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Abstract

Plan execution in unknown environments poses a number of
challenges: uncertainty in domain modeling, stochasticity at
execution time, and the presence of exogenous events. These
challenges motivate an integrated approach to planning and
execution that is able to respond intelligently to variation.
We examine this problem in the context of the Europa Lan-
der mission concept, and evaluate a planning and execution
framework that responds to feedback and task failure using
two techniques: flexible execution and replanning with plan
optimization. We develop a theoretical framework to estimate
gains from these techniques, and we compare these predic-
tions to empirical results generated in simulation. These re-
sults indicate that an integrated approach to planning and ex-
ecution leveraging flexible execution, replanning, and utility
maximization shows significant promise for future tightly-
constrained space missions that must address significant un-
certainty.

Introduction
AI planning for robotic applications often must address vari-
ation in execution and uncertainty in the quality of environ-
ment models. In space-based applications, this can be es-
pecially challenging when the environment is largely un-
known, reducing the quality of our a priori models of the
world. To address these problems, we describe an integrated
approach to planning and execution in an unknown, unpre-
dictable environment. First, we define a theoretical frame-
work to examine the value of two integrated planning and
execution techniques: flexible execution and replanning with
plan optimization. We discuss this framework in the context
of the Europa Lander mission concept. Finally, we compare
the predictions of the model to empirical results in a Europa-
like simulation environment.

The primary empirical context of our model is a mission
concept to perform in situ analysis of samples from the sur-
face of the Jovian moon Europa (Hand 2017). Unlike prior
NASA missions, a priori domain knowledge is severely lim-
ited and uncertain, and communication with Earth is lim-
ited by long blackout periods (over 42 hours out of ev-
ery 84 hours). Consequently, a successful mission requires
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a planning and execution framework that can operate au-
tonomously for extended periods of time, is robust to un-
precedented levels of uncertainty, and is still capable of max-
imizing its overall utility. Additionally, because of the harsh
radiation environment at Europa, mission lifetime and on-
board computing are severely limited 1.

On the other hand, the Europa Lander concept has a fairly
rigid definition of what actions the lander must perform
in order to produce utility. Our planning algorithm lever-
ages this domain-specific knowledge by making use of a hi-
erarchical task network (HTN) and using heuristic-guided
search to examine various task combinations to maximize
utility. The ultimate goal for a Europa Lander would be to
analyze surface material and communicate the resulting data
products back to Earth. To reward accomplishment of these
goals, we assign utility to tasks such as sample excavation
and seismographic data collection, but the overwhelming
majority of the mission utility is not awarded until the lander
communicates the data down to Earth. In the HTN frame-
work, this means that tasks in a hierarchy produce very little
utility until the full hierarchy is executed.

For our empirical evaluation, we base our planning sys-
tem on MEXEC, an integrated planner and executive origi-
nally built for NASA’s Europa Clipper mission (Verma et al.
2017). We compare four approaches to planning on the Eu-
ropa Lander problem similar to those used in prior missions:
a static plan without failure recovery mechanisms, a static
plan with ground input for failure recovery (similar to cur-
rent Mars Rover operations) (Gaines and et al 2016), flexible
execution without replanning, and flexible execution with
replanning optimization. We explore the value of onboard
autonomy: flexible execution and replanning with plan op-
timization, and examine these techniques’ effects on utility
in these scenarios. We demonstrate that, true to our model’s
prediction, each technique shows significant improvement in
utility achievement in the Europa Lander domain.

