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Abstract

In the past few decades, much research has been conducted
on the design of cache replacement policies. Prior work fre-
quently relies on manually-engineered heuristics to capture
the most common cache access patterns, or predict the reuse
distance and try to identify the blocks that are either cache-
friendly or cache-averse. Researchers are now applying re-
cent advances in machine learning to guide cache replace-
ment policy, augmenting or replacing traditional heuristics
and data structures. However, most existing approaches de-
pend on the certain environment which restricted their appli-
cation, e.g, most of the approaches only consider the on-chip
cache consisting of program counters (PCs). Moreover, those
approaches with attractive hit rates are usually unable to deal
with modern irregular workloads, due to the limited feature
used. In contrast, we propose a pervasive cache replacement
framework to automatically learn the relationship between
the probability distribution of different replacement policies
and workload distribution by using deep reinforcement learn-
ing. We train an end-to-end cache replacement policy only
on the past requested address through two simple and stable
cache replacement policies. Furthermore, the overall frame-
work can be easily plugged into any scenario that requires
cache. Our simulation results on 8 production storage traces
run against 3 different cache configurations confirm that the
proposed cache replacement policy is effective and outper-
forms several state-of-the-art approaches.

Introduction
The cache replacement policy is to study the selection of
blocks in the cache to replace under certain conditions. De-
signing a high-performance cache replacement policy suit-
able for various scenarios is still a challenging and time-
consuming task. In most cases, the cache size is much
smaller than the content of the workload, and limited space
will greatly affect the hit rate of the cache. Cidon et al.
(2016) show that improving cache hit rates of web-scale ap-
plications by just 1% can decrease total latency by as much
as 35%.

As two classic cache replacement policies, LRU (Least
Recently Used) and LFU (Least Frequently Used) are
widely used because of their simplicity and stability. LRU
policy and its variants base their replacement decision on
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the recency of references, while LFU policy and its variants
base their decision on the frequency of references. To inherit
the benefits of the two policies and allow a flexible trade-
off between recency and frequency of references in basing
the replacement decision, LRFU (Least Recently/Frequently
Used) proposed by Lee et al. (2001) establishes a unified
analysis equation for the two policies and adjusts the param-
eters in the equation so that LRFU can determine the ratio of
recency and frequency of references as needed. Megiddo and
Modha (2003) propose a self-adjusting, low-overhead, and
efficient cache replacement policy ARC (Adaptive Replace-
ment Cache). By simply dividing the access frequency into
single and multiple times, ARC realizes a rough combina-
tion of recency and frequency. Park and Park (2017) propose
a policy named FRD (frequency and reuse distance). FRD
utilizes both the access frequency and reuse distance of a
block to determine which blocks should remain in the cache.
Recently, the machine learning (ML) research trend expands
to the system performance optimization field, most followed
the idea of intuitions and heuristics. Inspired by ensemble
learning, Ari et al. (2002) use LRU, LFU, and FIFO (First
in First Out) cache replacement policies to vote the blocks to
be replaced in the cache, and adjust their weights according
to the hit rate of each policy. They call this method ACME
(Adaptive Caching using Multiple Experts). ACME presents
adaptive caching schemes applicable to single and multiple
processor systems, and it will be useful for all distributed
Web, file system, database, and content delivery services.
Among the latest work, Rodriguez et al. (2021) analyse the
relationship between recency and frequency, and use ML to
achieve optimal scheduling of cache replacement policies.
However, these methods use simple heuristics and ML meth-
ods, so it is difficult to consider hidden relationship between
the cache replacement policies and the workloads, which
leads to unsatisfactory performance on complex workloads.

In this paper, we explore the utility of deep reinforce-
ment learning (DRL) in cache replacement policies. Most
of the previous research focuses on the characteristics of
each individual block in the cache and uses heuristic or ML
methods to design cache replacement policies. In contrast,
our work is the first to propose cache replacement by learn-
ing the relationship between the workloads distribution and
cache replacement policies distribution (include LRU and
LFU), which allows us to directly train a replacement pol-
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icy end-to-end over much more expressive policy features,
thus we name this policy Catcher1. This work focuses on
single-level cache replacement and does not consider other
mechanisms such as cache prefetching or admission policy.

