
Building Resource-Dependent Conditional Plans for an Earth Monitoring Satellite

Cédric Pralet,1 David Doose,1 Julien Anxionnat2, Jérémie Pouly2

1 ONERA, Université de Toulouse, 2 av. Edouard Belin, BP 74025 F-31055 Toulouse Cedex 4, France
2 CNES, 18 av. Edouard Belin, 31401 Toulouse Cedex 9, France

{cedric.pralet,david.doose}@onera.fr, {jeremie.pouly,julien.anxionnat}@cnes.fr

Abstract
This paper introduces a conditional planning and execution
system for an Earth monitoring satellite. This system builds
plans containing optional acquisitions that are activated or not
at execution time depending on the amount of energy actually
available. One originality is that the energy activation thresh-
olds computed on the ground take into account the capacity
of the satellite to use an heliocentric pointing or switch off
the payload when acquisitions are canceled. Another origi-
nality is that the conditional planner proposed uses several
energy propagation models, from conservative models con-
taining margins on power production to optimistic models
that allow opportunistic acquisitions to be planned.

Introduction
In this paper, we introduce a planning and execution system
for a low Earth orbit nanosatellite developed by the French
Space Agency (CNES) and that should be launched in 2022-
2023. The mission of this nanosatellite is to perform acquisi-
tions over areas at the Earth surface and download collected
data towards ground reception stations. During acquisitions,
the instrument must be pointed to the center of the Earth
(geocentric pointing), while during data downlink, the emis-
sion antenna must be pointed to a ground station. The satel-
lite can also use an heliocentric pointing (solar panels or-
thogonal to the Solar rays) to better recharge its batteries.
In this context, based on technical documentations of the
nanosatellite, our goal is first to define a planning strategy
(the content of this paper) and then to implement the con-
cept proposed on the real system (the next step for us).

Basically, the mission planning system is responsible for
building acquisition and download plans covering as many
ground areas as possible. It must take into account features
like the duration of maneuvers between different pointings,
the duration required to switch the payload on or off, or the
limited amount of energy available on-board, this last aspect
being the main bottleneck in terms of resources. As usual in
the space domain, the baseline approach is to build a unique
safe plan on the ground by considering conservative mar-
gins, to cope with the uncertainty about parameters that in-
fluence for instance the total amount of energy available on-
board (satellite temperature, actual orientation of the solar

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

panels, actual power consumed by the payload, etc.). How-
ever, in the first simulations we performed, the nanosatel-
lite that we have can make acquisitions only 12.4% of the
time based on conservative models, whereas when using av-
erage or optimistic margins, it is able to perform acquisitions
17.6% and 20% of the time respectively. As a result, our ob-
jective is to go beyond the conservative approach, and for
this we propose to build conditional plans (Peot and Smith
1992; Pryor and Collins 1996). More precisely, we propose
to produce plans containing optional acquisitions that are
then triggered or not depending on the actual level of energy
available at execution time.

Using plans conditioned by resource thresholds is not new
in the space domain. For instance, in an experiment for the
DLR BIROS satellite (Lenzen et al. 2014), the mission cen-
ter computes plans defined as sequences of plan fragments
where each fragment has an energy activation threshold. In
other studies on Earth observing satellites, the ground sys-
tem computes an energy activation threshold for each obser-
vation with the objective to guarantee that all high-priority
observations are always fulfilled (Maillard et al. 2015). Flex-
ible download plans were also considered in these studies
to manage uncertain memory consumptions (Maillard et al.
2016), but memory is not a bottleneck in our case. Last, in
works on the NASA Mars 2020 rovers, each activity planned
offers a set of ranked alternatives called switch groups, with
for each alternative an energy activation threshold computed
on the ground (Agrawal et al. 2021). In all these experi-
ments, conditional plans are compatible with the low com-
putational resources available onboard, and they allow the
mission center to keep control of the decisions made.

With regards to these previous works, the approach pro-
posed in this paper brings several contributions:

• first, when acquisitions are canceled, we can change the
pointing of the satellite to improve power production;
• second, this opportunistic pointing adaptation strategy is

exploited on the ground to compute more permissive ac-
tivation thresholds for the acquisitions;
• third, a least-commitment approach allows the condi-

tional decisions to be postponed as much as possible
while managing setup operations like maneuvers;
• fourth, conditional plans are obtained from several en-

ergy models, including pessimistic and optimistic ones.

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

490

The paper is organized as follows. We first describe the
features of the nanosatellite considered. We then define the
algorithm used on the ground to build conditional plans and
the onboard procedure that executes these plans. Last, ex-
perimental results and validation issues are discussed, and
some perspectives are provided. The long-term idea is that
the real nanosatellite demonstration will first use a baseline
conservative non-conditional planner and then switch to the
conditional planning approach defined in this paper.

System Specifications
System states Fig. 1 gives a standard activity plan for the
satellite. The latter can be seen as a disjunctive resource that
performs acquisitions and data transfers, together with setup
operations like maneuvers (in magenta). In between these
activities, the satellite uses one of the waiting modes in set
W = {ON ,OFF ,SBY }. In the ON mode, the satellite
maintains a geocentric pointing and the payload is on. In the
OFF mode, the satellite maintains a geocentric pointing and
the payload is off. In the SBY mode, the satellite maintains
an heliocentric pointing and the payload is off.

