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Abstract

Decision support systems seek to enable informed decision-
making. In the recent years, automated planning techniques
have been leveraged to empower such systems to better
aid the human-in-the-loop. The central idea for such deci-
sion support systems is to augment the capabilities of the
human-in-the-loop with automated planning techniques and
enhance the quality of decision-making. In addition to pro-
viding planning support, effective decision support systems
must be able to provide intuitive explanations based on spe-
cific user queries for proposed decisions to its end users.
Using this as motivation, we present our decision support
system RADAR-X that showcases the ability to engage the
user in an interactive explanatory dialogue by first enabling
them to specify an alternative to a proposed decision (which
we refer to as foils), and then providing contrastive explana-
tions to these user-specified foils which helps the user under-
stand why a specific plan was chosen over the alternative (or
foil). Furthermore, the system uses this dialogue to elicit the
user’s latent preferences and provides revised plan sugges-
tions through three different interaction strategies.

Introduction
Proactive decision support systems are a case of human-in-
the-loop planning (Kambhampati and Talamadupula 2015)
where the human is responsible for making the decisions
and is supported by an automated planning system in com-
plex decision-making scenarios. In scenarios like Navy mis-
sion planning, where the commander has to keep track of
a lot of information and might lose situational awareness
given the complexity of the situation, decision support sys-
tems would be useful to provide timely support and help the
commander regain situational awareness. In fact, such sys-
tems have been shown to aid the user in making faster and
better decisions (Grover et al. 2020). Given that the human
(whom we assume to be an expert) is responsible for the
final plan in this mixed-initiative setting, a key aspect re-
quired for the success of this synergy is to support the user’s
requirement for explanations, especially when the sugges-
tions made by the system are not acceptable to the user.
While previous works on decision support systems (Grover
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Figure 1: Overview of the RADAR-X system where users
can raise foils and ask for contrastive explanations and re-
vised plan suggestions. The system provides these sugges-
tions by eliciting the latent preferences of the user through
three different interaction strategies, namely, (1) the nearest
plan approach (2) the conflict sets approach and (3) the plau-
sible sets approach.

et al. 2020; Mishra et al. 2019) leverage technologies de-
veloped in Explainable AI Planning (XAIP) (Chakraborti
et al. 2017; Sreedharan, Kambhampati et al. 2018; Sreedha-
ran et al. 2019), the participation of the user in explanatory
dialogue is limited; RADAR (Grover et al. 2020) provided
minimally complete model reconciliation explanations (pre-
sented in (Chakraborti et al. 2017)) as and when required
but the explanations were not based on specific user queries.
This can result in the generated explanations being verbose,
making them incomprehensible to the decision-maker. To
avoid such situations, the system should let the user drive
the dialogue and provide explanations based on the user’s
query. In this regard, we propose RADAR-X, an extension of
the RADAR system (Grover et al. 2020), that supports inter-
active contrastive explanations (Miller 2018) and uses it as
the main vehicle for the interaction between the system and
the user. We enable users to specify alternatives (referred to
as foils) to a plan suggested by the system and ask for ex-
planations that cater to the specified foil. Moreover, we look
at the foils as a specification of the user’s latent preferences
and use that interpretation to come up with refined plan sug-
gestions. We have also made interface improvements that aid
in smoothening the interaction process.
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To generate explanations based on user-specified foils, we
introduce the idea of a Minimally Contrastive Explanation
(MCrE), that extends the idea of model reconciliation ex-
planations (Chakraborti et al. 2017) to answer explicit con-
trastive queries. We introduce a model-space search and ap-
proximation capable of generating MCrE for cases where
user foils are represented as partial-plans. A partial-plan can
informally be seen as a set of actions with ordering con-
straints that represent a set of potential solutions to a plan-
ning problem (Kambhampati, Knoblock, and Yang 1995).
Along with providing foil-based explanations, inspired from
ideas in iterative planning (Smith 2012), we consider the
case of proactive preference elicitation where plan sugges-
tions are refined based on the specified foil, which are an
indication of the user’s latent preferences. We look at three
different interaction strategies through which plan sugges-
tions are refined– (1) we develop a novel encoding to gener-
ate the nearest plan to the specified foil which implies using
the largest possible part of the foil, (2) we employ a search
through the space of subsets of the foil to find sets contain-
ing conflicting actions and present these sets for the user to
resolve, thereby eliciting their preference to generate a plan
suggestion and (3) we look to present all the maximal plau-
sible subsets of the foil to the user as options to choose from
and use that selection to provide a plan that the user prefers.