In summary, our work has the following contributions:
• We propose a general end-to-end cache replacement pol-

icy, which uses DRL to model the distribution of re-
quests, for exploring the relationship between the dif-
ferent cache replacement policies and data distribution,
which is then proved to be quite useful on cache replace-
ment problem. To our knowledge, this is the first work
to study the relationship between the request distribution
and cache replacement policy by DRL.

• We design an effective reward function in reinforcement
learning (RL), which enables an end-to-end policy op-
timization system, accelerates the convergence speed of
our model, and improves the effectiveness of cache re-
placement. In addition, we redefine the state in Catcher,
so that the model can fully learn the distribution char-
acteristics under multi-user conditions, and at the same
time ensure that the states in the experience buffer of
DRL are independent and identically distributed (i.i.d.).

• By extensive evaluation, we show that Catcher outper-
forms prior state-of-the-art cache replacement policies
over a wide variety of workloads in a range of cache
sizes. More importantly, Catcher would be universally
applicable and can be generalized for different cache sce-
narios.

Related Work
Researchers have proposed ML-based methods for various
fields (Ali, Sulaiman, and Ahmad 2014; Zhou and Xiao
2019; Zhang et al. 2019). Multiple recent work apply ML
techniques to the cache replacement problem. Ali, Sulaiman,
and Ahmad (2014) used well-understood and mature models
such as support vector machine (SVM), naı̈ve Bayes classi-
fier (NB), and decision tree (DT) to predict the next visit
time of the blocks, which determines the location of these
blocks in LRU queue. Jain and Lin (2016) phrased cache re-
placement as a binary classification problem, where the goal
is to predict whether an incoming request is cache-friendly
or cache-averse. Similar work is Shi et al. (2019), which
used a neural network to predict which blocks are suitable
to be kept in the cache. Teran, Wang, and Jiménez (2016)
applied perceptron-learning-based reuse prediction to a re-
placement and bypass optimization, and it shows that cache
management based on perceptron learning more than dou-
bles cache efficiency over LRU policy. In addition, some
work has been focused on Web caching applications, such as
Song et al. (2020), which built three different types of fea-
tures for each block in the Content Distribution Networks
(CDNs), and used a gradient boosting machine (GBM) to
improve the cache hit rate. Rodriguez et al. (2021) dynam-
ically determined which replacement policy is used to evict

1Cats are very sensitive to the environment. We want to design
a cache replacement policy that can perceive changes in data distri-
bution as keenly as cats, and become a catcher who discovers the
distribution of workloads and different cache policies.

a page by learning the patterns from workloads whenever
the eviction operation is triggered. Moreover, Sethumuru-
gan, Yin, and Sartori (2021) proposed a cost-effective cache
replacement policy that learns a last-level cache policy with
hardware implementation.

In recent years, the RL framework has successfully
demonstrated to solve complex problems. Researchers have
proposed RL-based algorithms for various system perfor-
mance optimization tasks like cloud database tuning (Zhang
et al. 2019), networks-on-chips (NoC) arbitration (Yin et al.
2020) and hardware prefetching (Bera et al. 2021).

Even though these ML techniques show encouraging re-
sults than some heuristics in accurately predicting evicted
blocks. However, most memory systems such as processor-
level or block-level systems have limited information be-
yond access addresses. In this paper, we use only the ad-
dress information of block access to achieve the cache re-
placement process. In addition, we pose cache replacement
as a Markov Decision Process (MDP) of data distribution
(state) and multiple replacement policies (action), which is
very different from most previous studies that only focused
on the features of each block in the cache.

