 hours. Time to generate
a solution was in the order of milliseconds for the trained
DQN, in the order of seconds for the AGT-DCOP method,
and in the order of milliseconds for the linear programming-
based solver. Human planners were observed to provide so-
lutions between 30–60 minutes.

After each field trial, the resulting planning was reviewed
together with human planners and comments were used to
improve data-acquisition (e.g., in the case of adjusting time
windows to better reflect real-world situations) and tune the
AGT-DCOP and RL methods. To reduce potential bias, there
was no interaction with human planners during execution.
Notable changes during this phase include the changing of
the time windows (when indicated that some were more flex-
ible in actuality than on paper), and the addition of a factor in
the utility function to favour orders that should occur earlier
on the day (for situations with day-long time windows).

Finally, all baseline methods and final iterations of the
AGT-DCOP and RL method were run on the full 3-day
dataset. The RAND, EAR-D, and RL methods were each
run for 100 iterations because of their stochastic compo-
nents. We report the mean and standard deviation of these
runs. The AGT-DCOP was instantiated with the following
parameter values: n: number of schedules to consider for
DCOP: 100; wo: weight factor for number of bookings: 0.5;
wd: weight factor for deadline utility: 1.5; we: weight fac-
tor for empty driving time: 0.0002. Real world KPIs impor-
tant to the logistics carrier (including derivatives of meth-
ods’ explicit objective functions) were automatically gen-
erated to output general descriptive metrics (percentage of
total orders planned, number of rides planned, and percent-
age of ordered TEU planned), punctuality metrics (percent-
age of orders planned early, on time, and late respectively),
labour metrics (active, waiting, driving, handling, and work-
ing hours), and distance metrics (planned kilometres driven,

and percentage driven with load or empty).
Orders are marked as late when the arrival time exceeds

the time window deadline by more than 15 minutes; or
marked as early when a truck arrives on location 15 minutes
or more before the designated time window starts. However,
as noted, the SOLV method only uses fixed deadlines and
does not incorporate time windows, thereby not considering
orders that exceed that deadline.

Late orders are undesirable due to high costs associated
with rescheduling a time slot. Early orders do not occur for
automated orders, because in these cases, trucks wait just be-
fore the terminal (which is reflected in waiting hours). This
is not ideal, but exceedingly more desirable than being late.
Because the HUMAN method is based on real-world data, it
can happen that an early arrival will result in early departure
as well, freeing up time. For automated methods, this does
not occur because they are never early.

Low active hours during execution are ideal, meaning that
all trucks are occupied and actively delivering orders. Start
of day waiting hours indicate that trucks can be allocated to
perform tasks at the terminal, whereas end of day waiting
hours indicate that these trucks can start to pick up new or-
ders. Negative waiting hours indicate overtime for existing
trucks and signal a need for additional truck capacity.

Lacking access to truck GPS data, driving distances were
computed by taking the great circle distance between the or-
der’s origin and destination and multiplying by an expert-
supplied factor of 1.2. Driving hours are then determined by
multiplying that figure by an estimate of the average driv-
ing speed dependent on the type of road (20 km/h for ur-
ban roads, 50 km/h for rural roads, and 70 km/h for high-
ways). These figures were found to be representative after
manual investigation by domain experts of the logistics ser-
vice provider when comparing to actual driving times. For
the SOLV method, driving times are calculated using a com-
bination of Google Maps, historical data and a slack fac-
tor. The human-generated plannings and related metrics for
timeliness were annotated manually by domain experts at
the logistics carrier based on actual operational information.

Results and Analysis
Figure 2 shows the results on cumulative lateness in min-
utes for all orders for all three experiments. The AGT-DCOP
method outperforms all methods on punctuality (by design,
similar to the SOLV method, it will not plan any late orders).
The method is able to successfully schedule all orders. Cru-
cially, it was the only method that was able to generate a
planning that required 1 truck less than the other methods
during Exp. 2.