Fig. 2 details the possible transitions between these wait-
ing modes for the acquisition process, that also involves an
ACQ mode standing for a state where the satellite main-
tains a geocentric pointing, the payload is on, and the in-
strument collects data. Each transition corresponds to setup
operations that take some time. For instance, transition
[SBY→ON] requires to perform a maneuver (up to sev-
eral minutes) and to switch on the payload (a few tens
of seconds). Transition [ON→ACQ] requires to load the
acquisition to be performed (a few seconds). Transition
[ON→OFF] requires to switch off the payload (a few sec-
onds). The duration of these setup operations is constant, ex-
cept for maneuvers whose duration is time-dependent (e.g.,
the maneuver duration between a geocentric pointing and an
heliocentric pointing depends on the time at which the ma-
neuver is triggered). In the following, we assume that the
duration of a maneuver is always greater than the duration
required to switch the payload on or off.

Plan An acquisition plan π = [a1, . . . , an] is a sequence
of successive acquisitions ai that have a fixed start time
Start(ai), a fixed duration Du(ai), and a fixed end time
End(ai) = Start(ai) + Du(ai). For an acquisition a that
does not overlap any acquisition in π, we denote by π+(a)
the sequence of acquisitions placed after a in π.

SBYDownlink SBY ACQOFFACQ ON ACQ ACQ SBYSBY

Figure 1: Satellite activity plan

ACQ

maneuver + switchOn

maneuver + switchOff

switchOff

switchOn

unload acqload acq

maneuver + switchOff switchOff

SBY ON OFF

Figure 2: Satellite running modes for the acquisition process

Waiting modes between acquisitions One key aspect of
the system considered is that the waiting mode W (a, b) ∈
W to use between two successive acquisitions a and b is
completely determined by predefined rules depending on
the duration δ = Start(b) − End(a) available between
the end of a and the start of b. Let us detail these pre-
defined rules. Let m1 be the minimum duration of a ma-
neuver from a geocentric pointing at time End(a) to an
heliocentric pointing. Let m2 be the minimum duration
of a maneuver starting from an heliocentric pointing and
reaching a geocentric pointing at time Start(b). Let m3 be
the minimum duration required by the chain of transitions
[ACQ→OFF→ON→ACQ]. Then, the rules are:

IF δ ≥ m1 +m2 THEN W (a, b) = SBY
ELSEIF δ ≥ m3 THEN W (a, b) = OFF
ELSE W (a, b) = ON

(1)

We assume here that for two successive acquisitions a and
b, we always have Start(b) − End(a) ≥ m4 where m4

stands for the minimum duration of the chain of transitions
[ACQ→ON→ACQ], so that using waiting mode ON be-
tween a and b is always feasible from a temporal point of
view. The objectives of the previous rules are to use an he-
liocentric pointing as much as possible to maximize power
production, and to switch off the payload as much as pos-
sible to minimize power consumption. Minimum OFF or
SBY durations could also be easily added in the rules.

Decision dates The acquisition plans considered contain
optional acquisitions that can be activated or not. The de-
cision to trigger an acquisition a must be made at a time
that allows to perform all relevant setup operations before
a. Depending on the current waiting mode, there are actu-
ally three possible decision times referred to as τSBY (a),
τOFF (a), τON (a) (see Fig. 3), where τw(a) stands for the
latest date at which mode w can be left if w is the current
waiting mode and the next goal is to perform a.

Downlink activities The communication windows with
ground stations are imposed and we assume that the max-
imum power required to communicate is consumed over
these windows. This ensures that the mission center can al-
ways communicate with the satellite when needed.

Energy limitations The nanosatellite has a limited mem-
ory capacity but the main bottleneck of the system is the ca-
pacity of the batteries. The amount of energy available can-
not be greater than a maximum value Emax corresponding
to a maximum state of charge, and it must never be less than
a minimum value Emin . To check this constraint, we dis-
pose of a model for computing the energy evolution profile
induced by a given plan π. More formally, an energy model
M is defined by a function ΦM that takes as inputs:

a a a

?ON
τON (a)

?OFF
τOFF (a)

SBY
τSBY (a)

?

Figure 3: Latest dates at which the activation of an acquisi-
tion can be decided depending on the current waiting mode

491

• an initial time t0 ∈ R, an initial mode w0 ∈ W , and an
initial energy level e0 ∈ [Emin,Emax];
• a final time t1 and a final waiting mode w1 ∈ W;
• a plan π to execute over [t0, t1], with the assumption that,

from a temporal point of view, this plan is feasible over
[t0, t1] with the given initial and final modes;
• a time t ∈ [t0, t1].

Then, ΦM (t0, w0, e0, t1, w1, π, t) ∈ [0..Emax] gives the
amount of energy available at time twhen performing plan π
and using the specified initial and final conditions. Function
ΦM takes into account all switch on/off operations and ma-
neuvers induced by π, the power produced through the solar
panels depending on the satellite pointing induced by π, the
power consumed by the activities of π, the power consumed
during all communication windows with ground stations, the
energy saturation at value Emax , and the temperature on-
board the satellite. In its detailed version, function ΦM is
not linear in the duration of the activities of the plan due to
non linear effects on the state of charge of the batteries.

From this, given a minimum level of energy e1 required at
the end, plan π is said to be valid over [t0, t1] if and only if
(1) the energy evolution profile has no value less than Emin ,
i.e. ΦM (t0, w0, e0, t1, w1, π, t) ≥ Emin holds for every t ∈
[t0, t1], and (2) ΦM (t0, w0, e0, t1, w1, π, t1) ≥ e1. In this
case, we write ValidM (t0, w0, e0, t1, w1, e1, π) = true .