In this paper, we start by giving a background of the ex-
planations paradigm that we will leverage. Then, we provide
an overview of the implemented interface and a detailed il-
lustration of the domain. With the help of the use-case, we
showcase the two technical problems that can be addressed
by our system. Finally, we discuss the evaluation conducted
for all the aspects of the system and conclude with the path
forward for operational deployment.

Background
In this section, we provide a quick overview of topics in
automated planning, necessary to understand the proposed
techniques.

A Classical Planning Problem can be described as a tu-
ple M = ⟨D, I, G⟩, consisting of a domain D = ⟨F,A⟩
where F is a finite set of fluent symbols that define a state
s ⊆ F and A corresponds to a finite set of actions and
I,G (⊆ F ) represent the initial and goal states. An action
a ∈ A is associated with a cost ca, a set of preconditions
pre(a) ⊆ F and a set of effects eff(a) ⊆ F . These effects
can be further separated into a set of add effects eff+(a) and
a set of delete effects eff−(a). The action a ∈ A can be
represented as a tuple ⟨ca, pre(a), eff+(a), eff−(a)⟩ and can
only be executed in a state s if s |= pre(a) i.e., δM(s, a) |=
s ∪ eff+(a) \ eff−(a) if s |= pre(a); else, δM(s, a) |=⊥
where δM(.) is the transition function. The solution to
such a problem is a plan π defined as a sequence of
actions ⟨a1, a2, ..., an⟩ such that δM(I, π) |= G and
δM here is a cumulative transition function given by
δM(s, ⟨a1, a2, ..., an⟩) = δM(δM(s, a1), ⟨a2, ..., an⟩). A
sequence of actions that has an unmet precondition and thus,
cannot achieve the goal has cost ∞. On the other hand, the
cost of a plan π is the sum of the costs of all the actions

present in the plan and is given by C(π,M) =
∑

a∈π ca.
The cost of the optimal plan π∗ is denoted as C∗

M where
π∗ = argminπ{C(π,M)∀ π where δM(I, π) |= G}.

In classical planning, the human is considered to have
the same planning model and reasoning capabilities as the
planner but often, the human’s understanding may signifi-
cantly differ from that of the planner. Thus, we can view
this as a Multi-Model Planning (MMP) scenario where
MR = ⟨DR, IR, GR⟩ is the planner’s model of the plan-
ning problem and MH = ⟨DH , IH , GH⟩ is the human’s
understanding of the same. The difference between these
two models, thus, becomes a key factor in the explanation
setting. The system tries to achieve common ground with
the human by bringing the human’s model closer to the sys-
tem’s model through explanations in the form of model up-
dates. This is formalized as a Model Reconciliation Problem
in (Chakraborti et al. 2017).

A Model Reconciliation Problem (MRP), as defined in
(Chakraborti et al. 2017), can be represented using the tu-
ple ⟨π∗, ⟨MR,MH⟩⟩ where π∗ is the optimal plan in MR

(C(π∗,MR) = C∗
MR). MRP is constructed as a model-

space search whose solution is considered as an explanation
consisting of a set of model updates. Of the four types of ex-
planations defined in (Chakraborti et al. 2017), RADAR con-
siders the minimally complete explanations (Grover et al.
2020), which we now define.

A Minimally Complete Explanation (MCE) is the min-
imal set of relevant information that is provided to the hu-
man to explain the optimality of the plan. The objective
here is to find the minimum number of differences be-
tween the human’s model (MH ) and the planner’s model
(MR) such that the plan in the planner’s model is opti-
mal in the updated human’s model. It is given by EMCE =

argminE |Γ(M̂)∆Γ(MH)| with C(π∗,M̂) = C∗
M̂

where
Γ(M) denotes a mapping function that represents a plan-
ning problem M = ⟨⟨F,A⟩, I,G⟩ as a state in the space of
models and M̂ denotes the model obtained by incorporat-
ing the information present in EMCE into the human model
( M̂ = MH + EMCE). For a more detailed discussion on
MCE we refer the reader to (Chakraborti et al. 2017).

MCE, although time-consuming to compute, tries to de-
crease the human’s cognitive load by reducing the amount
of irrelevant information provided as part of an explanation.
Thus, in this work, we try to adapt the objective of MCE for
generating contrastive explanations. Before we elaborate on
that, we first delve into the interface of RADAR-X.

RADAR-X

In (Grover et al. 2020), the authors consider a fire fighting
scenario where RADAR is helping a fire-fighting chief, along
with several other authorities, build a plan to extinguish a fire
in Tempe, Arizona, USA. This scenario was represented as
a classical planning problem in the PDDL (McDermott et al.
1998). We use the same domain to illustrate the capabilities
of RADAR-X. We assume that the system has a model of the
task (MR = ⟨DR, IR, GR⟩) that may be different from the
human’s model (MH = ⟨DH , IH , GH⟩) but MH is known
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Figure 2: The interface of RADAR-X with various decision supporting functionalities for a human commander making plans in
response to a fire.

to the system R beforehand. Also, we assume IH = IR and
GH = GR.