1As a point of reference, the RAD750 processor used by the
Mars 2020 rover has measured performance in the 200-300 MIPS
range. In comparison, a 2016 Intel Core i7 measured over 300,000
MIPS, or over 1000 times faster. Furthermore, the Mars 2020 on-
board scheduler (Agrawal et al. 2021b) is only allocated a portion
of the computing cycles onboard the RAD750 resulting computa-
tion several thousand times slower than a typical laptop.
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Domain Description
The primary goal of the Europa Lander mission concept is
to excavate and sample the surface, analyze the sampled
material for signs of biosignatures, and communicate that
data back to Earth (Hand 2017). Additionally, there are sec-
ondary objectives to take panoramic imagery of the Europan
surface and collect seismographic data. Lander operations
are generally limited to the accomplishment of these two
overarching goals. This provides significant structure to the
problem, since the concept mission clearly defines the se-
quence of actions required to achieve these goals. Figure 1
displays the strong dependency structure inherent to the Eu-
ropa Lander concept mission. In order to sample, the lander
needs to have excavated a trench; in order to analyze, the
lander needs to have collected a sample; etc.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and return that data to Earth.
The basic requirements of a mission would require only a
single site to be excavated. However, there is value in exca-
vating additional sites, because the material at different sites
may possess different properties. On the other hand, the lan-
der may choose to resample the same location, for exam-
ple, in order to verify the discovery of a biosignature. In the
baseline mission concept, all three of the lander’s samples
are chosen from the same target. Note that after the first site
is excavated, no further excavations are needed to sample
from that trench; all three sampling activities can share a sin-
gle excavation site. After excavation and sample collection,
samples must be transferred into scientific instruments that
analyze the material and produce data products. Then, for
a mission to achieve any actual utility, those data products
must be communicated back to Earth.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have
lower value. However, these tasks also involve no surface
interaction, and have less uncertainty associated with them
as a result.

It is important to note that primary utility is only achieved
when data is downlinked back to Earth 2. This is true for
both the sampling and seismograph/panorama tasks. Some
excavation sites or sampling targets may provide more util-
ity than others if, for example, one of those targets has a
positive biosignature and the other does not. However, re-
gardless of the quality of the material that the lander sam-
ples, no utility is achieved unless that data is communicated.
This dynamic means that while potential utility is generated
during the sampling and analysis phases, it is only realized
by completing relevant communication tasks.

The Europa Lander mission concept is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy as

2While context imagery while preparing sampling locations has
some science value, the primary science value is from analysis of
the samples.

efficiently as possible. Each task saps energy from the bat-
tery, and our algorithm must plan accordingly to maximize
utility in face of this constraint. In addition to this challenge,
the surface characteristics of Europa are uncertain, and any
prior mission model that is generated before landing is sure
to have inaccuracies. In particular, the energy consumption
of the excavation and sample collection tasks is largely un-
known. There is also significant variation in the utility of
any given sample, since the value of sampling a given target
on Europa depends on whether the material is scientifically
interesting, e.g. whether a biosignature is present.

Approach
We design our planning system to respond intelligently to
stochasticity at execution time, since we expect this to be a
significant factor in our domain. Planning and execution are
integrated in our approach, in order to respond to variation
and therefore better optimize overall utility achieved. We
achieve this integration through the use of two techniques:
flexible execution and replanning with plan optimization.

Flexible Execution
Flexible execution is a lightweight rescheduling algorithm
that runs at a much higher cadence than the planner. This al-
gorithm has two main properties: (1) it is much less compu-
tationally demanding than replanning as it does not search,
and (2) it is less capable than replanning. Flexible execution
allows the system to handle less-severe unexpected events
without incurring the cost of replanning. Previous NASA
missions have made heavy use of flexible execution, such
as the Mars 2020 Perseverance rover (Agrawal et al. 2021a).
Our implementation differs in focus, emphasizing responses
to adverse events.

In our system, flexible execution consists of two major
components. The first is task push. If a task’s preconditions
are not met, before failing the task, we allow it to wait for
some amount of time for this inconsistency to resolve. Such
a situation might occur, for example, if required preceding
activities are delayed or run long. The executive checks the
task’s preconditions and delays dispatch until either the con-
ditions have been met, or the task’s wait timeout has been
exceeded.

The second component of flexible execution is automated
retry. If a task completes with a failure code, flexible execu-
tion can immediately re-schedule the task if its preconditions
are still met (and plan updated with new predicted end time
of the task and resource usage), avoiding replanning cost and
delay.

In the context of the Europa Lander domain, flexible ex-
ecution offers significant value because many robotic tasks
such as trenching and sample acquisition can vary signif-
icantly in duration and and hence resource consumption.
Flexible execution handles this variation without disrupting
the execution flow.

