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Abstract
Resource optimization for predictive maintenance is a chal-
lenging computational problem that requires inferring and
reasoning over stochastic failure models and dynamically al-
locating repair resources. Predictive maintenance scheduling
is typically performed with a combination of ad hoc, hand-
crafted heuristics with manual scheduling corrections by hu-
man domain experts, which is a labor-intensive process that
is hard to scale. In this paper, we develop an innovative het-
erogeneous graph neural network to automatically learn an
end-to-end resource scheduling policy. Our approach is fully
graph-based with the addition of state summary and decision
value nodes that provides a computationally lightweight and
nonparametric means to perform dynamic scheduling. We
augment our policy optimization procedure to enable robust
learning in highly stochastic environments for which typical
actor-critic reinforcement learning methods are ill-suited. In
consultation with aerospace industry partners, we develop a
virtual predictive-maintenance environment for a heteroge-
neous fleet of aircraft, called AirME. Our approach sets a new
state-of-the-art by outperforming conventional, hand-crafted
heuristics and baseline learning methods across problem sizes
and various objective functions.

Introduction
Resource optimization plays an important role in many real-
world domains, including health care, manufacturing and
services industries, and more (Zhou et al. 2021). Compli-
cating the allocation and sequencing of workers and tasks in
such real-world environments are the numerous sources of
uncertainty or stochasticity, such as machine breakdowns,
unexpected releases of high priority jobs, uncertainty in
processing times, etc (Shah and Williams 2008). One of
such case is aircraft maintenance scheduling, in which the
inter-arrival times of part failures and the resulting service
times are latent random variables (Dinis, Barbosa-Póvoa,
and Teixeira 2019). This stochasticity makes the schedul-
ing problem more difficult, as the scheduler needs to reason
about whether to preemptively service each aircraft.

Optimizing aircraft maintenance has drawn keen interest,
due to the significant contribution of maintenance costs to
overall operating expenses and aircraft availability (Bajes-
tani and Beck 2011). One of the most promising strategies
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of reducing cost is by scheduling predictive maintenance,
which entails deciding whether and when to preemptively
service one or more of an aircraft’s subsystems before the
subsystem fails (Haloui, Ponzoni Carvalho Chanel, and Haı̈t
2020). Research suggests that predictive maintenance could
reduce unscheduled work up to 33% (The Economist 2019),
which would result in an annual savings of $21.7 billion
globally1. Currently, predictive maintenance scheduling is
performed with ad hoc, hand-crafted heuristics and man-
ual scheduling by human domain experts, which is a time-
consuming and laborious process that is hard to scale. Be-
cause of these issues, researchers are becoming increasingly
interested in developing automatic scheduling solutions that
can not only provide high-quality schedules on large scale
but also generalize to different application needs.

Recent advances in artificial intelligence (AI) have fos-
tered the idea of leveraging deep neural networks (DNNs) to
solve a plethora of problems in operations research (Bengio,
Lodi, and Prouvost 2021). DNNs can be trained to automat-
ically explore the problem structure and discover useful rep-
resentations in high-dimensional data towards constructing
high-quality solutions (LeCun, Bengio, and Hinton 2015)
without hand-crafted feature engineering, which is required
by typical operation research approaches (e.g., Genetic al-
gorihtms, Branch-and-Bound solvers). Recent progress has
been made in learning scalable solvers with graph neural
networks (Khalil et al. 2017; Kool, van Hoof, and Welling
2019). However, these approaches typically require static,
deterministic setting which limits applicability for stochas-
tic resource optimization.

To overcome the limitations of prior work, we propose an
innovative design of the scheduling policy network operat-
ing on a heterogeneous graph representation of predictive-
maintenance scheduling environment, as shown in Figure 1.
Two keys to our approach are: 1) we directly model the dy-
namic scheduling decisions as nodes within a heterogeneous
graph network, allowing for an end-to-end trainable resource
scheduling policy that is capabale of reasoning over the var-
ious interactions within the environment, computationally
lightweight and nonparametric to problem scales; 2) we de-

1Based upon 2012 figures for worldwide airline revenue of
$598 Billion (IATA 2012) and 11% of revenue allocated for main-
tenance (Scott McCartney 2012).
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Figure 1: The figure depicts AirME, a virtual predictive-maintenance scheduling environment (Left), and our proposed schedul-
ing policy network (Right). Left: AirME consisits of a team of maintenance crews and a heterogeneous fleet of aircraft and
operates under hour-based simulation. Right: The scheduling policy network uses several heterogeneous graph layers (edges
omitted for simplicity) stacked in series to extract high level embeddings from the graph built with environment observations.
Different schemes are proposed and tested for generating dynamic scheduling decisions. We train our policy network via hetero-
geneous graph-based policy optimization, which we call HetGPO. HetGPO receives a reward signal from AirME and updates
via gradient descent.

velop an RL-based policy optimization procedure to enable
robust learning in highly stochastic environments for which
typical actor-critic RL methods are ill-suited.