On the opposite, to define conditional plans, it is useful to
compute the minimum initial level of energy e0 from which
plan π is valid over [t0, t1], given initial and final modes
w0, w1, and given a final energy level e1 requested at t1.
Formally, this minimum initial energy level is obtained by a
function ΘM defined as:

ΘM (t0, w0, t1, w1, e1, π) = min{e0 ∈ [Emin,Emax] | (2)
ValidM (t0, w0, e0, t1, w1, e1, π) = true}

Eq. 2 is computed using an iterative method that consid-
ers a new candidate value for ΘM (t0, w0, t1, w1, e1, π) at
each step. This value can be obtained by dichotomy or by
linear interpolation techniques measuring the (positive or
negative) distance between the minimum level of energy re-
quested and the estimated energy evolution profile. In both
cases (dichotomy or interpolation), the idea is to converge
to ΘM (t0, w0, t1, w1, e1, π), up to a given precision, by suc-
cessive forward propagations through function ΦM .

Conditional Planning on the Ground
From the previous definitions, we can introduce the algo-
rithm proposed to build conditional plans on the ground.

Initial plan We consider as an input the acquisition plan
π0 produced by the baseline greedy planner currently de-
signed for the mission. This planner starts from an empty
plan and tries to add one more acquisition at each step, us-
ing a specific ranking policy for choosing the next candi-
date acquisition to insert. For each acquisition insertion at-
tempt, the algorithm updates the download plan and checks
memory-related constraints. To check the validity of the en-
ergy evolution profile, it builds a full plan (containing all
waiting modes, downlink activities, maneuvers, etc.), and

then uses a pessimistic energy model M0 involving margins
on power production and consumption. If any constraint is
violated, the acquisition is rejected. The process continues
until there is no more candidate acquisition.

Overview of the algorithm proposed To try and get more
efficient plans, we go beyond the single pessimistic energy
model M0 and consider several energy models M1, . . .MK

that are more and more permissive, meaning that an acquisi-
tion plan valid for model Mk is also valid for model Mk+1.
For instance, we can consider an average energy model M1

and an optimistic energy model M2.
The main idea is then to start from initial plan π0 and

perform a sequence of planning phases to cover more and
more acquisitions. Fig. 4 illustrates this strategy. Fig. 4a
gives a plan π0 = [A,B,C] produced by the baseline
mission planner, based on model M0. According to M0,
the energy evolution profile reaches value Emin at some
point. But for energy model M1, plan π0 is too conserva-
tive since there is a gap between the energy profile esti-
mated by M1 and value Emin . As shown in Fig. 4b, a sec-
ond planning phase based on model M1 leads to a new plan
π1 = [A,D,B,E, F,G,C] containing four new (optional)
acquisitions. If M1 corresponds to an average model, we
have a good chance to perform many acquisitions in π1 since
periods where the real power consumed is higher than inM1

are likely to be compensated by periods where it is lower
than in M1. For each optional acquisition a in π1, we also
compute an energy threshold to determine whether a can be
triggered while guaranteeing that all remaining acquisitions
in π0 can still be performed. On Fig. 4b again, we see that
optimistic energy modelM2 estimates that there is still some
energy left. A third planning phase based on M2 can lead to
plan π2 = [H,A,D,B,E, I, F,G, J, C] shown in Fig. 4c.
For π2, model M2 alone may estimate that there are still
some acquisition opportunities left, but the algorithm will
forbid the addition of optional acquisitions that jeopardize
some remaining acquisitions planned at the previous levels.

CA B downlink

CA downlink

CA B downlink

(c)

(b)

(a)

F GEBD

D E IH F G J

M2

M1

M2

M0

M1

energy

energy

energy

Emin

Emax

Emin

Emax

Emin

Emax

Figure 4: Addition of acquisitions for energy modelsM1 and
M2, starting from plan π0 = [A,B,C] obtained with M0

492

Conditional planner: main function The plan function
given in Algo. 1 is the main procedure of the approach pro-
posed. It builds a plan over time frame [t0, t1] given initial
and final modes w0 and w1 at times t0 and t1, and a mini-
mum level of energy e1 required at t1. It first computes an
initial plan π0 using the baseline planner (Line 2). This plan
contains the so-called mandatory acquisitions. Then, suc-
cessive planning phases are performed to add optional ac-
quisitions, based on energy models M1 to MK (Lines 4-8).
The kth planning phase leads to a plan πk, and each value
k ∈ [0..K] is called a planning level. All acquisitions a
added from πk−1 to πk have planning level λ(a) = k, and
for each of them the algorithm computes so-called left en-
ergy thresholds defining the amount of energy from which
the acquisition can be triggered (Line 8, more details later on
this point). For every acquisition a involved in final plan πK ,
the algorithm also computes so-called right energy thresh-
olds defining the waiting mode to use at the end of each
acquisition (Line 10, more details later on this point).

Planning at each level In Algo. 1, function nextPlan spec-
ifies how a new plan is obtained at each planning level k. It
first computes the set Σ of acquisitions that are not already
covered by acquisitions in πk−1 (Line 13). After that, while
there is a candidate acquisition left, an acquisition a ∈ Σ is
selected based on the same ranking function as in the base-
line planner (Line 16). It is added to the current plan and the
system constraints are checked (Line 17). If the check suc-
ceeds, set Σ is updated to remove acquisitions that cover the
same ground area as a. Otherwise, a is rejected.