Replanning with Plan Optimization
For more complex execution variations, we turn to replan-
ning during execution. Replanning uses search to construct
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Figure 1: A task network for the Europa Lander mission concept. The diagram represents a potential execution trace of the
mission that would fulfill baseline requirements.

the plan based on the current state. The current state in-
cludes: state and resource values (accounting for failed ac-
tivities, and resource under/over runs) as well as the current
time (accounting for execution time variation). Additionally,
utility estimation, predicted duration, and predicted resource
expenditures for future tasks may be updated (e.g. imaging
may indicate that a sampling site now looks more promising
and/or may take longer/shorter to excavate or sample). Re-
planning enables incorporation of all of this new information
into decision-making.

Theoretical Framework for Analysis
We define our planning problem as follows. We provide our
planner with a set of tasks T = {t1, ..., tn}. Each task is
represented by a tuple tk = {ck, uk, dk, P, I} where:

• ck represents the task’s cost.
• uk represents the task’s utility.
• dk represents the task’s nominal duration.
• P is the set of the task’s preconditions. These may be

based on resource values, or on the execution state of de-
pendency tasks.

• I is the set of its impacts on resource timelines.

This matches the timeline representation of execution state
used by (Verma et al. 2017). For our problem, we assume
that we have a fixed cost budget b. In the Europa Lander
domain, this budget represents the non-rechargeable battery,
with each task using up some amount of that battery’s en-
ergy. We wish to maximize utility by scheduling tasks sub-
ject to the following constraints:

• For all tasks, all preconditions are valid.
• For all tasks, all impacts are valid.

• The sum of all task costs does not exceed b.

In our framework, we examine four planning and execution
strategies of increasing onboard autonomy: static, ground,
flexible execution (FE), and replan. In static, a plan is gen-
erated before execution time, then executed without change.
No failure responses are available, so the first task failure re-
sults in the remainder of the plan not executing. In ground,
we introduce a mechanism for failure resolution: waiting for
ground input. We assume that ground input is able to resolve
all failures. The plan generated on the ground, and any task
failures result in a halt to plan execution, ground fixes the
problem, then execution resumes, albeit incurring consider-
able cost. In the FE strategy, we allow flexible execution of
our plans, which can resolve some but not all failures, with
all other failures handled by waiting for ground input. Fi-
nally, in the replan strategy, first FE is applied to resolve fail-
ures, if FE cannot resolve the failure replanning is applied,
if replanning cannot resolve the failure, the ground strategy
is applied. Replanning can therefore serve dual purposes: re-
solving task failures, and replanning to increase plan utility.

Given this context, we predict the overall utility achieve-
ment of a plan using an estimate of utility per unit cost uavg .
If all tasks in a plan always succeed, our expected utility for
a plan would be buavg .

To factor in task failure, we assume that tasks fail with
some probability P (fail), and we assume that task failures
follow a Poisson distribution in that each task fail with a
fixed failure rate 3.

We assume that some subset of these failures can be re-
solved with FE, a strictly larger subset can be resolved using
replanning and that all failure modes can be resolved via

3Extending the analysis to more realistic plan structure, failure
patterns, and interactions with exogenous events are future work.
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waiting for ground input. Then, if P (ground) denotes the
probability that a failure is resolvable by ground (but not
replan or FE) and where P (replan) is the probability that
replan works but FE does not, failure handling probabilities
can be described as:

P (fail) = P (ground) + P (replan) + P (FE) (1)
We first analyze the static strategy. Assuming the plan is

a linear sequence of activities and execution terminates ex-
ecution with the first failure, the expected number of suc-
cessfully executed activities is 1/P(fail) but bounded by the
number of tasks n . Therefore the static expected utility is
the lower of the ”no failure case” (at left below) or (at right)
the expected utility per task uavg · cavg times the number of
expected activities executed as indicated below:

U(Ss) = min

(
uavg · b,

uavg · cavg
P (fail)

)
(2)

where cavg denotes the average cost of each task.
In the ground strategy, the only error response for all fail-

ures is to “go to ground” to resolve which always allows
plan execution to continue. If our plan has n tasks, this oc-
curs nP (fail) times costing cg energy each occurrence. The
utility achievement of this “ground” strategy is:

U(Sg) = uavg (b− P (fail)ncg) (3)
In the FE strategy, we introduce flexible execution and as-

sume that some subset of task failures can be resolved with
this feature. The probability of a task failing in this way is
P (FE) and note that P (FE) is a subset of the total failure
cases P (fail). We assume that flexible execution has a neg-
ligible cost. Then, the utility achievement of plan execution
using this strategy is:

U(Sf ) = uavg (b− (P (fail)− P (FE))ncg) (4)
Finally, we consider the replan strategy, which incorpo-

rates flexible execution and replanning with plan optimiza-
tion. Unlike flexible execution, replanning incurs some non-
negligible cost cr. We assume that, like flexible execution,
replanning is able to resolve some subset of task failures.
We denote the probability that a given task fails in a way
that can be resolved via replanning, but not flexible execu-
tion, as P (replan).

Failures are resolved by the least costly resolution mecha-
nism. Thus, when a task fails, our system attempts to resolve
it by flexible execution, if possible, falling back to replan-
ning and ground intervention in sequence. To model plan
optimization, we provide our planning system with opportu-
nities to discover utility at certain points during execution.
We denote the number of such opportunities as d, and the
expected additional utility discovered as ud. Then,

U(Sr) =dud + uavg

(b− n(P (ground)cg + P (replan)cr))
(5)

Planning Approach
Problem Model
We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been

Figure 2: Two possible decompositions of a single parent
“Sample Site 1”. In the left decomposition, the lander ex-
cavates the site, samples target A, and communicates raw
data. In the right decomposition, the lander skips excava-
tion, samples site B, and communicates compressed data.
Both achieve the same goal of sampling site 1.

used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed to a set of subtasks. We refer to the higher-level
tasks as “parent tasks”, and refer to their children as “sub-
tasks”. Parent tasks may decompose into a number of differ-
ent sets of subtasks; we refer to each of these sets as a po-
tential “decomposition” of that parent task. Finally, we refer
to tasks with no decompositions as “primitive tasks”. These
primitive tasks represent tasks that the lander can be directly
commanded to perform.

Decompositions provide a number of benefits to our plan-
ning approach, significantly reducing plan search space. In
addition, we can treat all subtasks of a parent task as a
singular block for planning purposes. The lander primarily
achieves utility after completing an entire sequence of sam-
ple, analyze, communicate. Decompositions allow us to treat
“sample, analyze, communicate” as a single unit and sched-
ule them accordingly. Thus, our model intrinsically biases
the lander against planning to sample without a correspond-
ing communication task. This may not always be optimal,
if for example, excavation and sampling is cheap and com-
munication is very expensive. However, for our problem,
energy use is dominated by the excavation and sampling
tasks, and the decomposition paradigm effectively encodes
this domain-specific knowledge into our planning routine.

There are three main parent task types in our mission
model. The first is a Preamble, which consists of post-
landing initialization and other one-time initialization tasks.
Second are sampling tasks. These consist of excavation,
sample collection, transfer, analysis, and communication
tasks. Excavation can take place at one of two excavation
sites, and may be skipped if an excavation has previously
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occurred for the specified site. For collection tasks, the lan-
der may choose between four collection targets: two for each
excavation site. It may revisit a target that has already been
sampled, still obtaining utility for a repeat sample. Then,
for communication tasks, the lander may choose to either
communicate raw data or compressed data. Finally, there
are Seismograph/Panorama tasks, which consist of seismo-
graphic data collection, panoramic image collection, and
communication of that data.

In our problem, we assign utility primarily to two activi-
ties: sampling and communication. Both of these task mod-
els are assigned a numeric value representing their utility,
which can be updated online by the planning and execution
system if knowledge at execution time alters the expected
utility of a given action. Utility for these tasks is achieved
only after their full decomposition has been successfully ex-
ecuted. Thus, for sampling utility to be achieved, a corre-
sponding communication step must successfully complete.