Overview of the Interface
RADAR-X seeks to extend the capabilities of RADAR by al-
lowing the user to engage in an explanatory dialogue with
the system. Once a plan is suggested by the system, users
can utilize the Add Foil button present in the Plan in
progress panel shown in Figure 2 and are redirected to
a new page shown in Figure 3. On this page, users can pro-
vide their foil that is a set of specific actions and ordering
constraints over these actions; it may be a partial plan. Let
us look at the three panels presented on this new page (as
shown in Figure 3).

1. Foil Panel: This is the pivotal panel of RADAR-X. This
panel allows users to specify foils; it provides the user
with the ability to (1) add/delete actions from the foil, (2)
change the ordering of the actions present in the foil and
(3) choose from options when the foil cannot result in a
feasible plan (such as asking for explanations or refined
plan suggestions). These options in the panel will be our
primary focus in the upcoming sections.

2. Foil through Speech:

• Speech Panel: Instead of choosing actions from
a drop-down list in the Foil panel, this panel fa-
cilitates users to specify foils using natural lan-
guage. For now, we expect the user to say sen-
tences of the form, “Why contact media firechief
and why not contact media transportchief?” to re-
place the CONTACT MEDIA FIRECHIEF action in the
suggested plan with the expected action of CON-
TACT MEDIA TRANSPORTCHIEF. We have used ex-
isting speech-to-text technologies (Google 2017) to fa-
cilitate such an interaction.

• Action Transcript Panel: Once the user specifies the
foil using natural language, this panel displays the
transcript of their speech; it seeks confirmation before
replacing the present plan with the specified foil. This
is mostly done to ensure that the inaccuracies in speech
recognition technology do not result in the addition of
unidentifiable actions. For now, we assume that com-
plete action names are specified when this modality is
used and believe that accurate parsing of a user’s un-
restricted language to foils will be an interesting and
helpful future work.

3. Current Plan Panel: This panel acts as a reference point
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Figure 3: Add foil page where users can add actions to their foil and ask for explanations or refined plan suggestions based on
the specified foil.

for the user. While the user works on the specified foils,
the panel lists the original plan suggested by the system.

Use-Case Description
As mentioned earlier, the planning problem considered
requires a fire-chief, with a decision support system by
their side, to come up with a plan for extinguishing a fire
in the city of Tempe. In this domain, there are two possible
goals– extinguishing a big fire vs. extinguishing a small
fire. Let us assume that the goal of the user here is to
extinguish a small fire. When RADAR-X suggests a plan
(as shown in the Current Plan panel in Figure 3) that does
not meet the expectations of the user (due to differences
between MR and MH ), the user can specify a foil (that
may be a partial plan) and ask for explanations. In our
example, there are two specific parts in the suggested plan
that are incongruous with the user’s expectation. First, the
user wants to send out information via a social media post
(using SEND SOCIAL MEDIA) alongside addressing the
media themselves (using ADDRESS MEDIA FIRECHIEF),
but they are not aware that once posted on social media,
the media will pick up the news from these forums,
thus not requiring the fire-chief to separately address
them. Technically, this is expressed as a delete effect of
SEND SOCIAL MEDIA called NO SOCIAL MEDIA that is
also a precondition for ADDRESS MEDIA FIRECHIEF
in MR. This delete effect is missing in MH , lead-
ing them to believe that both are possible together.
Second, the user expects that big engines should be
deployed along with small engines, i.e. the actions DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG
and DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG
should both be present in the plan. Here, the user
is unaware that both types of engines cannot be de-

ployed together and there is a delete effect of DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG
called NO ENGINES DEPLOYED that is a precondition for
DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG.
Therefore, when RADAR-X presents the plan suggestion, the
user does not expect that only one of each of the expected
action pairs, i.e. ADDRESS MEDIA FIRECHIEF and DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG,
appears in the suggested plan. The user thus raises a foil π′

containing the four actions in the given order.
π′ =

− DEPLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG

− DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG

− SEND SOCIAL MEDIA BYENG BYENG

− ADDRESS MEDIA FIRECHIEF

Note that in this setting, the ac-
tions SEND SOCIAL MEDIA and DE-
PLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG
can also be viewed as the latent preferences of the user
which are explicitly elicited when the user raises the
foil to ask for explanations. We will now look at how
RADAR-X generates (1) explanations to refute the given
foil and (2) elicit the preferences of the user through three
different interaction strategies.