Constraint checks In Algo. 1, the check function first ver-
ifies that the memory capacity is not exceeded given the
current acquisition plan π and the set of downlink windows
(Line 22). It then checks that π is valid with regards to en-
ergy model Mk (Line 23). For each model Mk, functions
ΦMk

and ΘMk
are denoted here by Φk and Θk, and e0,k

stands for the initial energy level considered in Mk.
After that, function check verifies that the addition of ac-

quisition a is accepted by energy models M0, . . . ,Mk−1. In
particular, one objective here is to forbid the addition of ac-
quisitions that are incompatible with the remaining manda-
tory acquisitions in π0. To do this, we consider the scenario
where the waiting mode is equal to ON just before a. In
this case, the time at which the triggering decision for a
must be made is tDec = τON (a) (Line 24), and model Mk

provides an estimation of the level of energy eDec avail-
able at that time (Line 25). If starting from configuration
(tDec,ON , eDec), there exists a planning level k′ < k such
that model Mk′ forbids to perform a followed by π+

k′(a),
then acquisition a is rejected. Doing so, we intentionally
combine on one hand the kth energy model on a plan pre-
fix to get configuration (tDec,ON , eDec), and on the other
hand the k′th energy model on the suffix to validate the fea-
sibility of plan [a] · π+

k′(a). With this process, an acquisi-
tion a can first be rejected at planning level 0, where energy
checks are performed by considering all mandatory acqui-
sitions, and then accepted as an optional acquisition at level
k > 0 when state (tDec,ON , eDec) allows to execute a and
all mandatory acquisitions following a.

Algorithm 1: Conditional planning on the ground
1 Function plan(t0, w0, t1, w1, e1)
2 π0 ← initPlan(t0, w0, t1, w1, e1)
3 for a ∈ π0 do λ(a)← 0
4 for k = 1 to K do
5 πk ← nextPlan(t0, w0, t1, w1, e1, [π0...πk−1])
6 for a ∈ πk \ πk−1 do
7 λ(a)← k
8 setLeftThresholds(a, t1, w1, e1, [π0...πk−1])

9 for a ∈ πK do
10 setRightThresholds(a, t1, w1, e1, [π0...πK])

11 return πK

12 Function nextPlan(t0, w0, t1, w1, e1, [π0...πk−1])
13 Σ← getCandidateAcquisitions(πk−1)
14 π ← πk−1

15 while (Σ 6= ∅) do
16 pick a from Σ and add a to π
17 if check(t0, w0, t1, w1, e1, π, a, [π0...πk−1]) then
18 Σ← updateCandidateAcquisitions(Σ, a)

19 else remove a from π

20 return π

21 Function check(t0, w0, t1, w1, e1, π, a, [π0...πk−1])
22 if ¬checkMemory(π) then return false
23 if ¬Validk(t0, w0, e0,k, t1, w1, e1, π) then return false
24 tDec ← τON (a)
25 eDec ← Φk(t0, w0, e0,k, t1, w1, π, tDec)
26 for k′ = 0 to k − 1 do
27 if ¬Validk′(tDec,ON , eDec, t1, w1, e1, [a] ·π+

k′(a))
then return false

28 return true

Left thresholds As mentioned before, left thresholds de-
termine whether an optional acquisition a can be triggered
depending on the actual level of energy observed during
execution. As the uncertain execution of conditional plans
implies that an optional acquisition a might be triggered
from different waiting modes, the algorithm computes a set
of thresholds {θLSBY (a), θLOFF (a), θLON (a)} where θLw(a)
stands for the minimum amount of energy required to trig-
ger a from waiting mode w at time τw(a). These left thresh-
olds are computed by function setLeftThresholds given in
Algo. 2. Basically, for each acquisition a planned at level
k and each planning level k′ < k, model Mk′ allows to
perform a from waiting mode w only if it estimates that the
amount of energy available at time τw(a) suffices to perform
a and all following acquisitions in πk′ , i.e. if this amount is
not less than ek′ = Θk′(τw(a), w, t1, w1, e1, [a] ·π+

k′(a)).
Threshold θLw(a) then simply corresponds to the maximum
of these ek′ quantities over all k′ < k (Line 3). In partic-
ular, as M0 is pessimistic, threshold θLw(a) ensures that all
mandatory acquisitions following a are always feasible if a
is activated, while the execution of acquisitions planned at
levels k′ ∈ [1..k − 1] are guaranteed only relatively to Mk′ .

Right thresholds As mentioned before, right thresholds
determine the waiting mode to choose at the end of an ac-
quisition a at execution time. Such a decision is illustrated in

493

Algorithm 2: Computation of left and right thresholds
1 Function setLeftThresholds(a, t1, w1, e1, [π0...πk−1])
2 for w ∈ {ON ,OFF ,SBY } do
3 θLw(a)← max

k′∈[0..k−1]
Θk′(τw(a), w, t1, w1, e1, [a] ·π+

k′(a))

4 Function setRightThresholds(a, t1, w1, e1, [π0...πK])
5 w0 ←W (a,next(a, π0))
6 for (w,w0) ∈ {(ON ,SBY),(OFF ,SBY),(ON ,OFF)} do
7 if B 6= ∅ where B = {b ∈ π+

K(a) |W (a, b) = w} then
8 k ← minb∈B λ(b)
9 b∗w ← argminb∈B |λ(b)=k Start(b)