To evaluate our heterogeneous graph based policy opti-
mization (HetGPO) approach, we worked in consultation
with aerospace industry partners in developing a virtual
predictive-maintenance environment for a heterogeneous
fleet of aircraft, which we call AirME, as a testbed which
will be released to public. The challenges for scheduling in
AirME comes from the stochasticity in maintenance tasks
and the uncertainty of potential components failure that
greatly influences maintenance costs. We empirically vali-
date HetGPO across a set of problem sizes and when opti-
mizing for multiple objective functions. Results show Het-
GPO achieves a 29.1% improvement in airline profit over
corrective scheduling and outperforms both heuristic and
learning-based baselines.

Related Work
Aircraft maintenance is performed to prevent or reduce the
adverse effect of failures and to maximize aircraft avail-
ability at a minimum cost, and has been a popular ap-
plication area for operations research studies. Dekker and
Scarf (1998) stated that the problem underlying aircraft
maintenance scheduling is a job scheduling problem on par-
allel machines with temporal and availability constraints.
Gavranis and Kozanidis (2015) proposed an exact solution
method to maximize feet availability by deciding which air-
craft to assign to each fight under deterministic setting. Liu
et al. (2019) designed and implemented an autonomous sys-

tem that fuses aircraft’s condition, strategy, planning and
cost to improve the operational support for aircraft mainte-
nance scheduling. A detailed overview on papers addressing
the aircraft maintenance scheduling problem through oper-
ations research techniques can be found in Dinis, Barbosa-
Póvoa, and Teixeira (2019).

Graph neural networks (GNNs), extending DNNs to learn
from graph-structured data, were introduced by Scarselli
et al. (2008). Research in GNNs either work with a spec-
tral representation of the graphs directly (Bruna et al. 2014),
or define convolutions on the graph and operate on groups
of spatially close neighbors (Hamilton, Ying, and Leskovec
2017). Graph Attention Networks (GATs) (Veličković et al.
2018) were proposed to learn the importance between nodes
and its neighbors and fuse the neighbors by normalized
attention coefficients. Recently, researchers have proposed
heterogeneous GNNs, allowing for learning with different
types of nodes and edges, showing superior performance and
model expressiveness (Wang et al. 2019; Seraj et al. 2021).

Leveraging these advances in deep learning, researchers
have turned their attention to tackling a variety of problems
in operations research (Bengio, Lodi, and Prouvost 2021).
The fact that many combinatorial optimization problems
(e.g., Minimum Vertex Cover, Travelling Salesman Prob-
lem, and Vehicle Routing Problem) can be expressed in
graphs makes GNNs a top choice for representation learn-
ing in such scenario. Specifically, GNNs have shown success
in addressing resource optimization and scheduling prob-
lems, such as scheduling data processing clusters (Mao et al.
2019), multi-robot systems (Wang and Gombolay 2020),
wireless networks (Eisen and Ribeiro 2020), and more (Ma
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et al. 2020). However, most of these works relay on homoge-
neous or bipartite graphs to learn a universal message pass-
ing scheme, with limited expressiveness and generalizabil-
ity. While Wang, Liu, and Gombolay (2022) combined het-
erogeneous graph networks with imitation learning, the pol-
icy requires known task information beforehand, operates in
a deterministic environment, and requires examples of opti-
mal schedules from an oracle for training. We are the first to
utilize a heterogeneous graph neural networks-based policy
for stochastic scheduling scenarios. Our main purpose is to
develop a scalable, non-parametric RL method for dynamic
scheduling in stochastic resource optimization that outper-
forms prior work.

Problem Overview
Our research focuses on task scheduling for stochastic re-
source optimization, with application to failure-predictive
aircraft maintenance. In a stochastic resource-constrained
environment, both the resource allocation task and the out-
come may be affected by latent stochastic processes (e.g., a
plane may break randomly; the maintenance duration is non-
deterministic). The scheduler must dynamically allocate re-
sources to maximize application-specific objectives, given
observations from the environment.

Aircraft Maintenance Environment
In consultation with aerospace industry partners along with
their real-world experience on modeling approach for air-
craft maintenance data, we develop a virtual predictive-
maintenance scheduling environment for a heterogeneous
fleet of aircraft, which we call AirME, as shown in Figure 1.
In AirME, the stochasticity comes from the stochastic nature
of aircraft maintenance work and the uncertainty of poten-
tial components failure that greatly influences maintenance
costs. The AirME codebase and the supplementary metarials
have been made publicly available2.

An AirME instance consists of Np planes, denoted as
{pi}, and Nc maintenance crews, denoted as {cj}. We con-
sider a heterogeneous fleet of aircraft including fixed-wing
aircraft and helicopters and a homogeneous team of mainte-
nance crews. Each airplane, pi, has a set of observable pa-
rameters, {oik} such as operating time, total number of take-
offs, and engine status. A plane, pi, is associated with a re-
peating maintenance task, mi, a probabilistic failure model,
Pi(break|usage), and a repeating flying operation fi, all af-
fecting the plane’s status during simulation. Each crew can
be assigned a maintenance job, resulting in the crew becom-
ing unavailable for further repairs until the current repair is
complete. A maintenance decision, d, in AirME is speci-
fied by a 2-tuple <pi, cj>, consisting of an assignment of
cj to perform a specific maintenance operation (preemptive
or otherwise) on pi, starting at current time step.