Supporting Contrastive Explanations
A Contrastive Explanation answers the questions “Why P
and not Q?” where P is the fact (the suggested plan) being
explained and Q is the foil (the alternative proposed by the
explainee) (Miller 2019). In (Chakraborti et al. 2017), the
explanation techniques used in RADAR (Grover et al. 2020),
the explanation answers the question “Why π?” where π is
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the suggested plan. Although this can be viewed as an im-
plicit contrastive query, as in “Why π as opposed to any
other plan π′( ̸= π)?”, it might make the explanation un-
necessarily verbose when the user’s expected set of plans is
much smaller than the set of all optimal plans. Therefore, in
RADAR-X, we let the user specify their expected set of plans
as partial foils and empower the system to generate focused
explanations that establish how the current plan compares
against their specified set of plans.

We focus on scenarios where the mismatch between the
suggested plan and the foil, which is presented as a partial
plan, arise due to model mismatch. A case for explanation
arises when the specified foil (1) cannot be part of a (valid)
plan in MR or (2) is part of a plan but that plan is sub-
optimal or costlier than the optimal plan suggested by the
system. Thus, the explanation here has to update the human
model so they can correctly evaluate the set of plans in ques-
tion.
Definition 1 Given the models MH , MR, and a set of
plans expected by the human Π̂H , a set of model updates
Econ is said to be a Minimally Contrastive Explanation
(MCrE), if

Econ = argmin
E

|E|

s.t. C(π′,MH + E) ≥ C∗
MR ∀π′ ∈ Π̂H

In addition to minimal explanations, we will refer to a set
of model updates to be a valid explanation if it renders the
foil set to be suboptimal compared to the robot plan. In this
work, we will focus on case (1) above, a more constrained
version of this explanation, namely one that establishes the
invalidity of the foils. We will denote this explanation as
Econ

VAL. In this case we will require that after including the
model updates none of the plans in Π̂H is valid, i.e,

C(π′,MH + Econ
VAL) = ∞ ∀π′ ∈ Π̂H

Our focus on validity aligns with our basic setting, where
human is the driver of the decision-making process and may
have hidden preferences. This means, we don’t want to dis-
allow suboptimal plans the human may prefer, though our
system could easily be extended to enforce optimality or
consider cost thresholds that restricts how costly the human
specified alternative can be. In our case, we are not directly
given Π̂H , but rather the foil provided takes the form of a
partial plan π̄H . A partial plan can be defined as a tuple
π̄H = ⟨Ā,≺⟩, where Ā is a multi-set consisting of actions
and ≺ is a precedence relation between the actions in Ā. A
plan is said to be consistent with a partial plan (denoted as
π |= π̄H ), if the actions in Ā appears in π and their prece-
dence relations are satisfied by the order in which they ap-
pear. We expect each plan π ∈ Π̂H to satisfy the provided
π̄H . Our explanatory objective now becomes to find the min-
imal set of model updates Ēcon

VAL such that there exists no plan
in the updated model that satisfies the partial plan

̸ ∃π′, C(π′,MH + Ēcon
VAL) ̸= ∞∧ π′ |= π̄H

Note that the minimal set Ēcon
VAL can be larger than Econ

VAL as
the partial plan may have completions not part of Π̂H . How-

ever, given that the system only knows π̄H , Ēcon
VAL is the min-

imal explanation it can identify; we are guaranteed that Ēcon
VAL

will be valid as long as Π̂H is a subset of the set of all
plans that are consistent with π̄H . One way to operational-
ize this would be to create a constrained planning model that
only allows for solutions that satisfy π̄H . For partial plans,
one could do this by directly using the compilation used in
(Ramı́rez and Geffner 2009). For a given model M and a
partial foil π̄H , the compilation creates a new model Mπ̄H ,
such that the set of plans valid for Mπ̄H is equal to the set
of plans valid in M that satisfy the partial plan π̄H . This
means we can now reframe our explanation objective as one
of identifying a set of model updates that renders the com-
piled model unsolvable, i.e., we want to find Ēcon

VAL such that

̸ ∃π′, C(π′,MH
π̄H + Ēcon

VAL) ̸= ∞

where MH
π̄H is the compiled human model.