Background and Motivation
Recency and Frequency
There are a few important factors (characteristics) of blocks
in the cache that can affect the replacement process includ-
ing recency, frequency, and size, etc. These factors can be in-
corporated into the replacement decision. Moreover, a thor-
ough analysis of these factors could benefit cache replace-
ment, yet obviously challenging. Among these factors, re-
cency and frequency are the most important and commonly
used factors and have become the research hotspots in recent
years. The most representative policy of all recency-based
policies is LRU, and the corresponding frequency-based rep-
resentative policy is LFU. Because every factor that affects
cache has its pros and cons for a particular workload, it is
very interesting to combine LRU and LFU (i.e., a probabil-
ity distribution). Lee et al. (2001) confirm the existence of a
spectrum of policies that subsumes LRU and LFU policies.
Still, while workloads become even more complex, there is
an increasing need for an effective approach to intelligently
manage the cache which satisfies the requirements and goals
under different scenarios by considering the importance of
relevant factors. This motivates us to adopt intelligent poli-
cies in solving cache replacement problems, and we sum-
marize why this paper chooses recency and frequency as the
factors to study the blocks in the cache as follows:

• The representative policies LRU and LFU corresponding
to recency and frequency are relatively simple to imple-
ment and have stable performance.

• Recency and frequency are the key factors for blocks in
the cache, and a reasonable combination can solve all
types of requests (Rodriguez et al. 2021).

• Recency and frequency have good orthogonality, which
is not available in other factors (Lee et al. 2001).
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Workload Distribution
In addition to designing a cache replacement policy, some
studies also focus on analyzing the characteristics of the
workload distribution itself and classifying the original type
of request data from the workload based on the arrival time.
Note that the workload distribution is the same as the dis-
tribution of request data, which is just a different expres-
sion in this paper. Park and Park (2017) classify character-
istics of blocks by combining frequency and reuse distance
and expand the block classification into four classes, includ-
ing FS, FL IS, and IL (FS means frequently accessed, short
reuse distance. Other classes see (Park and Park 2017) in
detail.). Li and Gu (2020) characterize the patterns of these
workloads on a basis of time-series reuse distance trend
and classify these workloads into six patterns like Triangle,
Clouds, and so on. Similar work includes Chakraborttii and
Litz (2020), Rodriguez et al. (2021), etc. These classification
methods further enhance our understanding of workloads
and guide us in combining different replacement policies.
However, most of the classification is just a regular summary
of the workload distribution. With the increasing number
of multi-user or multi-process scenarios and the increasing
complexity of workloads, it is difficult to summarize the dis-
tribution characteristics of workloads by simple classifica-
tion. Such a challenge motivates the need for a more expres-
sive approach that analyzes the workload distribution and
finds their relationship with different replacement policies,
thus making the approach adaptive to different scenarios.

Deep Reinforcement Learning
Modern application scenarios such as the cloud make it dif-
ficult to find the relationship between the replacement pol-
icy and the workload distribution through a simple classifi-
cation. In addition, it is hard to define a clear rule that in-
dicates which replacement policy would be the best choice
for a cache in the face of different workload distributions.
Because RL has the ability to adapt to dynamic changes in
the workload (environment) and handle the non-trivial con-
sequences of chosen policies (actions), it is a good fit for
the problems encountered in this paper. We consider cache
replacement as a decision-making problem for choosing dif-
ferent replacement policies given the corresponding work-
load distribution (Joe and Lau 2020). At the same time, to
describe the differences between different workloads, we
use a neural network (NN) to represent the diverse work-
load distributions. Considering the above advantages of NN
and RL techniques, we are motivated to apply the recency &
frequency factors and workload distribution to learn an auto-
matic cache replacement policy in our framework. We con-
clude the following motivations for using DRL techniques:

• It is difficult to establish a clever mathematical formula to
describe the workload distribution. In contrast, NN seems
to have better expressiveness and flexibility.

• The idea is to achieve the cache replacement by analyz-
ing the relationship between the distribution of request
data and different policies (LRU and LFU). The goal is
to optimize the long-term benefits of the cache (hit rate),
so RL is required to learn the decision-making process.

• It is important to note that the feedback about the quality
of the decision2 made at any given time in cache is de-
layed and not instantaneous. This is very similar to the
characteristics of delayed reward related to RL.

Design
Architectural Overview
Figure 1 shows the workflow of our work, Catcher, consist-
ing of three major parts: Collector, Replacer, and Learner.
The offline part shows the Learner component which is re-
sponsible for training a DRL model with different workload
distributions. The online part shows the Collector compo-
nent which generates the training data for replay buffer and
the Replacer component which makes a replacement deci-
sion based on the probability distribution of policies gener-
ated by the DRL model. In addition, there are some func-
tions, including the reward function, action function, and
feature function, which will be introduced later.