AirME utilizes an hour-based time system and proceeds
through the simulation in discrete time steps. At the begin-
ning of each hour, the environment receives maintenance de-
cisions from a scheduler and updates the status of planes,

2https://github.com/CORE-Robotics-Lab/AirME

crews and associated maintenance tasks and flying opera-
tions. Each plane’s failure model is called to sample poten-
tial failures of its components. Then, AirME collects costs
from all running maintenance tasks and hourly income from
operating planes. Before stepping to the next hour, AirME
releases completed maintenance tasks and flying operations.

Each aircraft, pi, has Ki number of components/parts de-
pending on its type (i.e., airliner or helicopter). According
to the MSG-3 document (ATA 2007), failure refers to the
inability of an item to perform within previously specified
limits. For each component, its probability of failure is mod-
eled using the Weibull distribution as a function of aircraft
usage, such as flight hours or number of landings/takeoffs, as
shown in Equation 1, where x is the usage input, k > 0 is
the shape parameter and λ > 0 is the scale parameter. k and
λ are randomly selected but hold constant across the same
plane type.

p(x;λ, k) =
k

λ

(x
λ

)k−1
e−(x/λ)k , x ≥ 0, (1)

A plane is grounded and changed to broken status when
failure happens for at least one of its components. As a re-
sult, the plane failure model becomes a hybrid probabilis-
tic model that jointly considers different plane parameters.
Hyper-parameters of the failure model is not accessible to
scheduling policies and instead must be inferred. Thus, Het-
GPO must implicitly learn a representation of this process in
order to inform its decision-making policy.

Each maintenance task is modeled as a stochastic process
in which both the duration of the maintenance task and its
cost are generated on-the-fly at the time when a crew is as-
signed to a plane. The duration of a maintenance task con-
sists of a universal component drawn from a uniform distri-
bution and a plane-specific part based on the plane’s opera-
tion parameters. If one of the plane’s subsystems is broken
before a preemptive repair is performed, AirME labels the
task as corrective maintenance and additional penalty time
is added to its duration. The cost of a maintenance task in-
cludes: 1) a one-time, fixed cost proportional to the plane’s
hourly income; 2) the cost of labor proportional to mainte-
nance time; 3) additional cost if part failure happens.

AirME assumes that each aircraft returns to the airbase
where maintenance can be conducted after each operation.
At the start of each time point, for every grounded avail-
able plane, the environment samples whether the plane will
be used for an operation based upon a given plane type-
specific usage rate. If so, the operation is enabled with a
randomly sampled duration for this plane to execute. Dif-
ferent planes earn different hourly income, stored as their
parameters, when flying.

Scheduling Objectives While a common objective for
maintenance scheduling is maximizing the overall profit,
other objectives exist to serve different needs. In AirME, we
consider three objectives. O1: overall profit considering both
hourly income and maintenance cost. O2: revenue only, sim-
ilar to a situation where maintenance is provided at a fixed-
price contract by a third-party. O3: fleet availability, a com-
mon objective in applications involving operation readiness
and humanitarian crises (Cho 2011).
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POMDP Formulation
We formulate failure-predictive scheduling in AirME as a
partially observable Markov decision process (POMDP) us-
ing a seven-tuple <S,A, T,R,Ω, O, γ>below:
• States: The problem state S is a joint state consisting

states of all planes and crews, plus the system hyper-
parameters used in simulating flying operations and
maintenance tasks.

• Actions: Action at time t is denoted as a collection of
maintenance decisions, Ut = {d1, d2, ..., dn}. Action
space in AirME is flexible as a scheduler may issue as
many maintenance decisions as wanted for one time step.

• Transitions: T corresponds to executing the action in
AirME and proceed to next time step.

• Rewards: Rt is set to the same value as the scheduling
objective a user wants to maximize.

• Observation: Ω contains {oik} of all planes. Addition-
ally, it includes the observable status of all crews, current
progress of flying operations and maintenance tasks.

• Observation Functions: O is handled by AirME to update
the observations based on problem state after taking the
action.

• Discount factor, γ.

Stochastic Scheduling with Graphs
We develop heterogenous graph representation of the
scheduling environment and propose a novel heterogeneous
graph layer that learns per-edge-type message passing and
per-node-type feature reduction mechanisms on this graph.
We directly build our scheduler policy over it to obtain a
fully graph convolutional structure that are nonoparametric
on problems sizes and dynamic action space, and are end-
to-end trainable. Our approach is not restricted to AirME
and is capable of modeling the heterogeneity among entities
and their interaction in most resource optimization environ-
ments (e.g., nurse-patient scheduling in health care; coordi-
nating mixed human robot teams in manufacturing/assembly
line). In this section, we first describe how the scheduling
policy network operates under the composite, dynamic ac-
tion space. Next, we explain each component of the hetero-
geneous graph constructed at a given time step. Finally, we
detail the computation flow within the building block layer
used to assemble a policy network of arbitrary depth.