10 θRw(a)←
max

k′∈[0..k−1]
Θk′(End(a),ON , t1, w1, e1, [b

∗
w] ·π+

k′(b
∗
w))

Fig. 5, where each box represents an acquisition, and where
acquisitions b in block w are those for which W (a, b) = w.
At the end of a, the simplest approach would be to get the
next mandatory acquisition b0 = next(a, π0) following a
in π0 and systematically use waiting mode w0 = W (a, b0).
This strategy however under-uses the satellite since it can
prevent optional acquisitions placed between a and b0 from
being performed, due to non-preemptive setup operations.
This is why, to choose a waiting mode at the end of a,
the algorithm computes two right thresholds θRON (a) and
θROFF (a); for each waiting mode w ∈ {ON ,OFF}, θRw(a)
stands for the minimum amount of energy from which the
satellite is allowed to use mode w at the end of a. As us-
ing mode w0 should always be allowed, it can be shown that
defining a third right threshold θRSBY (a) is not mandatory.

The computation of the right thresholds is detailed in
function setRightThresholds of Algo. 2. This function first
determines the next mandatory acquisition b0 that follows
a, and the waiting mode w0 associated with a direct tran-
sition from a to b0 according to the rules defined in Eq. 1
(Line 5). For waiting modes w placed “before” w0 (Line 6),
the algorithm determines the set of acquisitions b such that
W (a, b) = w and the minimum planning level k associated
with such acquisitions (Line 8). Among the candidate ac-
quisitions for b, it then considers the earliest one, referred
to as b∗w (Line 9). Intuitively, b∗w is seen as the best acqui-
sition that justifies using waiting mode w after a instead of
default waiting mode w0. For acquisition b∗w, the algorithm
then computes the minimum amount of energy required, at
the end of a, to perform b∗w and all acquisitions planned be-
fore level k, according to models M0 to Mk−1 (Line 10).
This minimum amount corresponds to the threshold required
to use mode w after a. As shown later, if the waiting mode
w chosen differs from the modew0 recommended by π0, the
onboard plan adaptation process will impose to perform ac-
quisition b∗w if no other acquisition is made between a and

a

?
b∗ON b∗OFF b0

w = ON w = OFF w = SBY

Figure 5: Choice of a waiting mode after an acquisition

b∗w, so that any deviation from π0 (and the associated energy
recharge loss) is rewarded by at least one more acquisition.

Conditional plans and automatic mode adaptation In
the end, as shown in Fig. 6, there are both left and right
thresholds for each acquisition a of the plan. These thresh-
olds determine if and how a given acquisition can be inserted
in the middle of the waiting modes of the satellite. It is im-
portant to note that we never commit waiting modes on the
ground, since the precise sequence of acquisitions executed
is not known in advance due to the uncertainty about en-
ergy. As a result, we get expressive conditional plans from
a number of thresholds that is only linear in the number of
acquisitions, and as shown later the maneuvers and waiting
modes are directly reconstructed onboard.

Incremental computations The algorithm proposed uses
numerous calls to functions Θk, that themselves call func-
tions Φk for computing energy evolution profiles over po-
tentially long time frames. On this point, fast incremental
computation techniques can be defined. Indeed, let us con-
sider an acquisition a added at planning level k. For every
planning level k′ < k and every acquisition b ∈ πk′ , it is
possible to compute, through a backward recursion process,
quantities θLw(b, k′) representing the minimum energy level
required, according to energy model Mk′ , to execute b from
mode w and then all acquisitions following b in πk′ . From
these quantities, it can be shown that the left threshold θLw(a)
required at time t = τw(a) for acquisition a is given by:

max
k′∈[0..k−1]

Θk′(t, w, τwk′ (bk′), wk′ , θLwk′ (bk′ , k′), [a]) (3)

where bk′ denotes the first acquisition in π+
k′(a) and wk′ de-

notes waiting mode W (a, bk′). Eq. 3 is easier to compute
than the formula at Line 3 in Algo. 2 since it uses Θk′ over
plans containing a single acquisition. The computation of the
right thresholds at Line 10 in Algo. 2 and the validity checks
at Line 27 in Algo. 1 can be handled in a similar way.

Execution of Conditional Plans
We now formalize the second piece of the puzzle, that is
the onboard process that is in charge of reading the condi-
tional plans received from the ground and emitting the ap-
propriate low-level telecommands depending on the amount
of available energy observed. This onboard process is nei-
ther a complex deliberation algorithm nor the basic execu-
tion layer of the satellite, therefore we call it the Conditional
Plan Interpreter (CPI). The detailed description is focused
on the acquisition process and omits the download process.
The latter is taken into account in the full implementation of

a
θLSBY (a) [θRSBY (a)]

θROFF (a)θLOFF (a)

θRON (a)θLON (a)

Figure 6: Left and right thresholds for an acquisition a (right
threshold θRSBY (a) can be added for the sake of fault detec-
tion, but we do not detail this point here)

494

the CPI by simply canceling data downlink for acquisitions
that have been canceled (and without changing the pointing
during communication windows). We also assume that two
conditional plans P1, P2 sent by the ground mission center
for two successive planning periods are independent from
each other and that the satellite always waits in mode SBY
at the end of a planning period.