We assign utility to sampling tasks in order to differenti-
ate between sites that may be more or less interesting, de-
pending on the scientific value of the site. Communication
utility is larger, and remains constant. For the communica-
tion tasks, we assign higher utility and cost to tasks that
communicate raw data, compared to those that communicate
compressed data. This simulates a Pareto optimal “menu”
of communication options. The combination of sampling
and communication utilities represents the overall utility
of a parent sampling task. Seismograph/panorama utility is
driven solely by communication utility.

Planning Algorithm
Our planning algorithm uses the HTN model of the Europa
Lander problem to build a search graph, with nodes hold-
ing partial plans and edges holding task decompositions.
We perform a heuristic-guided branch and bound search on
this graph and select the best plan explored. The algorithm
consists of four phases: pre-processing, initialization, explo-
ration, and plan selection.

First, a pre-processing step flattens task decompositions
into a single layer, such that parent tasks decompose into
a chain consisting only of primitive, non-hierarchical sub-
tasks. This allows us to assign utility and energy cost di-
rectly to each decomposition, because its breakdown into
disparate subtasks has already been performed. Then, each
decomposition’s expected utility is the sum of each of its
subtasks’ utility. The same is true for energy cost. This step
is performed once per domain model, offline. While this pre-
processing has exponential runtime in the worst case, for
our Europa Lander (as well as most space applications we
have seen) the majority of the search occurs in scheduling
the expanded tasks not action selection so this preprocessing
is tractable (managing this complexity is an area for future
work).

Our search tree consists of nodes containing partial plans
and their associated energy cost and utility. A node’s cost is
the sum of the costs of each task in the node’s partial plan;
and likewise the node utility is the sum of the utilities of the
(sub) tasks (task utility that is dependent on other tasks is a
topic for future work). In the initialization phase, the algo-

Algorithm 1: Europa Lander Planning
Input: A list of tasks to schedule T
Output: A plan of scheduled tasks P
/* initialize exploration queue */
node collection = [];
add (plan=[], utility=0, cost=0) to node collection;
edge collection = [];
for d in task.decompositions do

new edge = (d, d.utility, d.cost);
add new edge to edge collection;

end
explore q = [];
for edge in edge collection do

add (node collection[0], edge) to explore q;
end
/* search exploration queue */
num explored = 0;
while num explored below exploration bound do

num explored++;
plan, decomp = explore q.get max();
if decomp tasks can be added to plan then

new plan = plan + decomp tasks;
add new plan to node collection;
for edge in edge collection do

if edge.task not in new plan and
new plan.cost + edge.cost below
max cost then

add (new plan, edge) to explore q;
end

end
end

end
/* find best plan in node

collection */
best plan = null;
for plan in node collection do

if plan.utility above best plan.utility then
best plan = plan;

end
end
return best plan;

rithm creates a single node containing an empty plan, with
utility and cost 0. Then, it iterates through all task decompo-
sitions created in the pre-processing phase in order to gener-
ate the set of edges that may be followed from a given node.
To finish the initialization phase, the algorithm populates an
exploration queue with (node, edge) pairs, pairing the singu-
lar initial node with all edges in the collection. At the end of
the initialization phase, then, the exploration queue consists
of all task decompositions paired with the empty plan.

In the exploration phase, the planner pops the top of the
exploration queue to get (P, T ), where P is a partial plan,
and T is the list of primitive subtasks comprising a task de-
composition. It then attempts to schedule all tasks in T given
the state of the world produced by following the plan P . If
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the tasks cannot be scheduled, it moves on to the next ex-
ploration queue item. If the tasks can be scheduled, i.e. their
preconditions are met and their impacts do not produce any
conflicts, a new graph node is created. This node contains a
new plan P ′, the resulting plan after adding the tasks in T to
P .