The collector mainly provides the raw training data for the
DRL model through two state windows (SW) and one action
window (AW). The two SW collect the state of adjacent peri-
ods, and the state is the access address at each moment. SWs
obtain the request address vectors ~st and ~st−1 in chronolog-
ical order, where ~st and ~st−1 are adjacent but do not overlap
in time. Meanwhile, AW collects the replacement decisions
from ~st−1 to ~st, including the probability of choosing LRU
(a1) or LFU (a2) policy in case of cache misses and cache
hits (the replacement policy is not selected when the cache
hits (-), but the probability is set to 0.5). The main part of
the learner is the deep deterministic policy gradient (DDPG)
(Lillicrap et al. 2019), which is a policy-based RL method
with continuous input and output. In addition to training the
network, the actor-network in DDPG also needs to output
the probability distribution of the replacement policies based
on the state vector ~st when the cache misses. After receiv-
ing the output of the actor-network, the replacer selects ei-
ther LRU or LFU policy to achieve the cache replacement
according to the probability distribution of the replacement
policies and updates the information recorded by LRU or
LFU policy when the cache hits.

Analysis of Workload Distribution
It is well known that effective cache management requires
a good understanding of I/O workload characteristics. The
analysis of workload distribution is helpful for NN to gather
comprehensive workload characteristics rather than individ-
ual requests. LSTM (Long Short-Term Memory) is widely
used in previous work and also in Catcher, which is designed
to learn long, complex patterns within an address sequence,
such as reuse distance. However, most existing approaches
do not consider the complexity of the workload in the multi-
user scenario. Although we can obtain the PIDs of different
users or processes, and establish a corresponding analysis
model for each user’s (or processe) request, this undoubt-
edly increases the burden on the system. In addition, this

2During cache misses, a cache replacement policy inputs the
currently accessed block and the cache blocks and outputs which
of the blocks in the cache to evict.
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Figure 1: Overview of Catcher.

approach will cause more problems in a short-term multi-
concurrent user scenario. Catcher uses novel time-series
methods to select workload features customized, which en-
sures that Catcher can distinguish the number of interleaved
workloads in a shared storage system.

To make the sequence more stable, Catcher performs the
difference of first order on the raw address sequence. We
use tsfresh3, a third-party package using Python, to rapidly
extract a large number of high-information features auto-
matically. Based on the analysis of the importance of up
to 1576 features by CENSUS4, we select 10 features as
further analyses of complex workloads, which have been
proved to be very effective in calculating the number of dis-
tinct workloads in a multi-workload setting. This includes
change quantiles (includes mean, variance, and standard
deviation), absolute sum of changes, fft coefficient, lem-
pel ziv complexity, count above mean, count below mean,
longest strike above mean, and sum of reoccurring values,
and the description of these features can be found in Christ,
Kempa-Liehr, and Feindt 2017. Having an initial address se-
ries feature facilitates the better representation of the input
address sequence and helps the shared Dense layers to learn
complex distributions effectively from workloads. Note that
our work is the first to propose an analysis of workload dis-
tribution based on the address series features of replacement
policy and has shown promising prediction outcomes.

DDPG for Catcher
DDPG is the combination of DQN (Deep Q Network) and
actor-critic algorithm, and can directly learn the policy. We

3https://tsfresh.readthedocs.io/en/latest/index.html
4https://www.cs.emory.edu/ sche422/Census.pdf
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Figure 2: Neural architecture of Catcher.

overview the basic neural architecture of DDPG in Catcher
as shown in Figure 2, which includes actor-network and
critic-network. The difference between the critic-network
and actor-network is that the input of the critic-network con-
tains action and state, while the output of the actor-network
uses the activation function tanh to bound in [-1, 1]. We for-
mally define the three pillars of our RL-based Catcher: the
state vector, the action, and the reward function.