Scheduling Policy Network
We denote the policy learned by our scheduling policy net-
work as πθ(u|o), with θ representing the parameters of the
heterogeneous graph neural network. In AirME, an action
takes the form of a collection of maintenance decisions,
ut = {d1, d2, ..., dn}, with n varying from 0 (no mainte-
nance scheduled) to Navail (every available crew is assigned
a plane). To handle this flexible action space, we reformulate
ut as an ordered sequence of scheduling decisions, where a
latter decision (e.g., di) is conditioned on a former one (e.g.,
di−1). Then, the policy can be factorized as Equation 2.

pθ(ut|ot) =
n∏

i=1

pθ(di|ot, d1:i−1) (2)

The scheduling policy network recursively computes the
conditional probability, pθ(di|ot, d1:i−1), for sampling a
maintenance decision. The heterogenous graph is modified
after every maintenance decision, before being used for
computing the next decision. At the end, the network col-
lects all the decisions and sends to AirME for execution.

We test different schemes for determining n, the num-
ber of total decisions in ut, in the decision generation block
shown in Figure 1. Scheme #1) Full: For every crew avail-
able at t, the policy assigns a plane to it to conduct main-
tenance. We include a placeholder plane with ID 0, when
picked, denoting “no-op” for the assigned crew. Scheme #2)
Skip: While the policy still recursively assigns planes to
available crews as in Full, plane 0 now functions as a “skip”
token. Picking plane 0 means that the policy does not wish
to schedule further maintenance tasks and wants to step into
t + 1. In both variants, plane 0 allows the policy to learn
to balance between spending current resources and reserv-
ing for future needs, which is an important challenge to rea-
son about in such scheduling problems. Scheme #3) Sin-
gle: During training, we restrict the policy to only issue one
scheduling decision in any time step, i.e., π(u|o) = π(d|o).
During testing, multi-decision actions are allowed by repeat-
edly sampling from the same distribution, pθ(d|ot) for every
available crew. While sacrificing some performance, Single
only needs one forward pass over the network and is thus
more computationally efficient.

Heterogeneous Graph Representation
When developing a heterogeneous graph representation for a
given stochastic resource optimmization problem, our com-
putational target is to model entities in the environment (i.e.,
planes, crews) and RL components (i.e., state, decisions) in
the same graph to enable joint learning the problem repre-
sentation and the policy.

To begin with, we directly model each entity class
in the resource optimization problem as a unique
node type and their interactions as directed edges to
build a heterogeneous graph. We use a three-tuple,
<srcName, edgeName, dstName>, to specify the edge
type/relation that connects two nodes (from source to des-
tination). In AirME, this leads to two node types: the
plane nodes and crew nodes. If a crew is conducting
maintenance work for a plane, two types of edges are
established between them: <crew, reparing, plane> and
<plane, repaired by, crew>. The observable parameters
of each entity are used as its input node features.

Next, a state summary node is added and is connected
by all the task nodes and agent nodes, with edge types
<plane, in, state>, <crew, in, state>, respectively. The
addition of state node enables the policy network to explic-
itly learn a high-level global embedding for estimating the
problem state regardless of the problem scale. The initial in-
put features of the state node are the meta-data defining the
problem (e.g., the type and number of each aircraft).

To obtain an end-to-end trainable, graph-based policy,
we augment the heterogeneous graph by introducing de-
cision value nodes to allow the policy to handle varying
number of scheduling choices. Each scheduling decision is
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Figure 2: Metagraph of the heterogeneous graph built given
an environment state in AirME.

evaluated by a decision value node that is connected with
the state node and associated entity nodes (e.g., the cor-
responding plane and crew in a maintenance task), using
edge types <state, to, decision>, <plane, to, decision>,
and <crew, to, decision>, respectively. The initial feature
of a decision node is set to 0. As shown in Figure 1, after the
last heterogeneous graph layer, the scheduling policy net-
work performs a softmax operation over all decision value
nodes to obtain a probability distribution for picking each
decision. As AirME involves a homogeneous team of main-
tenance crews, we simplify the graph by removing edges
from crew nodes to decision nodes. We leave scheduling
with heterogeneous crews as future work.

The metagraph for HetGPO applied to AirME is shown
in Figure 2, which summarizes all the node types and edge
types. For all nodes, self-loops are added so that their
own features from previous layers are considered in current
layer’s computation.

Computation Flow of Graph Layers
We propose and implement a novel heterogeneous graph
layer that operates on the heterogeneous graph structure and
serves as the building block of our scheduling policy net-
work. The feature update process in a heterogeneous graph
layer is conducted in two steps: 1) per-edge-type message
passing and then 2) per-node-type feature reduction.

During message passing, each edge type uses a distinct
weight matrix, WedgeName ∈ RD×S , to process the input
feature from the source node, Nsrc, and sends the compu-
tation result to the destination node, Ndst. S is the input
feature dimension of Nsrc, and D is the output feature di-
mension of Ndst. In the case that several edge types share
names, we use WsrcName,edgeName to distinguish between
weight matrices.

Feature reduction is performed for each node type by ag-
gregating received messages to compute a node’s output fea-
tures. The feature update formulas of different node types

are listed in equations 3-6, where σ() represents the ReLU
nonlinearity, and NedgeType(s) is the set of incoming neigh-
bors of the state node s along the specified edge type.