Acquisition telecommands Regularly, the CPI receives a
sequence of high-level acquisition telecommands acqSeq =
[acq1, . . . , acqN] ordered by increasing start times. Each
telecommand acq in this sequence has several parameters:
• acq.id: unique identifier of the acquisition;
• acq.start, acq.end: acquisition start and end times;
• acq.params: settings for the acquisition instrument;
• acq.level: level at which the acquisition has been planned

(quantity λ(a) introduced previously);
• acq.duSbyToStart: duration of a maneuver from the he-

liocentric pointing to the geocentric pointing if the goal is
to reach this second pointing at time acq .start ; this dura-
tion is provided by the ground since the onboard software
has no module estimating maneuver durations;
• acq.duEndToSby: duration of a maneuver from the geo-

centric pointing to the heliocentric pointing if this ma-
neuver starts at time acq .end ;
• acq.socMinLeft[w], for w ∈ {ON ,OFF ,SBY }: mini-

mum level of energy (state of charge) at time τw(acq) to
trigger the acquisition and the required setup operations
(corresponds to threshold θLw(a));
• acq.socMinRight[w], for w ∈ {ON ,OFF}: minimum

level of energy required to use waiting mode w at the end
of the acquisition (corresponds to threshold θRw(a)).

Several other attributes can be derived from the basic in-
puts, to make the definition of the CPI easier:
• acq.idx: index of the acquisition in sequence acqSeq ;
• acq.triggerTime[w], forw ∈ {ON ,OFF ,SBY }: latest

time at which waiting mode w can be left to perform the
acquisition (quantity τw(a) seen previously); this time is
given by acq .start−duSetup(acq , w) where:
duSetup(acq ,ON) = DuLoadAcq
duSetup(acq ,OFF) = DuOffOn+DuLoadAcq
duSetup(acq ,SBY) = acq .duSbyToStart

• acq.defaultWaitingMode: waiting mode used at the end
of the acquisition for the strategy that only performs the
mandatory acquisitions (value ON , OFF , or SBY);

• acq.nextAcqIdx[w], for w ∈ {ON ,OFF ,SBY }; in-
dex of the next reachable acquisition telecommand when
choosing waiting mode w at the acquisition end (value
length(acqSeq) if there is no such next telecommand);
• acq.nextBestAcqIdx[w], for w ∈ {ON ,OFF}: index

of the best acquisition telecommand justifying to use
waiting mode w at the end of the acquisition (value
length(acqSeq) if there is no such acquisition); to be
consistent with the ground planner, if several acquisitions
can justify the use of mode w, this index is given by the
acquisition whose planning level is the lowest and in case
of ties by the acquisition whose start time is the lowest.

Execution state The CPI executes the conditional plan
over a rolling horizon and maintains a state S that gives a
view of the progression of the execution. This state is com-
posed of several attributes listed below.
• S.nextDecType: type of the next decision, with value

START for an acquisition triggering choice and END
for a waiting mode choice at the end of an acquisition;

• S.nextDecTime: next time at which a decision must be
made (value MaxTime if there is no such next decision);
• S.waiting: waiting mode at the next START decision;
• S.nextAcqIdx: index of the next acquisition that must be

considered (index in acquisition sequence acqSeq);
• S.committedAcqIdx: index of the next acquisition that

should be performed if there has been a deviation from
plan π0 at the end of an acquisition (this attribute records
the index of the acquisition justifying the current waiting
mode when the latter is not the default one);

• S.soc: amount of energy available (state of charge).

Main functions of the CPI Function decisionLoop given
in Algo. 3 corresponds to the main procedure of the CPI. It
first initializes the state of the CPI by setting that the current
waiting mode is SBY , no acquisition is committed (no de-
viation from the mandatory plan so far), the next acquisition
to consider has index 0, and the satellite waits for the next
decision time (Lines 2-5). The last point is managed by func-
tion waitNextAcq that simply waits for the next acquisition
START decision given the current waiting mode.

In the main decision loop, the CPI uses a global parameter
∆, referred to as its latency, that corresponds to an upper
bound on the (small) duration it requires to make decisions
over the next decision window. More precisely, if the CPI
is called at a time t, its decision process is performed during
time frame [t, t+∆[and it must decide on all telecommands
to execute over window [t+∆, t+2 ·∆[. While there is some
decision left in the current conditional plan (Line 6), the CPI
waits for the next decision time minus ∆ and calls function
decisionStep to make decisions at that time (Lines 7-8).

Function decisionStep first estimates the state of charge of
the batteries at time S.nextDecTime (Line 16). To do this,
it reads the state of charge at the current time, that should
be equal to S.nextDecTime −∆ at this point, and applies a
maximum discharge rate (parameter

(
dSoC
dt

)
max

) for dura-
tion ∆ to get a pessimistic estimated state of charge at time
S.nextDecTime . After that, while the next decision occurs
before the end time of the current decision window, it is han-
dled through function manageAcqStart or manageAcqEnd
depending on whether it corresponds to an acquisition trig-
gering choice at an anticipated triggering time or to a waiting
mode choice at the end of an acquisition (Lines 20-22). At
each decision step, the estimated state of charge is updated
using the maximum discharge rate again (Line 23).