After creating this plan node, the planner iterates through
the edge collection again, pairing the new plan with all pos-
sible tasks. In this iteration, it ignores tasks that have al-
ready been scheduled in the plan, so as to avoid duplicates.
The algorithm also filters these pairs to ensure that the to-
tal cost P.cost + T.cost < M , where M is the max energy
cost allowed (equal to the current battery charge of the lan-
der). This bounds our search, and we further bound the al-
gorithm’s search by limiting the number of exploration can-
didates examined. Note however that this bound maintains
optimality if we allow the algorithm to expand the entire
space. After filtering, these pairs are added to the exploration
queue, and the next queue item is examined. The exploration
queue is a priority queue, with (plan, decomposition) pairs
ordered by a heuristic value to improve search results. Given
a plan, decomposition pair (P, T ), we assign the heuristic
value h(P, T ) = P.utility + T.utility

T.cost . Finally, in the plan
selection phase, the algorithm iterates through all candidate
plan nodes, selecting the plan with the highest utility. Ties
are broken according to energy cost, where a lower energy
cost is preferred.

Empirical Evaluation
To test our model, we ran simulations of our planning and
execution system on three variants of the Europa Lander do-
main described in Figure 1. The first is the base scenario.
Here each task consumes an amount of energy that matches
its a priori expectation in the task network, but may be noisy,
with a standard deviation of 10%. In the second variant,
we bias this noise such that tasks are expected to consume
10% more energy than modeled. Finally, the third variant
biases noise in the opposite direction, such that tasks are ex-
pected to consume 10% less energy. For each variant, we
simulated each of the four planning/execution strategies dis-
cussed in our theoretical framework, and measured the util-
ity achieved. In simulation, the failure probability of each
task is uniform and independent. Each failure resolution
mechanism is assumed to have a fixed cost and always suc-
ceed in resolving the issue. The data for each figure shows
the mean utility achieved across 50 simulations of the sce-
nario.

For our model calculations, we estimate our average util-
ity per cost (uavg) by analyzing plans generated by a pre-
scient planner. This planner has perfect execution informa-
tion a priori, so plan execution exactly matches the planner’s
predictions. Task failure probability is assumed to be 0.1 for
P (fail) = .1, and we assume flexible execution is able to
handle 30% of such failures for P (FE) = .03, while replan-
ning is able to handle an additional 60% of remaining fail-
ures for P (replan) = 0.042 and ground can solve the rest
for P (ground) = 0.028.

Our model predicts the “static” strategy to perform poorly,

Figure 3: Average utility achieved in simulation of the base
Europa Lander domain for 4 planning strategies, compared
to theoretical model predictions.

Figure 4: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% more energy
than expected, compared to empirical results in the base do-
main.

since it has no failure resolution mechanisms and is thus
likely to terminate quickly. By introducing a failure recov-
ery mechanism, our model predicts the “ground” strategy to
improve performance considerably. However, this failure re-
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covery mechanism is still fairly costly. The “FE” strategy
introduces flexible execution to mitigate this. As such, our
model predicts a higher utility achievement, since some set
of failures are now resolved by a less costly mechanism. Fi-
nally, the “replan” strategy is predicted to perform best of all
the strategies. Like the “FE” strategy, it introduces another
failure resolution mechanism and also introduces additional
utility through plan optimization. When utility is discovered
at execution time, the “replan” strategy is able to exploit that
discovery, where the other strategies are not.

In Figure 3, we compare the predictions of our model to
the measured utility achievement of our system in simula-
tion. We see that the four strategies qualitatively follow the
model’s predictions.

Discussion of Model Limitations and Future Model
Work: While our predictive model generally matches our
empirical measurements, it is limited in certain aspects. Ex-
tending the utility model to increase its accuracy would have
many benefits - most importantly highlighting how different
operations strategies could improve mission return.

The model uses uavg as a way to estimate utility achieve-
ment based on power, smoothing performance across the
entire execution into a linear model. However, in the Eu-
ropa Lander domain, utility is primarily achieved only dur-
ing communication events. Because the model views utility
gain as purely linear, it is unable to capture the spikes in
utility inherent in the domain.