State Vector. The state vector ~s obtained from the collec-
tor is processed into two parts (Figure 2), one is sent directly
to the LSTM sub-module, and the other is calculated from
the feature function to obtain the features of the address se-
quence. The outputs of the two parts are concatenated and
then fed to the shared Dense layers. In addition, the distribu-
tion of states is not affected by Catcher which does conform
to the i.i.d. hypothesis between samples in the replay buffer,
because the states are independent of our model during the
process of continuous generation.
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Algorithm 1: Catcher training algorithm

1: Randomly initialize critic-network Q(s, a|θQ) and actor-network µ(s|θµ) with weights θQ and θµ in DDPG
2: Initialize target network Q

′
and µ

′
with weights θQ

′

← θQ, θµ
′

← θµ

3: Initialize replay buffer R
4: for step=0 to K do
5: Collect states ~st−1 and ~st from the state windows, collect action at−1 from the action window
6: Calculate reward rt−1 from the reward function based on at−1
7: Store transition (~st, at−1, rt−1, ~st−1) in R
8: if step ≡ 0 (mod 100) then
9: Sample a minibatch of N transitions (~si, ai−1, ri−1, ~si−1) from R

10: Set yi−1 = ri−1 + γQ
′
(~si, µ

′
(~si|θµ

′

)|θQ
′

)

11: Update critic by minimizing the loss: L = 1
N

∑
i−1 (yi−1 −Q(~si−1, ai−1|θQ))

2

12: Update actor by policy gradient:∇θµJ ≈ 1
N

∑
i−1∇aQ(s, a|θQ)|s=~si−1,a=µ(~si−1)

∇θµµ(s|θµ)|~si−1

13: Update the target networks: θQ
′

← τθQ + (1− τ)θQ
′

, θµ
′

← τθµ + (1− τ)θµ
′

14: end if
15: end for

Action. In DDPG, the action a in the replay buffer is the
ratio of LRU policy (PLRU) selected in AW, excluding the
number of cache hits (since PLRU + PLFU = 1 is sat-
isfied, the ratio of LRU policy also reflects the ratio of
LFU policy (PLFU)). If there is no cache miss within AW
at this time, the action is set to 0.5. In order to make the
policy probability of the actor-network output PLRU∼LFU

satisfy PLRU + PLFU = 1, we standardize and normal-
ize the output of the actor-network, that is PLRU∼LFU =
(outputActor + 1)/2 where outputActor represents the out-
put of the actor-network. The replacer in Catcher then uses
PLRU∼LFU to decide which replacement policy to choose
when the cache misses, which avoids the need to predict ev-
ery block in the cache (replacement policy will determine
which block is replaced, Catcher does not need to specify
exactly). Compared with previous studies (Song et al. 2020;
Liu et al. 2020; Shi et al. 2019; Li and Gu 2020), Catcher can
reduce large-scale operations and improve operational effi-
ciency (when there are many blocks in the cache, the compu-
tation overhead and time delay of predicting all blocks will
be huge when each round of requests arrives). The actions
collected by AW in Catcher come from the second half of ~st
and the first half of ~st−1 to reflect the probability distribution
of the replacement policy when the state changes from ~st−1

to ~st. Therefore, the length of AW is consistent with SW.

Reward. The reward steers the agent towards learning a
more optimal replacement policy, so the reward function
must be chosen carefully. A simple method is to use cache
hit (+1) and cache miss (-1) as a reward at the current
time. However, this method is not appropriate for Catcher
because Catcher considers changes in state and action
over time, so Catcher can set the cache hit rate in AW as a
reward over time. But the hit rate is always a non-negative
value, so Catcher cannot get a negative reward. We use
independent LRU and LFU as the baseline replacement
policies to ensure that Catcher can compare with them and
generate a negative reward. However, simply considering
the performance within AW does not guarantee that the
overall hit rate of Catcher is better than other replacement
policies. Based on the above idea, we model the reward
function of Catcher, which not only considers the difference
of performance with the baseline replacement policies at
the current time period but also the whole time (Zhang
et al. 2019). Formally, let r and hit~s1→~s2 denote reward
and hit rate from ~s1 to ~s2. At time t, we calculate the
difference of hit rate ∆ from ~st−1 and the initial ~s0 to
~st respectively. We design the reward function below:

r =

{
((1 + ∆hit~s0→~st)

α − 1) · (| 1 + ∆hit~st−1→~st |)
β

if ∆hit~s0→~st > 0

−((1−∆hit~s0→~st)
α − 1) · (| 1−∆hit~st−1→~st |)