To generate such explanations, RADAR-X adapts the
MCE search in (Chakraborti et al. 2017) to satisfy this ob-
jective and come up with the required explanation. The goal
test now checks for the unsolvability of the updated com-
piled model, by using a complete planner. Note that this can
be an expensive algorithm given we call a planner at each
step of the search. A way to speed up the process would
be to use faster unsolvability tests that avoid the use of a
planner. One possibility in particular is to use semi-relaxed
reachability heuristics like hm (Geffner and Haslum 2000)
that are admissible and guaranteed to be equal to h∗ as m
tends to |F |. We can do this iteratively, where we start with
m = 1 and try to find a set of model updates (Ēcon

VAL) with

hm=i(Î ,MH
π̄H + Ēcon

VAL) = ∞

where Î is the initial state in the updated model. So ef-
fectively for each value of m, we will try to search for a
set of model updates for which the heuristic function says
the goal is no longer reachable from the initial state. For
lower values of m, this test can be performed relatively effi-
ciently (with m = 1 turning into testing for reachability in a
delete-relaxed model). We will refer to this modified search
as Approx-MCrE Search. We can now easily establish the
following properties of the search
Property 1 Approx-MCrE Search is sound, i.e., any ex-
planation found by Approx-MCrE is valid, and complete,
i.e., it is guaranteed to find a valid explanation when one
exists.

Property 2 Explanations generated through
Approx-MCrE Search need not be minimal.

The first property follows from the fact that when hm(·) re-
turns ∞ the problem must be unsolvable and for every un-
solvable problem hm(·) will return ∞ for a high enough
value of m. The second property follows from the fact that
for some low value of m, a larger explanation may render
the compiled problem unsolvable, while a smaller explana-
tion may have been identified as valid for larger values of
m.

The explanation Ēcon
VAL here can be viewed as the correction

that needs to be made in the human model for refuting the
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Figure 4: The minimally complete contrastive explanation
generated.

suggested foil. In the other case where the specified foil is
suboptimal or costlier than the suggested plan, we provide a
message on the cost difference and allow the user to either
enforce the suboptimal plan or ask for a model reconciliation
based explanation.

For the use-case described above, RADAR-X, given
the foil, generates an explanation where the action
SEND SOCIAL MEDIA BYENG BYENG deletes an effect
NO SOCIAL MEDIA which is a precondition of AD-
DRESS MEDIA FIRECHIEF (see Figure 4). Hence, the given
foil is invalid in the planner’s model. This explanation is the
minimal explanation required to refute the foil. Once the ex-
planation is presented, the human’s model can then be cor-
rected by adding the delete effect into the model.

Proactive Preference Elicitation– Suggesting Plans
Even though the human’s model is updated and the human
understands that the given foil is invalid, the foil serves a
second purpose– it is indicative of some latent preferences of
the user. We hypothesize that asking for contrastive explana-
tions exposes some of the preferences that the user does not
specify explicitly. Thus, one can use foils to identify plans
that are closer to the human’s expectations. We use three dif-
ferent approaches in RADAR-X to identify such plans.

The Closest Plan approach In this approach, we look at
generating the closest plan to the specified foil which im-
plies using the largest part of the foil in the revised plan. For
this, we revisit the plan-recognition-as-planning methodol-
ogy presented in (Ramı́rez and Geffner 2009) and construct
a simple yet effective compilation that encodes the partial
foils as soft constraints and imposes penalties if any of them
are violated when coming up with a plan. This is similar in
spirit to (Sohrabi, Riabov, and Udrea 2016).

A Plan Recognition Problem is represented by a tuple
R = ⟨D, I, O,G⟩, where D = ⟨F,A⟩ is the planning do-
main, I ⊆ F is the initial state, G is the set of possible goals
G, G ⊆ F , and O = ⟨o1, o2, ..., on⟩ is an observation se-
quence with each oi being an action in A and i ∈ [1, n]. We
compile the foil to a new planning problem by augmenting
the existing actions in the original problem with a set of ‘ex-
plain’ and ‘discard’ actions for each observation oi present
in the observation sequence O. Here, the observations repre-
sent actions in the partial foil that the user specifies. An ‘ex-
plain’ action for an observation oi is a replica of the observa-

Figure 5: Generating the closest plan that uses the largest
part of the foil.

tion with an additional effect (metoi ) that indicates the obser-
vation is met (i.e. action oi in the foil is used). On the other
hand, a ‘discard’ action for an observation oi is a dummy
action which only has the effect (metoi ) but has a cost that is
significantly higher than the corresponding ‘explain’ action.
This means discarding any observation should be costlier.
For now, we look to preserve the ordering constraints of the
observations by adding metoi−1

as a precondition for the ob-
servation oi with i ∈ [2,m].