In the Europa Lander domain, a trench only need to be
excavated a single time, and multiple samples can be taken
from a single excavation trench. This means that the first
sample taken at a trench is much more costly than future
samples. Because of this, if the system tends to run out of en-
ergy while attempting to sample a site for the first time, the
model is likely to overestimate utility gain, since a signifi-
cant portion of energy is used while no utility is gained. On
the other hand, when the system can repeatedly sample from
an existing trench, the model underestimates utility. This be-
havior is prominently seen in the ground and FE strategies in
Figure 3. Both strategies spend a significant portion of their
execution repeatedly sampling from an excavation site, lead-
ing to higher utility gain than expected during these portions
of the plan execution.

Another issue is the simplistic plan structure presumed by
our model. In general, plan dependencies can be considered
a set of graphs. For the Europa Lander domain, there are
not merges (except for activities shared for efficiency such
as downlinks), therefore plan structures look like forests or
sets of trees. In our analysis model we presume that all ac-
tivities in the plan form a single linear sequence. Because
a plan is a set of trees, a failure in one tree would not stop
execution in another tree - reducing the failure cost. Addi-
tionally, exogenous conditions such as Earth-in-view are re-
quired for downlink so that failure costs are non linear (a 1h
delay could push a downlink to the next Earth-in-view 42
hours later or conversely a delay might not delay downlink
at all as the downlink was waiting for a later Earth-in-view).

For the replan strategy, we also consider the effects of
utility discovery and plan optimization in replanning. To de-
termine a value for d, the number of times that utility dis-

Figure 5: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% less energy
than expected, compared to empirical results in the base do-
main.

covery can be exploited, we calculate and upper bound for
this value based on the total energy available to the system.
However, the system may not be able to take advantage of
utility discovery this number of times, since it may run into
too many task failures, or the planner may simply choose to
complete other tasks. Thus, the calculations for our model
tend to overestimate the value of utility discovery in the re-
planning strategy.

Next, we consider the effects of biased noise on the util-
ity gain of our system. First, we examine the scenario where
all tasks use 10 percent more energy on average than ex-
pected. A comparison of this scenario and the base scenario
is shown in Figure 4. Naively, we might expect utility in each
scenario to decrease by about 10 percent. However, because
utility is achieved in spikes through the completion of fairly
lengthy chains of tasks, events have an impact on utility only
if they increase or decrease the probability of successfully
completing a chain of tasks. In the “more energy” scenario,
the ground strategy appears generally unaffected.

The replan strategy is affected more heavily, since a lower
pool of energy available limits the strategy’s ability to take
advantage of discovered utility. On the other hand, because
it is able to replan, it can make use of lower cost actions
such as Seismograph/Panorama tasks to gain utility despite
lacking the energy to complete a sample.

Finally, we consider the scenario where tasks take 10 per-
cent less energy than expected (Figure 5). Here, the ground
strategy improves considerably in performance, while FE
improves at a lower clip. This is consistent with what we
see in the previous scenario. The ground strategy is able to
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benefit significantly from the extra energy and complete an
extra sample cycle, while FE is not as close to this boundary
and thus is not affected as strongly.

The replan strategy also sees significant benefits from ex-
tra energy. Extra energy enables additional samples, whose
benefit is amplified by the potential for utility discovery. In
addition, the replan strategy is able to integrate knowledge
of the additional energy during execution time as it updates
state predictions with the reality on the ground. Thus, instead
of settling for a Seismograph/Panorama task, as might occur
in the base or high energy use scenarios, the replan strategy
is more often able to process a sample.

Related Work
Decision-theoretic planning provides a formal model for
reasoning about problems in which actions have stochas-
tic outcomes or the agent has incomplete information about
its environment (Iocchi et al. 2016; Saisubramanian, Zil-
berstein, and Shenoy 2017; Zilberstein et al. 2002). The
primary objective of decision-theoretic planning is to pro-
duce plans or policies that define the potential trajectories
of actions that the agent may take which maximizes its ex-
pected utility, rather than maximizing or guaranteeing goal-
reachability (Boutilier, Dean, and Hanks 1999). A standard
approach in decision-theoretic planning for modeling do-
mains is to use a Markov decision process (MDP) (Bell-
man 1957) when the agent knows the full evaluation of every
state at each timestep, or a partially observable Markov deci-
sion process (POMDP) (Spaan 2012) where this holds only
for a subset of the variables that define the statespace.