The HUMAN method performs almost as well, generat-
ing very punctual allocations, but results in a number of ex-
treme cases at both the early and late tail of the distribution.
Results of the EAR-D heuristic are very similar to the RL
method, with the simple EAR-D method working surpris-
ingly well for homogeneous orders (common in Exp. 3) and
overall just outperforming the latter. Both methods produce
more slightly delayed orders than the HUMAN method. The
SOLV method is able to schedule 94.7% of 38 orders in

486

10 20 30
−180

0

180

360

540

720 Late

Early

Order

C
um

ul
at

iv
e

m
in

ut
es

la
te

Experiment 1

RAND
EAR-D
SOLV
RL
AGT-DCOP
HUMAN

10 20 30

Late

Early

Order

Experiment 2

10 20 30 40

Late

Early

Order

Experiment 3 (large time windows)

Figure 2: Order lateness in minutes, per planning method. Orders are sorted in ascending order or lateness for each experiment.
Bands for RAND, EAR-D, and RL methods show standard deviation for the 100 iterations.

Start of day Execution End of day
0

200

400

M
in

ut
es

w
ai

tin
g

Experiment 1

RAND
EAR-D
SOLV
RL
AGT-DCOP
HUMAN

Start of day Execution End of day

0

200

400

Experiment 2

Start of day Execution End of day
0

200

400

Experiment 3 (large time windows)

Figure 3: Average combined waiting time for trucks in minutes, at the start of the day, during execution, and at the end of the
day, per planning method.

Exp. 1, 97.3% of 37 orders in Exp. 2, and 82.9% of 41 or-
ders in Exp. 3. By design it will not plan orders that are late,
therefore any non-scheduled orders are assigned maximum
lateness. As expected, the RAND method clearly results in
the highest number of late orders.

Considering truck waiting hours shown in Figure 3, we
observe that both our AGT-DCOP and the HUMAN method
outperform all other methods for waiting time during execu-
tion, averaging a maximum waiting time over all three days
of 13.19 (σ = 6.71) and 13.03 (σ = 10.99) minutes re-
spectively. In Exp. 2, the HUMAN method is shown to out-
perform all other methods by roughly 2 end-of-day waiting
hours. This can be attributed to the fact that the AGT-DCOP
method completes the planning with 1 truck fewer. The
RL method outperforms both heuristics on average for both
waiting hours incurred during execution and those available
at end-of-day. The SOLV method performs well on the first
two experiments, but because it does not consider time win-
dows and only maintains strict deadlines, it cannot capitalize
on that in Exp. 3. Again, the RAND method is distinctly the
worst-performing method. We observe that it requires a lot
of overtime during Exp. 2 as indicated by a negative number

of waiting hours.
Regarding average kilometres driven, we found that all

methods are very much aligned. Although routes to delivery
locations do not differ between the EAR-D, RAND, RL, and
AGT-DCOP methods, we observed that when comparing
against the HUMAN method there is less than a 5% (or 50
km) difference in average kilometres driven per truck, with
the HUMAN method obtaining the lowest number of driven
kilometres which we attribute to the fact that this method
directly monitors truck GPS locations. (We do not compare
driven kilometres for the SOLV method as that method en-
forces empty return trips to the terminal which other meth-
ods do not require.) Costs for a logistics operator are de-
termined by number of driven kilometres and waiting hours
which involves driver salaries and taxes, but moreover, costs
for not meeting a delivery deadline, and having to charter
another truck, are even more critical. In this context, AGT-
DCOP performs best due to needing 1 truck less to complete
the planning during Exp. 2.

When reviewing the final generated plannings of the
AGT-DCOP method with human experts, it was observed
that the plans were feasible and realistic for execution.

487

Method Decentralized Scalability Punctuality Modelling effort Data requirements Run time (range)

HUMAN ✗ Low High – Medium Hour
RAND ✓ High Low Low Low Milliseconds
EAR-D ✓ High Medium Low Low Milliseconds
SOLV ✗ Medium High∗ Medium Medium Milliseconds

AGT-DCOP ✓ High High High Medium Seconds
RL ✗ (possible) Medium Medium Medium High Milliseconds (inference)

Table 3: Comparative strengths and weaknesses. ∗The (SOLV) method is punctual for orders that it considers because it will
not plan any late orders, but is therefore not able to schedule all orders, whereas all other methods are.