Acquisition triggering decisions Acquisition triggering
is handled by function manageAcqStart given in Algo. 4.
At this point, the conditional plan contains two possible
branches: trigger the acquisition or not. The choice is made
by calling function checkStartCondition. The latter speci-
fies that the next acquisition acq must be performed in three

495

Algorithm 3: Main procedures of the CPI
1 Function decisionLoop(S, acqSeq)
2 S.waiting ← SBY
3 S.committedAcqIdx ← −1
4 S.nextAcqIdx ← 0
5 waitNextAcq(S, acqSeq)
6 while (S.nextDecTime < MaxTime) do
7 wait(S.nextDecTime −∆)
8 decisionStep(S, acqSeq)

9 Function waitNextAcq(S, acqSeq)
10 if S.nextAcqIdx < length(acqSeq) then
11 acq ← acqSeq [S.nextAcqIdx]
12 S.nextDecTime ← acq .triggerTime[S.waiting]
13 S.nextDecType ← START

14 else S.nextDecTime ← MaxTime

15 Function decisionStep(S, acqSeq)
16 S.soc ← readSoC ()−

(
dSoC
dt

)
max
·∆

17 EndTime ← S.nextDecTime + ∆
18 while (S.nextDecTime < EndTime) do
19 t← S.nextDecTime
20 if (S.nextDecType = START) then
21 manageAcqStart(S, acqSeq)

22 else manageAcqEnd(S, acqSeq)

23 S.soc ← S.soc −
(
dSoC
dt

)
max
· (S.nextDecTime − t)

cases: (1) the planning level of acq is equal to 0, or equiva-
lently acq is mandatory; (2) acq corresponds to the acquisi-
tion that justified a deviation from the mandatory acquisition
plan; (3) the lower estimation of the state of charge is greater
than or equal to the left threshold computed on the ground
for acq in the current waiting mode.

If the “trigger” branch is activated, then all telecommands
required for acq are built, including the ones useful for the
setup operations from the current waiting mode (Lines 4-8).
Also, no more acquisition is committed and the CPI waits for
the acquisition end (Lines 9-11). Otherwise, if acquisition
acq is canceled, the CPI moves on to the next acquisition
and waits for the corresponding decision time (Lines 13-14).

Waiting mode choice at the end of acquisitions Func-
tion manageAcqEnd in Algo. 4 is used at the end of an ac-
quisition acq , and in this case there are at most three de-
cision branches corresponding to the three possible waiting
modes. The branch choice is determined by calling function
checkEndCondition. The latter specifies that using waiting
mode w is allowed in two possible cases: (1) w is identical
to the default waiting mode that would be used to perform
only the remaining mandatory acquisitions; (2) there exists a
next best acquisition associated with modew and the current
state of charge is greater than or equal to the right threshold
computed on the ground for waiting mode w.

Coming back to function manageAcqEnd, the ON wait-
ing mode is the preferred one if it is allowed, then the OFF
mode is used if possible, and otherwise the SBY mode is se-
lected. In all cases, the telecommands required to reach the
waiting mode chosen are committed and the current waiting
mode is updated (Lines 19-28). Last, the CPI waits for the

Algorithm 4: Management of left and right decisions
1 Function manageAcqStart(S, acqSeq)
2 acq ← acqSeq [S.nextAcqIdx]
3 if checkStartCondition(S, acq) then
4 if S.waiting = SBY then
5 GEO POINTING(acq .triggerTime[SBY])

6 if S.waiting ∈ {SBY ,OFF} then
7 TURN ON PAYLOAD(acq .triggerTime[OFF])

8 LOAD ACQ(acq .triggerTime[ON], acq .params)
9 S.committedAcqIdx ← −1

10 S.nextDecTime ← acq .end
11 S.nextDecType ← END

12 else
13 S.nextAcqIdx ← S.nextAcqIdx + 1
14 waitNextAcq(S, acqSeq)

15 Function checkStartCondition(S, acq)
16 return (acq .level = 0)∨(acq .idx=S.committedAcqIdx)

∨(S.soc ≥ acq .socMinLeft [S.waiting]))

17 Function manageAcqEnd(S, acqSeq)
18 acq ← acqSeq [S.nextAcqIdx]
19 if checkEndCondition(S, acq ,ON) then
20 UNLOAD ACQ(acq .end))
21 S.waiting ← ON

22 else if checkEndCondition(S, acq ,OFF) then
23 TURN OFF PAYLOAD(acq .end)
24 S.waiting ← OFF

25 else
26 HELIO POINTING(acq .end)
27 TURN OFF PAYLOAD(acq .end)
28 S.waiting ← SBY

29 S.nextAcqIdx ← acq .nextAcqIdx [S.waiting]
30 waitNextAcq(S, acqSeq)

31 Function checkEndCondition(S, acq , w)
32 if w = acq .defaultWaitingMode then return true
33 if (acq .nextBestAcqIdx [w] < length(acqSeq))

∧ (S.soc ≥ acq .socMinRight [w]) then
34 S.committedAcqIdx ← acq .nextBestAcqIdx [w]
35 return true

36 return false

decision time associated with the next possible acquisition
for the waiting mode chosen (Lines 29-30). This can be seen
as a least commitment strategy, since the algorithm chooses
a waiting mode and not a fixed next acquisition.