However, several issues in spacecraft or rover operations
complicate the use of said decision making models. First,
these models traditionally do not support durative or concur-
rent actions, but rather assume that all actions are instanta-
neous and fully sequential in nature. Second, although there
have been a number of approaches over the years aimed at
improving the scalability of these approaches (Guestrin et al.
2003; Wray, Witwicki, and Zilberstein 2017; Yoon, Fern,
and Givan 2007), most algorithms that solve MDPs produce
policies that account for all contingencies and provide ac-
tions for all states in the domain. This is generally imprac-
tical or impossible in spacecraft and rover operations where
computational power is (often severely) limited, and more
so in our problem where the battery is non-rechargeable
and the domain model is expected to be modified repeatedly
throughout the agent’s operation.

Onboard planning and execution are of great interest to
the space domain. Flexible execution of tasks is a central fo-
cus of execution engines like PLEXIL (Verma et al. 2005)
and TRACE (de la Croix and Lim 2020). The Earth Ob-
serving One (EO-1) spacecraft (Chien et al. 2005), which
flew for over 12 years from 2004-2017, responded to dy-
namic scientific events using the CASPER planner (taking
10s of minutes to replan and) with the SCL executive. The
flight and ground planners (Chien et al. 2010) both used a
domain specific search algorithm that enforced a strict pri-
ority model over observations for a limited model of utility.

The M2020 Perseverance rover also plans to fly an on-
board planner (Rabideau and Benowitz 2017) to reduce lost

productivity from following fixed time conservative plans
(Gaines and et al 2016). Like the planning approach we pro-
pose in this paper, the M2020 planning architecture also re-
lies on rescheduling and flexible execution (Agrawal et al.
2021a), ground-based compilation (Chi et al. 2019), heuris-
tics (Chi, Chien, and Agrawal 2020), and very limited han-
dling of planning contingencies (Agrawal et al. 2021b).
However, it uses a non-backtracking planner, which limits
its ability to optimize plans and the M2020 flight software
does not support utility discovery. Our work also takes a dif-
ferent focus, primarily examining the effects of task failure
and considering integrated planning in the context of failure
resolution. Finally, the Europa Lander mission concept has
stronger drivers for mission autonomy than M2020 due to
lack of reliable a priori model parameters, the inability to
recharge the battery, and the long communications blackout
time windows.

Future Work and Conclusions

Our work on FE and replanning is reactive to execution vari-
ation and failure. Likewise it is also only reactive to positive
events (such as early completion or underconsumption of re-
sources. A proactive approach would prefer plans that are
resilient to negative execution outcomes or could take ad-
vantage of possible positive outcomes such as the sampling-
based approach by Basich et al. (Basich et al. 2021).

In addition, in this work we focus primarily on energy
as a resource. However, a number of other resources exist,
and the consumption of any of these may be noisy or bi-
ased, affecting plan execution. In our application, time is a
resource with complex effects (due to exogenous conditions
like Earth in view for communication) and time is typically
linked to energy usage (a task which runs long consumes
extra energy). Data volume is another resource that can vary
(science data products have variable size due to content de-
pendent compression) and data volume translates directly to
energy required to downlink.

Additionally, certain failures have effects beyond task
failure. Failures in excavation or sampling damage hardware
- reducing future effectiveness or even precluding activities.
A true decision theoretic planner could reason about such
risks and alter behavior appropriately. Other risks are due
to resource uncertainty. Estimation of remaining battery en-
ergy is inaccurate; aversion to resource risk would encour-
age downlinking acquired science data earlier to avoid risk
of unexpected early energy depletion.

We have presented a framework for analyzing the benefit
of onboard autonomy for space missions. We consider al-
ternative strategies of ”go to ground”, ”flexible execution”,
and ”replanning” to enable the flight system to resolve is-
sues onboard. We describe this framework in the context of
a Europa Lander mission concept and the Mexec software
which uses flexible execution, HTN planning, and schedul-
ing. We demonstrate that a predictive model of utility gain
from using onboard autonomy qualitatively matches empir-
ical results from simulation but significant further work is
needed to refine and extend the model.
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