Definition 2 A Transformed Planning Problem for a plan
recognition problem R = ⟨D, I, O,G⟩ is P ′ = ⟨D′, I ′, G′⟩
where D′ = ⟨F ′, A′⟩ and:

• F ′ = F ∪ {metoi |oi ∈ O},
• I ′ = I
• G′ = {g|∀g ∈ G} ∪ {metoi |oi ∈ O}
• A′ = A ∪Aexplain ∪Adiscard

− Aexplain = {eoi |oi ∈ O, ceoi = coi , pre(eoi) =

{pre(oi) ∪ metoi−1
if i > 1; else, pre(oi)}, eff+eoi =

{eff+oi ∪ metoi}, eff−eoi = {eff−oi}}
− Adiscard = {doi |oi ∈ O, cdoi

>> ceoi , pre(doi) =

{∅}, eff+doi
= {metoi}, eff−eoi = {∅}}

Using this transformed planning problem, the planner gen-
erates a plan that uses the largest possible part of the foil.

In the previously mentioned example, the generated
plan contains of two actions present in the partial foil π′.
The used actions ADDRESS MEDIA FIRECHIEF and DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG
are encoded in a different color to help the user easily
identify parts of the foil used (see Figure 5). Additionally,
the interface replaces ‘Current Plan’ panel with the ‘Spec-
ified Foil’ panel (at the bottom right of Figure 5) where
the actions used (observations met) in the generated plan
are encoded in green color and actions discarded (unmet
observations) are encoded in red. These actions can be
added or deleted by clicking on the action in the panel.
Further, we allow the users to directly add preferred actions
that are not present in the generated plan, specify another
foil, and engage in a longitudinal interaction.

The Conflict Sets approach Even though the plan
generated using the above compilation utilizes the
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Figure 6: Conflict-set resolution to generate preferred plans.

largest part of the foil, the actions may have dif-
ferent importance to the user; hence, a planner may
choose to use parts of the foil that are less important
to the user. For example, the two actions from the
specified foil (ADDRESS MEDIA FIRECHIEF and DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG)
that were present in the generated plan may be less
preferred by the user than the actions that were dis-
carded (SEND SOCIAL MEDIA BYENG BYENG and
DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG).
Thus, to reach the final plan that the user prefers, they might
have to engage in recurring interactions. This increases the
amount of effort the user has to put in to make sure that the
planner generates a plan of his/her liking. A simple attempt
to reduce the cognitive load on the user would be to provide
all possible sets of conflicting actions in the specified foil
and ask the user to resolve them. To find such conflict sets,
we employ a systematic breadth-first search in the space of
subsets of the foil. The idea here is similar to that of the
Systematic Strengthening (SysS) approach in (Eifler et al.
2020). Starting from the empty set, for each subset of the
specified foil, we use the compilation specified in (Ramı́rez
and Geffner 2009) to compile it into a planning problem
and check whether the compiled problem is unsolvable.1
Subsets corresponding to unsolvable problems are presented
to the user to resolve them by removing an action from
the set. As mentioned earlier, we look to preserve the
ordering constraints for now, hence, we do not consider the
permutations of a subset; but this can be relaxed as well.

Once the conflict sets have been resolved by the user, the
system can generate a plan that contains the preferred ac-
tions specified in the foil (which are non-conflicting) along
with actions that are not part of a conflict set. While this
method helps to elicit the user’s preferences, the space of
the action subsets derived from the foil, even barring per-
mutations, explodes combinatorially. Thus, calculating the
conflict sets can be expensive.

In our use-case, RADAR-X searches all the subsets
of the partial foil, starting from the empty set. (DE-
PLOY SMALL ENGINES FIRECHIEF ADMINFIRE BYENG,
DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG)
is a conflict set as the predicate NO ENGINES DEPLOYED
gets deleted by the former action and is required

1If we forget the need to get optimal conflict sets, we can rely on
faster unsolvability tests similar to the one mentioned previously.

Figure 7: Presenting maximal plausible sets to generate pre-
ferred plans.

as a precondition for the latter one. This is pre-
sented to the user to elicit the user’s preferred ac-
tion. Then, the next conflict set presented to the
user is (SEND SOCIAL MEDIA BYENG BYENG, AD-
DRESS MEDIA FIRECHIEF). Using both the preferences the
final plan is generated and the preferred actions are encoded
in a different color for the user to identify.2 This is shown in
Figure 6. Note that some of the conflict sets presented to the
user may not be resolvable in the human’s model without
additional explanations. As a next step, we look to allow for
providing such explanations.