Plane h⃗′
p = σ

(
Wplane,self h⃗p +Wrepairingh⃗c

)
(3)

Crew h⃗′
c = σ

(
Wrepaired byh⃗p +Wcrew,self h⃗c

)
(4)

State h⃗′
s = σ

( ∑
p∈Nplane,in(s)

αplane,in
s,p Wplane,inh⃗p

+
∑

c∈Ncrew,in(s)

αcrew,in
s,c Wcrew,inh⃗c

+Wstate,self h⃗s

)
(5)

Decision h⃗′
d = σ

(
Wplane,toh⃗p +Wstate,toh⃗s

+Wdecision,self h⃗d

)
(6)

When computing output features of state summary node
using equation 5, we implement attention mechanisms
adapted from (Veličković et al. 2018) to weigh incoming
messages for each edge type in a feature-dependent and
structure-free manner. The per-edge-type attention coeffi-
cient, αedgeName

s,i , is calculated based on source node fea-
tures and destination node features using Equation 7, where
a⃗TedgeName is the learnable weights, || is the concatenation
operation, and σ′() is the LeakyReLU. The softmax func-
tion is used to normalize the coefficients across all choices
of i.

αedgeName
s,i = softmaxi

(
σ′
(
a⃗TedgeName[

Wstate,self h⃗s||WedgeNameh⃗i

] ))
(7)

To stabilize the learning process of self-attention, we utilize
the multi-head mechanism that has been shown beneficial in
homogeneous graphs (Veličković et al. 2018), adapting it to
fit the heterogeneous case. We use K independent hetero-
geneous graph (sub-)layers to compute node features in par-
allel and then merge the results as the multi-headed output
either by concatenation or by averaging.

By stacking several heterogeneous graph layers sequen-
tially (i.e., output from previous layer is directly used as in-
put to the next layer), we construct the scheduling policy net-
work that utilizes multi-layer structure to extract high-level
embeddings of each node as shown in Figure 1. Note that
all graph layers operate on the same heterogeneous graph
built on current observation and share the same computa-
tion flow. However, the weight matrices (e.g., Wreparing ,
Wrepaired by , Wplane,in) differ with each layer).

Stochastic Policy Learning Methods
Our scheduling policy network is end-to-end trainable via
Policy Gradient methods that seek to directly optimize the
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Algorithm 1: HetGPO Training
Input: Number of training epochs K, Number of

episodes per epoch N , learning rate, η,
number of gradient updates per epoch Niter,
episode length parameters:
Tmin, Tstep, Trange

Output: Trained policy πθ

1 Initialize policy network parameters θ0
2 for t = 1 to K do
3 Sample episode length T ∼

Uniform(Tmin, Tmin + Trange)
4 Sample a random environment instance, AirMEk

5 for i = 1 to N do
6 Reset AirMEk to t = 0
7 for t = 0 to T − 1 do
8 Get observation oit from AirMEk

9 Build heterogeneous graph and input
node features

10 Sample ut = {d1, d2, ..., dn} from πθ

11 Step through AirMEk and get
intermediate reward rit

12 Store {(oit, ui
t, r

i
t)} to trajectory buffer

13 if broken planes ≥ 80% then
14 Terminate current episode and

zero-pad future rewards
15 end
16 end
17 end
18 Compute rewards-to-go: Ri

t =
∑T

t′=t γ
t′−trit′

19 Compute advantage estimates:
Ai

t = Ri
t − 1

N

∑N
i′=1 R

i′

t

20 for j = 1 to Niter do
21 Compute the clipped surrogate objective L(θ)

using Equation 7
22 Perform stochastic gradient ascent for ∇L(θ)

using Adam optimizer with learning rate η
23 end
24 if Tmin ≤ Tmax then
25 Tmin = Tmin + Tstep

26 end
27 end

network’s parameters based on rewards received from the
environment. We develop our heterogeneous graph-based
policy learning framework, which we call HetGPO, from
Proximal Policy Optimization (PPO) (Schulman et al. 2017)
and make several adaptations for better variance reduction.
In particular, we optimize the clipped surrogate objective
shown in Equation 8, where rt(θ) denote the probability ra-
tio between current policy and old policy on collected rollout
data, rt(θ) =

πθ(u|o)
πθold

(u|o) , At is the estimated advantage term,
and ϵ is the clipping parameter.

L(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At] (8)

In Equation 8, the advantage term, At is estimated by sub-
tracting a “baseline” from the total future reward (or “re-
turn”). PPO and Actor-Critic methods typically utilze a
learned state-based value function as such baselinses. How-
ever, in a stochastic environment, such as AirME, learning
a helpful value function is non-trivial. This difficulty is due
to the fact that the state dynamics and rewards are closely
affected by an exogenous, random process (e.g., plane’s fail-
ure model). Thus, the state alone provides limited informa-
tion for predicting future expected return, resulting in high
variance when learning a state-based value function. Instead,
we choose to use a step-based baseline (Mao et al. 2019) as
a more accessible and efficient alternative. Specifically, dur-
ing gradient estimation, the baseline value being subtracted
is set as the average of the return values, where the average
is taken at the same time step across all training episodes.