β
if ∆hit~s0→~st ≤ 0

(1)

∆hit =

 ∆hit~s0→~st =
hit~s0→~st (Catcher)−hit~s0→~st (baseline)

hit~s0→~st (baseline)

∆hit~st−1→~st =
hit~st−1→~st (Catcher)−hit~st−1→~st (baseline)

hit~st−1→~st (baseline)

(2)

if hit~s1→~s2(baseline) = 0, then ∆hit = hit~s1→~s2(Catcher)

baseline =

{
LRU if hit~s0→~st(LRU)> hit~s0→~st(LFU) or hit~st−1→~st(LRU)> hit~st−1→~st(LFU)
LFU if hit~s0→~st(LRU)≤ hit~s0→~st(LFU) or hit~st−1→~st(LRU)≤ hit~st−1→~st(LFU)

(3)
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Algorithm 2: cache replacement algorithm

1: for each request block do
2: if cache is hit then
3: Update the parameters related to LRU and LFU in

the cache
4: else
5: Collect state vector ~s from the state window
6: Calculate the output a

′
of actor based on ~s

7: Calculate the possibility PLRU∼LFU from the ac-
tion function based on a

′

8: Generate a random real number rand from 0 to 1
9: if rand ∈ [0, PLRU) then

10: Cache is managed by LRU policy
11: else if rand ∈ [PLRU, 1] then
12: Cache is managed by LFU policy
13: end if
14: end if
15: Update state windows and action window
16: end for

where hyperparameter α controls the impact of the overall
hit rate on r (0 to t), while hyperparameter β controls the
impact of hit rate on r over the current time (t − 1 to t), α,
β ∈ N. Considering that the ultimate goal of Catcher is to
achieve better overall performance, we usually set α > β.

Algorithm 1 shows Catcher’s RL-based training algo-
rithm (Lillicrap et al. 2019), which is based on DDPG. Ini-
tially, all networks will be initialized randomly and start
training when the request arrives (Algorithm 1, lines 1-3).
To avoid frequent training caused by concentrated requests
in a short time, we plan to train and update the network every
100 requests (Algorithm 1, lines 8-14). Moreover, we use
soft target updates rather than directly copying the weights
when updating the target networks, which greatly improves
the stability of learning (Algorithm 1, line 13).

Replacement Decision
Algorithm 2 is the corresponding cache replacement process
for cache hits and cache misses. The output of the action
function in Catcher is the probability of selecting an LRU or
LFU policy (Algorithm 2, line 7). When the cache misses,
Catcher completes the selection of the replacement policy
by generating a random number and combining the probabil-
ity of the replacement policy (Algorithm 2, lines 8-13). Due
to the randomness of probability, Catcher still has a certain
probability of choosing a replacement policy with a small
probability, which also makes full use of the exploration &
exploitation in RL. Note that each block in the cache needs
to record data structure information with LRU and LFU. In
addition, the computational overhead of Catcher is bound
by the computational overhead of LRU or LFU when us-
ing LRU and LFU as base policies for participating in cache
replacement because it does not have a loop operation in Al-
gorithm 2. In the future, we will improve and combine the
common characteristics of LRU and LFU data structures,
thereby greatly reducing the time and space overhead of the
online component.

Evaluation
Experimental Settings
Workloads. We conduct simulation-based evaluations of
several state-of-the-art heuristic and ML algorithms from
the caching literature using publicly available production
storage I/O workloads. The workloads used in the exper-
iment come from the FIU and MSR datasets in the real
environment5 including 8 production storage traces sourced
from 8 different production collections. Each workload has a
1-day duration and contains billions of requests. The amount
of original data is specifically large, closing to the scale of
Terabyte magnitude. So we use a sampling method to reduce
the amount of data. These workloads are used by a large
body of prior work, which ensures that we can evaluate the
effectiveness of the proposed scheme in general cases.