Table 3 presents the main strengths and weaknesses of
methods used in this work. Human planning is punctual, but
also costly. Simple heuristics (e.g., EAR-D) scale well but
provide sub-optimal results, whereas the centralized MILP-
based SOLV method is punctual by design but fails to sched-
ule all orders. RL is more data dependent than other methods
and found to be more applicable to more complex scenarios.
The AGT-DCOP method requires significant modelling ef-
fort, but generates very punctual plannings and scales well.

Conclusion and Future Work
This work considered the order scheduling problem using
real-world data, and contrasted a decentralized model-based
approach to a centralized, but model-free approach, bench-
marking these methods against human experts, a MILP-
based solver, and two heuristics. These methods were imple-
mented in a cloud-native simulation framework with a low
barrier to operational deployment, automatically incorporat-
ing human feedback.

Results on real-world data show that it is realistic to sup-
port human planners in the logistics domain with a decen-
tralized SOL solution. The presented AGT-DCOP method is
able to outperform both human expert and heuristic base-
lines on punctuality, delivering all orders on time, and main-
taining truck activity similar to the human expert baseline.
The centralized RL method, optimized on maximizing punc-
tuality rather than maximizing number of orders delivered,
does not score better than human expert planning in terms of
average lateness and induces a higher cost on truck waiting
time than the AGT-DCOP method. While the RL method
does not outperform the greedy EAR-D heuristic on aver-
age lateness, its planning results are much more efficient in
terms of truck activity. RL’s strengths lie in its ability to
model complex dynamics in situations where it is infeasi-
ble to manually construct utility functions, and thus envi-
ronments where a model-based approach cannot be imple-
mented.

There are benefits to automated decentralized planning:
greater scalability and improved data security, and the ability
to compute with a large number of constraints and a highly
heterogeneous group of actors. However, we also note sev-
eral limitations on these methods. There is increased com-
plexity in managing distributed software components, espe-
cially in trying to capture a noisy and uncertain world into
neat constraints and assignments. Second, human planners
can currently deal with a much larger range of operational

changes and issues (e.g., when assigning two trucks to a sin-
gle driver for repeated live-handling orders), some of which
are notoriously difficult to model. It is critical to involve
planners in the design process of automated tools. Care
should be taken that human values are not lost in the emer-
gence of automated control. Third, human decision makers
insist on algorithmic decisions being explainable, which can
be challenging due to (sometimes obfuscated) utility func-
tions. We found that while individual truck plannings can be
explained well to operators, doing this for a full planning
is more difficult when peculiarities or novel solutions are
found by the algorithm. Fourth, a form of oversight should
be in place when constructing automated decentralized coor-
dination environments to keep actors behaving in good faith.

Future work includes evaluating our models on larger and
more complex problems (e.g., involving anomalies) where
the RL method’s strengths are more apparent; a closer inves-
tigation of the multi-objective Pareto frontier to better eval-
uate the cost of an improvement in punctuality; implement-
ing a more advanced search through the sequence space;
and adding support for federated multi-stakeholder environ-
ments. Additionally, there exist various strategies to decen-
tralize the proposed RL method, for example through feder-
ated learning, mitigating some of its disadvantages.

Regarding future steps for SOL, we believe that as au-
tomation and machine learning in the field continues to pro-
liferate in order to support growing shipment volumes and
available sensor-data, the demand for explainability for hu-
man operators will be of the highest importance in order to
trust automated decision support solutions.

Acknowledgements
This work is part of the TNO ‘Talking Trucks’ project and is
supported by Van Berkel Logistics, DHL Global Forwarding
and SmartPort Rotterdam. It has received funding from the
TNO Digital Twin lifecycle technology programme for Reli-
able Digital Twinning. This research was partially supported
by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under grant number 952215. The
authors thank the anonymous reviewers, and Paolo Pileggi
and Lóránt Tavasszy for many helpful comments that im-
proved the quality of this manuscript.