We present the pseudocode for HetGPO training in Algo-
rithm 1. Lines 3-17 details the process of rollout data col-
lection on AirME instances generated on-the-fly. Line 6 en-
sures the same randomly-initialized environment instance is
used by all episodes within one training epoch for further
variance reduction. Early termination based on percentage
of plane failures are enabled in lines 13-15 to penalize poor
explorations. In line 19, a step-based baseline is computed
by taking the average of rewards-to-go on all episodes at the
same step. Lines 20-23 shows the gradient update procedure
by maximizing L(θ), which requires recomputing the action
probability using updated policy network at each iteration.
Lines 24-26 implements a curriculum-based procedure in
which initial training episodes are shorter, and the duration
of episodes gradually increases, to avoid ineffective learning
at the initial training phase.

Generalizability of HetGPO We develop HetGPO with
the mindset of a general, graph-based policy learning algo-
rithm to solve a broader class of stochastic resource opti-
mization problems that are not restricted to aircraft main-
tenance scheduling. Both the heterogeneous graph formu-
lation techniques (e.g., the useage of “state summary” and
“decision value” nodes) and the HetGPO training process
can be used in similar stochastic scheduling domains as they
require little hand-engineering. In Supplementary, we pro-
vide details on how to use our framework on similar domains
such as patient admission scheduling in health care (Gombo-
lay et al. 2018).

Experimental Results
In this section, we evaluate the utility of HetGPO against
baselines under various application needs in AirME.

Baseline Methods
We benchmark HetGPO against a set of relevant baselines
(i.e., heuristics) commonly employed for scheduling mainte-
nance operations as well as modern machine learning-based
approaches we adapt to the task. Further details for all base-
lines are provided in Supplementary.

Heuristics We employ the following heuristics:
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Methods Small Medium Large
M1 M2 (%) M1 M2 (%) M1 M2 (%)

Random 0.522 ± 0.025 -2.87 ± 5.65 0.532 ± 0.021 -2.65 ± 4.22 0.533 ± 0.016 -2.23 ± 3.51
Corrective 0.539 ± 0.023 0.0 ± 0.0 0.547 ± 0.016 0.0 ± 0.0 0.546 ± 0.016 0.0 ± 0.0

Condition-based 0.656 ± 0.050 21.7 ± 6.41 0.661 ± 0.041 20.8 ± 5.87 0.648 ± 0.051 18.6 ± 7.03
Periodic 0.599 ± 0.051 11.1 ± 6.96 0.598 ± 0.047 9.38 ± 7.00 0.587 ± 0.048 7.52 ± 6.83

Model-based 0.669 ± 0.052 24.0 ± 6.99 0.671 ± 0.044 22.8 ± 6.45 0.658 ± 0.054 20.5 ± 7.68
DeepRM 0.533 ± 0.015 -0.88 ± 2.57 0.538 ± 0.011 -1.47 ± 1.77 0.539 ± 0.013 -1.11 ± 0.97
Decima 0.651 ± 0.021 21.1 ± 6.42 0.660 ± 0.017 20.9 ± 4.49 0.663 ± 0.014 21.6 ± 4.51

HetGPO-Single 0.680 ± 0.012 26.4 ± 4.32 0.676 ± 0.011 23.7 ± 3.17 0.666 ± 0.011 22.3 ± 3.77
HetGPO-Skip 0.695 ± 0.010 29.1 ± 4.09 0.697 ± 0.009 27.5 ± 2.70 0.695 ± 0.008 27.5 ± 2.72
HetGPO-Full 0.693 ± 0.011 28.8 ± 4.01 0.694 ± 0.009 27.1 ± 2.62 0.693 ± 0.008 27.1 ± 2.68

Table 1: Evaluation results on O1: profit.

Methods Small Medium Large
M1 M2 (%) M1 M2 (%) M1 M2 (%)

Random 0.611 ± 0.016 -5.63 ± 3.85 0.618 ± 0.014 -5.74 ± 2.87 0.618 ± 0.012 -5.68 ± 2.41
Corrective 0.648 ± 0.022 0.0 ± 0.0 0.656 ± 0.015 0.0 ± 0.0 0.655 ± 0.018 0.0 ± 0.0

Condition-based 0.724 ± 0.035 11.6 ± 2.71 0.727 ± 0.030 10.7 ± 2.61 0.718 ± 0.036 9.45 ± 2.87
Periodic 0.675 ± 0.038 4.06 ± 3.47 0.677 ± 0.033 3.05 ± 3.39 0.669 ± 0.035 2.05 ± 3.17

Model-based 0.728 ± 0.037 12.3 ± 2.91 0.732 ± 0.030 11.5 ± 2.66 0.723 ± 0.037 10.3 ± 2.98
DeepRM 0.625 ± 0.014 -3.54 ± 1.62 0.626 ± 0.011 -4.66 ± 1.38 0.622 ± 0.012 -5.02 ± 1.24
Decima 0.725 ± 0.011 11.9 ± 4.57 0.730 ± 0.010 11.3 ± 3.17 0.732 ± 0.007 11.8 ± 3.55

HetGPO-Single 0.736 ± 0.008 13.7 ± 3.72 0.735 ± 0.008 12.0 ± 2.67 0.730 ± 0.007 11.5 ± 3.24
HetGPO-Skip 0.747 ± 0.008 15.3 ± 3.43 0.748 ± 0.007 14.0 ± 2.29 0.747 ± 0.006 14.0 ± 2.72
HetGPO-Full 0.747±0.008 15.4 ± 3.41 0.749 ± 0.006 14.1 ± 2.26 0.747 ± 0.006 14.1 ± 2.73

Table 2: Evaluation results on O2: total revenue. Note that for each 1% of improvement for O2, we would get a $0.6578 Billion
revenue increase. e.g., for Large-O2, HetGPO-Full would achieve a $9.27 Billion increase in revenue.