Configurations. To compare the relative performance of
various caching policies, we choose caches that are sized
relative to the size of each workload. So cache sizes here
will not exceed 1% of the workload used including 0.05%,
0.1%, and 0.5%. The sizes of SW and AW are consistent with
the cache sizes. For all the experiments, we train our model
using Adam optimizer with a learning rate of 0.001 for actor
and critic network with the soft update rate τ = 0.02, and
a discounting rate γ = 0.9. The replay buffer R is a finite
sized cache (10000) and the actor and critic are updated by
sampling a minibatch N = 128 uniformly from the replay
buffer. We perform a grid search to find the hyperparameters
combination that set α as 5 and β as 3.

Baselines. We compare Catcher against 9 previously pro-
posed cache replacement policies, including LRU, LFU,
ARC (Megiddo and Modha 2003), LIRS (Jiang and Zhang
2002), DLIRS (Li 2018), LRFU (Lee et al. 2001), ACME
(Ari et al. 2002), FRD (Park and Park 2017), and CACHEUS
(Rodriguez et al. 2021). Both ARC and LIRS are state-of-
the-art adaptive policies, and DLIRS is an important exten-
sion method of LIRS. CACHEUS is a state-of-the-art ML-
based replacement policy, which makes use of recency and
frequency characteristics like ARC and LRFU. To make the
results more intuitive, we also test the Belady’s optimal so-
lution (OPT) (Belady 1966), replaces the block that has the
farthest reuse distance among blocks in a cache. OPT is an
optimal offline cache policy that is not feasible as online
cache. However, it is useful for comparing the maximum
performance with that of various cache replacement policies.

In addition, there is previous work on CPU caches (Shi
et al. 2019; Sethumurugan, Yin, and Sartori 2021), but these
methods mostly focus on hardware caches and also rely
on PC or other application features as one of the inputs,
which does not exist in the general cache replacement sce-
narios, their applicability is limited. Catcher is implemented
using PyTorch6 and a generic cache simulator7 including
many available cache replacement policies. The simulator
has been used in a lot of prior work. To alleviate perfor-
mance instability caused by RL, we run all experiments

5http://iotta.snia.org/traces/block-io
6https://pytorch.org
7https://github.com/sylab/cacheus
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Figure 3: Performance comparison for different cache replacement policies (OPT is the theoretical optimal).

ten times to average as a final result. All the experiments
are run on a local Inspur server equipped with a six-core
2.10GHz Intel(R) Xeon(R) E5-2620, 64GiB RAM, and an
SMC 512GB hard disk.

Performance Overview
Figure 3 compares the cache hit rate of Catcher with dif-
ferent replacement policies, in which OPT is the theoreti-
cal optimal. Catcher achieves significantly higher cache hit
rates than other policies on every workload, ranging from
3% to 150%. Averaged over all workloads, Catcher achieves
32%, 22.1%, and 11.3% higher cache hit rates than ARC,
LIRS, and CACHEUS when the cache size is 0.05%. Large
caches do not benefit from strong replacement policies since
working sets are already in cache. Therefore, when cache
sizes are large, the difference between the policies cannot
be reflected (only 3% to 9% increase when the cache size is
0.5%). When cache sizes are small, Catcher improves more
because it can make full use of the limited cache space, so
subtleties of the replacement policies are observable. Fur-
thermore, the hit rate of Catcher is only about 2% to 20%
lower than that of OPT, which is the closest method to the
optimal value among the currently compared policies.

Further analysis shows that some ML-based cache re-
placement policies are not better than heuristic algorithms,
such as ACME. In addition to the complexity of the work-
loads, an important reason is that multiple block-related
factors are mixed together, which affects the realization of
the best performance for each base replacement policy. In
contrast, although Catcher also combines different replace-
ment policies, it is not an ensemble learning method be-
cause only a single cache policy is used to complete the
replacement (different cache replacement policies are only
for different requests). LIRS also performs better than ARC
in some workloads, because most workloads have more re-
quests of the blocks are accessed exactly once. Therefore,
LIRS can use 1% of the allocated cache space for buffering,
reducing the impact of cache pollution. Although DLIRS
does not always perform better than LIRS, DLIRS is usually

better than LIRS when the performance of LIRS is worse
than ARC. This is because DLIRS borrows the idea from
ARC and dynamically allocates the cache space to low Inter-
Reference Recency (IRR) blocks against high. This experi-
ment demonstrates that Catcher can generate a unified and
efficient cache replacement policy for generic workloads.