References
Baldacci, R.; Mingozzi, A.; and Roberti, R. 2012. Recent
exact algorithms for solving the vehicle routing problem un-

488

der capacity and time window constraints. European J. of
Operational Research, 218(1): 1–6.
Berndt, J. O. 2011. Self-Organizing Logistics Process Con-
trol: An Agent-Based Approach. In Proc. ICAART, 397–
412.
Chao, I.-M. 2002. A tabu search method for the truck and
trailer routing problem. Computers & Operations Research,
29(1): 33–51.
Dantzig, G. B.; and Ramser, J. H. 1959. The Truck Dis-
patching Problem. Management Science, 6(1): 80–91.
de Vries, Y. C. 2021. Reinforcement learning for order dis-
tribution in self-organizing logistics. Master’s thesis, Delft
University of Technology.
Feng, F.; Pang, Y.; Lodewijks, G.; and Li, W. 2017. Collabo-
rative framework of an intelligent agent system for efficient
logistics transport planning. Computers & Industrial Engi-
neering, 112: 551–567.
Gerrits, B. 2020. Towards a Unifying Framework for Self-
Organization in Transport Logistics. In Proc. ICCL.
Gombolay, M. C.; Jensen, R.; Stigile, J.; Golen, T.; Shah,
N.; Son, S.; and Shah, J. A. 2018. Human-Machine Col-
laborative Optimization via Apprenticeship Scheduling. J.
Artificial Intelligence Research, 63: 1–49.
Grinshpoun, T.; Grubshtein, A.; Zivan, R.; Netzer, A.; and
Meisels, A. 2013. Asymmetric Distributed Constraint Op-
timization Problems. Journal of Artificial Intelligence, 47:
613–647.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In Proc. ICML,
1861–1870. PMLR.
Hirayama, K.; and Yokoo, M. 1997. Distributed partial con-
straint satisfaction problem. In Principles and Practice of
Constraint Programming, 222–236.
Irannezhad, E.; Prato, C. G.; and Hickman, M. 2020. An
intelligent decision support system prototype for hinterland
port logistics. Decision Support Systems, 130: 113227.
Joe, W.; and Lau, H. C. 2020. Deep Reinforcement Learning
Approach to Solve Dynamic Vehicle Routing Problem with
Stochastic Customers. In Proc. ICAPS, 394–402.
Karunakaran, J. 2020. Optimal fleet assignment in inland
container logistics. Master’s thesis, Eindhoven University
of Technology.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Nguyen, T. T.; Nguyen, N. D.; and Nahavandi, S. 2020.
Deep reinforcement learning for multiagent systems: A re-
view of challenges, solutions, and applications. IEEE Trans.
Cybern., 50(9): 3826–3839.
Pan, S.; Trentesaux, D.; and Sallez, Y. 2016. Specifying
Self-organising Logistics System: Openness, Intelligence,
and Decentralised Control. In International Workshop on
Service Orientation in Holonic and Multi-Agent Manufac-
turing, 93–102. Springer.

Quak, H.; van Kempen, E.; and Hopman, M. 2018. Mov-
ing towards practical implementation of self-organizing lo-
gistics – making small steps in realizing the PI vision by
raising awareness. International Physical Internet Congres,
106–119.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Song, X.; Jones, D.; Asgari, N.; and Pigden, T. 2020. Multi-
objective vehicle routing and loading with time window con-
straints: a real-life application. Annals of Operations Re-
search, 291: 799–825.
Tang, H.; Wang, A.; Xue, F.; Yang, J.; and Cao, Y. 2021.
A novel hierarchical soft actor-critic algorithm for multi-
logistics robots task allocation. IEEE Access, 9: 42568–
42582.
ter Mors, A.; Zutt, J.; and Witteveen, C. 2007. Context-
Aware Logistic Routing and Scheduling. In Proc. ICAPS,
328–335.
van Leeuwen, C. J.; and Pawełczak, P. 2017. CoCoA: A
Non-iterative Approach to a Local Search (A)DCOP Solver.
In Proc. AAAI, 3944–3950.
van Ommeren, C. R.; Fransen, R. W.; Pingen, G. L. J.; van
Leeuwen, C. J.; Paardekoper, J. P.; and van Meijeren, J. C.
2020. Letting Digital Twins Run the Show: Exploring pos-
sibilities of letting vehicles plan and organise transportation
themselves. Technical report, TNO.
Yeoh, W. 2018. Towards Improving the Expressivity and
Scalability of Distributed Constraint Optimization Prob-
lems. In IJCAI, 5734–5738.

489