• Random Scheduler: assigns each available crew a ran-
dom plane to start maintenance work.

• Corrective Scheduler (Stenström et al. 2016): sched-
ules corrective maintenance tasks to address component
failures that have occurred.

• Condition-based Scheduler (Yam et al. 2001):
Condition-based maintenance (CBM) has been shown
to improve system efficiency by reducing the number of
needed corrective maintenance tasks. Besides addressing
all planes with component failures, the condition-based
scheduler ranks the non-failure planes into a priority
queue and assigns the rest of crew for conducting CBM
for them. A threshold, βc, is set for planes without a
failure to be eligible to enter the priority queue.

• Periodic Scheduler (Ahmad and Kamaruddin 2012):
schedules regularly-occurring maintenance tasks using a
prescribed time interval, βp. After βp amount of time has
passed, the periodic scheduler assign maintenance tasks
to available crews.

Model-based Planning To construct a model-based
scheduler, we augment the condition-based scheduler by
giving it access to the plane failure model used in the envi-
ronment and plan according to the actual failure probability.

Machine Learning-based Methods We consider two
methods in prior works for resource scheduling and adapt

them to AirME:

• DeepRM (Mao et al. 2016): DeepRM represents the cur-
rent allocation of resources as fix-sized tensors and uses
feed-forward neural network to learn a policy of fixed
output dimension.

• Decima (Mao et al. 2019): Decima utilizes a scalable ar-
chitecture that combines a bipartite graph neural network
to process jobs/tasks and a separate policy network that
makes decisions triggered by scheduling events.

Evaluation Settings
Evaluation Dataset Environment instances with various
problem sizes and random initialization are generated and
saved as test dataset. Three environment scales are consid-
ered: 1) Small: the ranges of fixed-wing aircraft, helicopters
and crews are chosen from the ranges [16, 24], [8, 12], and
[6, 8], respectively, using uniform distributions. 2) Medium:
the corresponding ranges are [32, 48], [16, 24], and [12, 16].
3) Large: the corresponding ranges are [64, 96], [32, 48], and
[24, 32]. For each testing environment instance, we evalu-
ate a method for ten episodes and record the overall per-
formance. Each evaluation episode starts by loading the test
environment instance and runs the scheduler for a fix length
of duration (30 days used).

Evaluation Metrics For each objective discussed in Sec-
tion , we use two evaluation metrics. M1: normalized ob-
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Methods Small Medium Large
M1 M2 (%) M1 M2 (%) M1 M2 (%)

Random 0.699 ± 0.015 -2.97 ± 4.27 0.706 ± 0.012 -3.26 ± 3.43 0.705 ± 0.012 -3.00 ± 3.39
Corrective 0.722 ± 0.033 0.0 ± 0.0 0.730 ± 0.027 0.0 ± 0.0 0.728 ± 0.032 0.0 ± 0.0

Condition-based 0.810 ± 0.057 12.0 ± 4.18 0.812 ± 0.052 11.1 ± 3.82 0.796 ± 0.065 9.16 ± 4.68
Periodic 0.747 ± 0.080 3.19 ± 7.20 0.743 ± 0.074 1.48 ± 7.05 0.725 ± 0.081 -0.67 ± 7.33

Model-based 0.814 ± 0.058 12.6 ± 4.27 0.817 ± 0.051 11.8 ± 3.76 0.803 ± 0.065 10.0 ± 4.63
DeepRM 0.708 ± 0.017 -1.82 ± 2.30 0.709 ± 0.013 -2.86 ± 2.45 0.706 ± 0.013 -2.90 ± 3.22
Decima 0.748 ± 0.031 3.98 ± 8.85 0.755 ± 0.025 3.69 ± 7.10 0.760 ± 0.022 4.76 ± 7.63

HetGPO-Single 0.842 ± 0.007 16.8± 4.84 0.840 ± 0.005 15.2 ± 3.99 0.837 ± 0.004 15.1 ± 4.94
HetGPO-Skip 0.847 ± 0.007 17.6 ± 4.89 0.848 ± 0.005 16.3 ± 3.99 0.847 ± 0.005 16.6 ± 4.86
HetGPO-Full 0.849 ± 0.007 17.7 ± 4.90 0.849 ± 0.005 16.5 ± 3.98 0.849 ± 0.005 16.8 ± 4.84

Table 3: Evaluation results on O3: fleet availability.

jective value. Normalization is performed w.r.t the objective
value obtained when assuming all planes are flying without
failure; M2: % improvement over the Corrective Scheduler.