The Plausible Sets approach Instead of making the
user resolve conflict sets, the system can also present the
plausible subsets of the foil as options for the user to choose
from. In this approach, we aim to present all the maximal
valid subsets of the foil to the user. Maximal valid subsets
can be considered as subsets which contain the maximum
number of actions from the foil and a plan can be generated
using all of the actions present in the subset. To find such
sets, we use an idea similar to that of Systematic Weakening
(SysW) mentioned in (Eifler et al. 2020). Starting from
the entire foil as a set, for each subset, we compile it into
a planning problem (using the compilation specified in
(Ramı́rez and Geffner 2009)) and try to generate a plan. An
unsolvability test (similar to that of the previous approach)
is done before generating the plan to discard subsets that
are found to be unsolvable. In the case of successful plan
generation, the corresponding subset is deemed to be valid.
Note that subsets that are already part of a valid subset are
not checked as we aim to present the maximal plausible
sets. Once all the valid subsets are found, they are presented
to elicit the preference of the user and then, based on the
preference, a plan is suggested. Similar to the conflict sets
approach, we preserve the ordering constraints but even
then, this would be an expensive computation as the search
is in the space of subsets. RADAR-X presents all the maxi-

2For our example, in the unsolvability tests with the hm pre-
processor, m=1 found the solution.
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mal plausible subsets for the previously illustrated example
(as shown in Figure 7) from which the user can choose the
preferred one. For instance, if the user chooses the subset
(DEPLOY BIG ENGINES FIRECHIEF MESAFIRE BYENG
and ADDRESS MEDIA FIRECHIEF), a plan that contains
both these actions is presented to the user.

Evaluation
Demo Video
Using the fire-fighting scenario proposed in (Grover et al.
2020), we illustrate the use cases and the functionalities sup-
ported by RADAR-X in a demo video. The demo video of the
working system can be found at https://bit.ly/2Uzhciq.

User Study
Here, we look at an evaluation for a major aspect of
RADAR-X i.e., providing contrastive explanations. There
have been existing works that provide algorithms for con-
trastive explanations in sequential decision-making settings,
but these works take it as a given that users do ask for con-
trastive explanations with explicit foils. Further, in decision
support scenarios, there hasn’t been, to the best our knowl-
edge, any studies that have looked at whether users would
raise explicit foils when asking for an explanation. In this
regard, we will now look at a user study we conducted that
tries to answer the question of whether people ask for con-
trastive explanations with foils in decision support scenarios.

Setup A simple logistics domain was used in this study
and the task of a participant was (1) to understand the do-
main, (2) choose the right plan for a problem instance, and
(3) look at the system’s suggestion and evaluate it. To en-
sure users understood the domain, a questionnaire about the
domain was given to the participants and they were only al-
lowed to proceed after answering it correctly. Further, the
participants get to chose what they think is the right plan
before looking at the system’s suggestion and for the pur-
pose of this study, the system’s suggested plan was made
sure to be invalid in the model description that is exposed
to the user. The explanation for this invalidity constitutes of
the system providing model information to the user which
were previously withheld from them. Once the plan was
suggested, the participants had the option to either accept
the suggested plan or ask for an explanation. If the partic-
ipants asked for an explanation, they were presented with
two explanatory questions as options– (1) why did the sys-
tem suggest the plan it suggested (πr) as opposed to all
other plans (in this case, Minimally Complete Explanations
(MCE) were provided), or (2) why did the system not sug-
gest the plan (πh) that the participant chose (for which Min-
imally Contrastive Explanations (MCrE) were provided).
Based on the explanatory question they choose, they were
first provided with the respective explanation. Then, they
were asked if they would accept the plan or if further expla-
nations were required. Note that the paper aims to present
the generalized system (which can handle general foils) to
the end-users. But for the purpose of this user study, we had
used full plans to compute MCrE. Since part of the moti-
vation for providing contrastive explanations is the fact that

Why not πh?

38%

Why πr?

62%

Figure 8: Preferences over explanatory questions
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MCrE+Add Exp
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Figure 9: Acceptance rate of the plan suggestion for each of
the explanation type

the foil is something that the user expects or understands, we
used the plan selected by the participants during the priming
process as the foil to generate MCrE.

In this study, there were two model differences that were
required to explain the system’s suggestion. MCE reconciled
both the differences that were required to understand the
plan. Therefore, when the participant who received MCE,
asked for further explanations, no additional explanation
was provided. On the other hand, MCrE focused on one of
the differences that made the participant’s chosen plan in-
valid. In that case, when the participant asked for an addi-
tional explanation, the second difference that had not been
reconciled was presented. If the participant asked for further
explanation after the additional explanation, no additional
explanation was provided.