Experiments and Validation
The ground conditional planner is implemented in Java and
the onboard Conditional Plan Interpreter is implemented in
C. We developed prototypes whose goal is to show the ef-
ficiency and safety of the global approach proposed. In the
experiments presented here, we consider simplified energy
models. To define these models, we used technical docu-
ments coming from the mission team to get representative
parameters. We consider one circular polar orbit split into
a day period (Sun visibility) and a night period of duration
T = 3000 seconds each. During the night period, power pro-
duction is null. During the day period, the power produced

496

Figure 7: Acquisition plans successively computed for three
energy modelsM0,M1,M2 (in blue), and associated energy
evolution profiles (in red)

when using an heliocentric pointing is 20W, and the power
produced at time t ∈ [0, T] when using a geocentric point-
ing is P (t) = 20·cos(−π/2 + tπ/T)), so that P (t) = 20W
when the satellite traverses the equator at t = T/2. The
power produced during a maneuver is obtained by a linear
interpolation between the powers produced at the start and
end configurations. The power consumed by the payload is
2W when it is off, 10W when it is on without any ongo-
ing acquisition, and 30W during acquisitions. During down-
links, the pessimistic power consumption is approximately
40W, but the evaluation presented here corresponds to one
of the numerous orbits without any ground station visibility
(no communication). The minimum and maximum energy
levels are Emin = 0J and Emax = 9000J respectively,
the initial energy level is 500J for all energy models, and
the minimum level of energy required at the end is 500J .

The duration of maneuvers is approximated by a constant
(2 minutes per maneuver), the durations required to switch
the payload on and off are 30 seconds and 1 second respec-
tively, and the durations required to load and unload an ac-
quisition are 2 seconds and 1 second respectively. Over the
100 minutes of an orbit, we define successive candidate ac-
quisitions of duration 90 seconds each, separated by 3 sec-
onds, to cover all ground positions over which the satellite
flies. The rank of each acquisition, used on the ground to
choose the next acquisition to insert, is randomly chosen.

Fig. 7 shows the acquisition plans and the energy evo-
lution profiles obtained with three energy models M0, M1,
M2, where M1 considers the nominal power values, while
M0 and M2 respectively take 20% and −20% margins on
power consumption. It can be seen that M1 and M2 allow to
plan optional acquisitions, especially during the day period.

Next, simulations were performed to check the behav-
ior of the onboard CPI. In the final system, the latter will
run on a dedicated partition (Time and Space Partitioning
paradigm), and the very small runtime and memory foot-
print of our CPI implementation in C is fully compatible
with the specifications of this partition. Fig. 8 gives two lists

Figure 8: Two execution traces obtained from the same con-
ditional plan under different execution conditions

of time-tagged telecommands produced by the CPI for the
same conditional plan, over two distinct executions where
the energy available at each decision point is randomly cho-
sen in [Emin,Emax]. Such a random choice is not neces-
sarily realistic in terms of energy evolution, but it allows
to test the robustness of the approach by generating vari-
ous execution conditions. The idea here is to make no as-
sumption on the real energy evolution model but the sin-
gle one that model M0 is pessimistic. For validation issues,
two properties were analyzed on the output of the CPI: first
that the basic telecommands produced onboard achieve all
mandatory acquisitions planned at level 0, which is a key
point for the end-users (the conditional plans must never
do worse than the standard conservative plans); and second
that these telecommands are identical to the ones that would
have been computed on the ground to execute the same ac-
quisitions. For this, 300 input scenarios differing on acqui-
sition ranking were generated, and 100 random executions
were performed for each scenario. Simulating these 30.000
executions took about 1 hour on a standard machine (Intel
i5 1.2GHz 4GBRAM). Comparisons of output files showed
that the two properties analyzed were satisfied for all runs.

Conclusion

This paper presented a planning system for an Earth mon-
itoring nanosatellite whose main bottleneck is the amount
of energy available onboard. This system combines offline
and online decision making (Filippo, Lombardi, and Milano
2021). It handles temporal constraints and resource con-
straints, as well as conditional planning and conditional ex-
ecution. For the last point, the search for a simple and effi-
cient onboard decision process was a task in itself. The two
main perspectives are first the simulations on more complex
models, and second the forthcoming in-flight experiment.

497

References
Agrawal, J.; Chi, W.; Chien, S.; Rabideau, G.; Kuhn, S.;
Gaines, D.; Vaquero, T.; and Bhaskaran, S. 2021. En-
abling Limited Resource-Bounded Disjunction in Schedul-
ing. Journal of Aerospace Information Systems, 18(6): 322–
332.
Filippo, A. D.; Lombardi, M.; and Milano, M. 2021. In-
tegrated Offline and Online Decision Making under Uncer-
tainty. Journal or Artificial Intelligence Research, 70: 77–
117.
Lenzen, C.; Wörle, M. T.; Göttfert, T.; Mrowka, F.; and
Wickler, M. 2014. Onboard Planning and Scheduling Au-
tonomy within the Scope of the FireBird Mission. In Proc.
of the 13th International Conference on Space Operations
(SpaceOps-14).
Maillard, A.; Verfaillie, G.; Pralet, C.; Jaubert, J.; Sebbag,
I.; and Fontanari, F. 2015. Postponing Decision-Making
to Deal with Resource Uncertainty on Earth-Observation
Satellites. In 9th International Workshop on Planning &
Scheduling for Space (IWPSS’15).
Maillard, A.; Verfaillie, G.; Pralet, C.; Jaubert, J.; Sebbag,
I.; Fontanari, F.; and L’Hermitte, J. 2016. Adaptable Data
Download Schedules for Agile Earth-Observing Satellites.
Journal of Aerospace Information Systems, 13(8): 280–300.
Peot, M.; and Smith, D. E. 1992. Conditional Nonlinear
Planning. In Proc. of the 1st International conference on Ar-
tificial Intelligence Planning Systems (AIPS’92), 189–197.
Pryor, L.; and Collins, G. 1996. Planning for Contingen-
cies: a Decision-based Approach. Journal or Artificial In-
telligence Research, 4: 287–339.

498