Performance Analysis
To understand the performance advantage of Catcher and
how Catcher differs from LRU, LFU, and OPT, we use a
sliding window of the same size as 10 times the cache to
record the change in hit rates. In particular, we examine the
performance for the webmail (day 16) workload from the
FIU trace collection, which is used as a benchmark by many
previous works because it contains complete workload types
(Park and Park 2017; Rodriguez et al. 2021).

As shown in Figure 4, Catcher does not perform very well
at first, even worse than LRU or LFU (requests 0∼200).
Since the beginning of training, Catcher adopts a try-and-
error strategy to find and learn the relationship between
the probability distribution of replacement policies and
workload distribution. It is obvious that Catcher gradually
adapts to the workload through collecting enough transitions
among different states as the number of requests increases,
which brings continuous improvement to the performance
(requests 300∼700). Finally, compared with OPT, Catcher
has already achieved a better result in most cases (Catcher is
close to the theoretical optimal of OPT), indicating that our
model owns high efficiency (requests 1100∼2700). We con-
clude that Catcher can adjust quickly from bad replacement
decisions and learn how to do better than LRU or LFU. As
various types of workloads are collected to the replay buffer,
Catcher will have better stability and robustness.

Evaluation on Reward Functions
The reward function is vital in RL, which provides impactful
feedback between the agent and the environment. For veri-
fying the superiority of different reward functions, the fol-
lowing experiment is designed. We compare Catcher with
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Figure 4: Changes in the hit rates of LRU, LFU, Catcher, and OPT on webmail (day 16) workload.

Figure 5: Performance of Catcher for all workloads respec-
tively using different reward functions.

other three typical reward functions including
• RF-naive: cache hit r is +1 this moment, otherwise -1.
• RF-mature: take the hit rate of the current period as r.
• RF-mature+: compared with RF-mature, RF-mature+

considers the baseline replacement policies (LRU and
LFU) so that r has both positive and negative. The de-
tailed formula is shown as follows:

r =
hit~st−1→~st (Catcher)−hit~st−1→~st (baseline)

hit~st−1→~st (baseline)

We make a comparison between the three reward func-
tions and our designed RF-Catcher. As shown in Figure
5, we adopt 8 different workloads when the cache size is
0.05%. As a whole, RF-naive has the worst performance
and is very unstable. In contrast, the performance of RF-
mature is better than that of RF-naive. What causes this phe-
nomenon is that RF-naive just considers the performance of
the current time, ignoring the hit rate over a period of time.

RF-mature+ only achieves a sample target which obtains a
better result than the current time period regardless of the
whole time performance although it performs better than
RF-mature. Especially for workloads with more requests
(webmail and ts workloads), if we only consider the perfor-
mance of the current period, we will gradually lose control
of the overall performance and fail to achieve the best perfor-
mance as the requests continue to come (compared with RF-
mature+ on homes and online workloads, RF-Catcher only
increased hit rates by 4.5% and 9.4%, while RF-Catcher
on webmail, webusers and ts workloads increased hit rates
by 22.5%, 15.9%, and 20.2%). However, RF-mature+ fully
demonstrates that a negative r is beneficial to model train-
ing and learning. Due to the limitation of the length of the
paper, we are unable to provide a detailed discussion and
the performance deployed on the reward configurations. In
conclusion, compared with others, our proposed RF-Catcher
takes the above factors into consideration comprehensively
and achieves the best performance.

Conclusion
Machine learning is useful in architecture design exploration
(Zhang et al. 2019; Zhou, Wang, and Feng 2021; Bera et al.
2021). However, human expertise is still essential in deci-
phering the ML model, making design trade-offs, and find-
ing practical solutions. In this paper, we propose an end-to-
end automatic cache replacement policy Catcher that can ex-
plore the relationship between the important factors affect-
ing cache replacement and workload. Catcher autonomously
learns to choose LRU or LFU policy using deep reinforce-
ment learning to achieve cache replacement. Our extensive
evaluations show that Catcher not only outperforms five
state-of-the-art cache replacement policies but also provides
robust performance benefits across a wide-range of work-
loads and cache configurations.
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