Results and Analysis There were 35 students (undergrad-
uate and graduate) who were the participants of this study.
All the participants were able to pick the right plan for the
problem instance. Out of these 35 participants, 32 partici-
pants asked for explanations. Of the 32, 12 (38%) of them
asked for MCrE and 20 (62%) asked for MCE (as shown
in Figure 8). This actually shows that a non-trivial number
of participants had asked for a contrastive explanation. Note
that the participants did not really have a stake in the do-
main and had to be primed in the study to get strong expec-
tations. In real-life mission planning scenarios, where there
are much more complex domains, the scientists, who are ex-
perts, have a stake in the domain and are highly likely to
have strong expectations or preferences for one objective
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Approach Time (in secs)
For 1 set For π′

Conflict Sets 8.34 30.34
Plausible Sets 9.12 29.16
MCrE - 51.03

Table 1: Computation time for explanation generation and
two of the preference elicitation approaches.

over another (Smith 2012). In such situations it could be
even more likely that the users will ask for contrastive ex-
planations. This emphasizes the need to provide contrastive
explanations based on user specified foils.

An interesting insight An interesting preliminary insight
that was obtained in this study was that a higher percentage
of the participants accepted the final plan when the expla-
nations were broken down (83%), i.e. they asked for MCrE
and then an additional explanation compared to the partic-
ipants who received both the model differences all at once
in the case of MCE (42%). This is shown in Figure 9. This
shows that providing information all at once (even if rele-
vant) might not help the user comprehend the information
properly.

Computational Evaluation
The conflict sets approach and the plausible sets approach
are searches in the space of subsets. This, as previously men-
tioned, can combinatorially explode as the number of actions
in the foil increase. We have evaluated the time taken for
both approaches on the firefighting scenario illustrated with
two foils, one containing a single conflict set and the other
containing 2 conflict sets (or π′). Table 1 shows the compu-
tation time taken by both the approaches on an Intel Xeon
E3-1535 CPU equipped with 16GB RAM. Further, Table
1 also showcases the time taken for the system to gener-
ate MCrE for the given foil (π′) in the previously illustrated
usecase. The computation time is feasible in the context of
the application at hand. Even in the most computationally
demanding setting, i.e., one with two foils the system only
took around 30 seconds for generating revised suggestions.
This is an acceptable computation time in mission critical
decision-support scenarios, where the stakeholders usually
deliberate over the final decision.

Related Work
The spectrum of work in human-in-the-loop planning
(Kambhampati and Talamadupula 2015) ranges from the
more traditional mixed-initiative settings (Ferguson et al.
1996; Ai-Chang et al. 2004; Kim, Banks, and Shah 2017)
where the planners drove the interaction in these scenarios
with the users ‘advising’ them, to works in decision sup-
port systems (Grover et al. 2020; Sengupta, Chakraborti, and
Kambhampati 2018; Mishra et al. 2019) where the user is re-
sponsible for the plan while the system provides support. In
(Grover et al. 2020), the authors propose a proactive aspect

to decision support systems and design the system’s capa-
bilities based on principles in Human-Computer Interaction
(HCI). In (Grover et al. 2019), the authors show that such
systems can improve the efficiency of decision making, the
quality of the decision made, and increase user-satisfaction.
Our work builds upon existing work enabling the user to
specify foils, refute them with explanation and engage in a
discussion until consensus is reached. The explanations that
our system provides take the human’s model into account
while other explainable tools focus on explaining the ratio-
nale behind the system’s decision based on its own model
(Agrawal, Yelamanchili, and Chien 2020).

Conclusion
In this article, we presented RADAR-X, a decision-support
system that looks to establish an interactive explanatory di-
alogue with the user. We looked at the two major technical
aspects of this new interface. One enabled the user to ask
for contrastive explanations by specifying a foil; this helps
the user understand why the plan suggested by the system
was chosen over the alternative. The other refined plan sug-
gestions using the specified foil as a stand-in for the user’s
latent preferences. This was done by (1) providing a closest
plan or (2) presenting conflict sets or (3) maximal plausible
sets within the foil thereby eliciting the user’s preferences.

A crucial component in deploying decision support sys-
tems such as RADAR-X would be to have a specified model
of the task given to the system. Once that is given, the sys-
tem can offer all of its functionalities. Even explanations
can be provided assuming an empty human model (as in
(Grover et al. 2020)). We have developed this system with
high-stakes mission-planning domains such as those in Navy
or Space in mind, where there exists a specified model for
the tasks that need to be carried out, with humans-in-the-
loop having strong preferences over objectives. In such sce-
narios, the system deployed might have additional informa-
tion as opposed to the human which causes a difference
in the models. Also, the models could start off being the
same but diverge during the course of operation. We believe
RADAR-Xwould be of relevance and significant help in such
domains.
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