Model Details We implement HetGPO3 using PyTorch
(Paszke et al. 2019) and Deep Graph Library (Wang et al.
2020). The policy network used in training/testing is con-
structed by stacking three multi-head heterogeneous graph
layers (the first two use concatenation, and the last one uses
averaging). The feature dimension of hidden layers = 32,
and the number of heads = 4. We set γ = 0.99, and used
Adam optimizer with a learning rate of 1e-3. All variants
of HetGPO are trained with small environment instances
generated on-the-fly. In Algorithm 1, we set K = 2000,
N = 8, η = 10−3, Niter = 3, Tmin = 50, Tstep = 0.8,
Tmax = 200, Tmin = 30. The clipping parameter ϵ in Equa-
tion 8 is set to 0.2. Models are trained and evaluated on a
Nvidia A40 Data Center GPU and a AMD EPYC 7452 32-
Core CPU.

Evaluation Results
We present the evaluation results under three objectives
in Tables 1-3, where both mean and standard deviation
are listed. The corrective scheduler is used as the baseline
method when computing M2.

HetGPO outperforms all baselines across all objectives.
HetGPO-Skip and HetGPO-Full performs similarly, with
HetGPO-Single achieving slightly worse. HetGPO-Skip and
HetGPO-Full’s performance remains consistent from small
scale to large scale, while a performance drop is observed
for HetGPO-Single on large scale. This is due to the differ-
ence in training and testing for HetGPO-Single, which trades
some performance for better computation efficiency.

The biggest improvement in M2 of HetGPO is observed
in O1, up to 29.1%. HetGPO outperforms the condition-
based scheduler, which is the best performing heuristic
method, by ∼ 8% in O1, ∼ 4% in O2, and ∼ 6% in O3. The
condition-based scheduler benefits from the priority queue
as a mechanism to estimate the likelihood of plane failures.
Both the condition-based scheduler and the periodic sched-
uler rely on hand-picked threshold values, and their perfor-
mance drops quickly if βc or βp deviates from optimal.

3https://github.com/CORE-Robotics-Lab/AirME

With access to the plane failure model, the model-based
scheduler improves over condition-based scheduler, but is
still outperformed by HetGPO. As we have heterogeneous
fleet and stochastic maintenance task, it is not trivial to de-
sign effective heuristics even with access to truth failure
sampling probability. On the other hand, thanks to the het-
erogeneous graph formulation, HetGPO is capable of auto-
matically learning to implicitly reason about the plane fail-
ure and maintenance specifics toward optimizing schedul-
ing objectives, without the help of expert domain knowl-
edge. Note that HetGPO can be complementary to sym-
bolic and model-based methods, and we leave it as future
work to explore novel mechanisms for combining HetGPO
with model-based planning techniques towards further per-
formance gain.

DeepRM fails to learn useful scheduling policies and the
performance is close to the random scheduler. This shows
that the fix-sized tensor representation DeepRM uses is inef-
ficient in modeling heterogeneous scheduling environments.
On the other hand, Decima uses graph neural networks to
learn from the structure information with the help of a global
summary node. Decima is able to learn scheduling policies
that are comparable with the condition-based scheduler un-
der O1 and O2. However, the graph structure in Decima
only allows for one round of message passing among its
nodes, and the summary node does not utilize attention. The
limitation in model expressiveness makes Decima perform
worse than HetGPO. In addition to achieving superior per-
formance across problem sizes and various objective func-
tions, HetGPO policies are more robust and consistent than
other methods, with M1 standard deviation up to 5x smaller
than heuristics and 2x smaller than Decima.

Ablation Studies
Here, we investigate the effectiveness of step-based base-
lines over standard PPO training with a state-based value
function. We add a critic head to process the output node fea-
ture of state node for value function prediction. We include
the amount of time left in an episode as separate input to
the critic head during training, because the time information
affects value estimation. Figure 3 shows the learning curves
of different baseline choices on 4 random seeds under O1,
using Single variant. Due to the stochasticity from both the
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Figure 3: HetGPO-Single training on O1 with a step-based
baseline vs. state-based value function. Numbers in the leg-
end denote the random seeds used.

maintenance work and the plane failure process, learning a
state-based value function made the policy learning nosier
than using step-based baselines. As shown in Figure 3, two
seeds failed to learn a helpful value function, in which the
policy performance decreased as training continued. When
a value function was learned, the policy performance was
still inferior than policies trained with step-based baselines.

Conclusion
Inspired by recent advances in leveraging deep learning to
solve operations research problems, we propose an innova-
tive design of heterogeneous graph neural networks-based
policy for automatically learning the decision-making for
failure-predictive maintenance scheduling. We directly build
the scheduling policy into a heterogeneous graph representa-
tion of the environment to obtain a fully convolutional struc-
ture, providing a computationally lightweight and nonpara-
metric means to perform dynamic scheduling. Furthermore,
we develop an RL-based policy optimization procedure,
called HetGPO, to enable robust learning in highly stochas-
tic environments. AirME, a virtual predictive-maintenance
environment for a heterogeneous fleet of aircraft, is designed
and implemented as a testbed. Experimental results across
various problem scales and objective functions (e.g., profit-
and availability-based) show the effectiveness of our pro-
posed framework over conventional, hand-crafted heuristics
and baseline learning methods.
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