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Abstract

The success of reinforcement learning in typical settings is
predicated on Markovian assumptions on the reward signal
by which an agent learns optimal policies. In recent years,
the use of reward machines has relaxed this assumption by
enabling a structured representation of non-Markovian re-
wards. In particular, such representations can be used to
augment the state space of the underlying decision process,
thereby facilitating non-Markovian reinforcement learning.
However, these reward machines cannot capture the seman-
tics of stochastic reward signals. In this paper, we make
progress on this front by introducing probabilistic reward ma-
chines (PRMs) as a representation of non-Markovian stochas-
tic rewards. We present an algorithm to learn PRMs from the
underlying decision process and prove results around its cor-
rectness and convergence.

Introduction
Traditionally, reinforcement learning (RL) (Sutton and
Barto 1998) techniques have relied on strong Markovian as-
sumptions of the underlying decision process. In particular,
the reward signal by which an agent learns through posi-
tive or negative reinforcement is generally defined as a func-
tion of the current state of the environment and the action
of an agent. The history of states observed by the agent are
not considered in such settings. However, many problem do-
mains require taking into account this history. Examples in-
clude learning in settings with sparse rewards (Neider et al.
2021), rewards defined as regular expressions and formal
logics (Camacho et al. 2019), and decision-making under
partial observability (Icarte et al. 2019). In such settings, the
non-Markovian reward signal may not be known, but can
be learned from traces of behavior. Recently, the problem of
learning a structured representation from the reward signal
has received significant attention. These representations of-
ten take the form of finite automata called reward machines
(Icarte et al. 2018, 2022). Reward machines can augment
the state space of decision processes with non-Markovian
rewards and thereby facilitate the use of classical techniques
for Markov Decision Process (MDP) on these more general
types of environments (Gaon and Brafman 2020; Xu et al.
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2021). They also serve as a memory mechanism for rea-
soning over partially observable environments (Icarte et al.
2019), are useful for reward shaping to mitigate sparse re-
ward signals (Camacho et al. 2019; Velasquez and Melcer
2020; Velasquez et al. 2021), and provide explanations of
RL systems (Xu et al. 2021).

While much progress has been made on learning and
leveraging reward machines for decision processes with
non-Markovian rewards (Xu et al. 2020, 2021; Abadi and
Brafman 2020; Gaon and Brafman 2020; Neider et al. 2021;
Rens et al. 2021), the more general setting where rewards
exhibit both non-Markovian and stochastic dynamics has not
been addressed. In this paper, we make progress on this front
by introducing probabilistic reward machines (PRMs).

We present an algorithm to learn PRM representations of
non-Markovian stochastic reward signals by integrating a
probabilistic variant of the L? algorithm (Angluin 1987) for
automaton inference with RL. Our algorithm uses a product
construction to produce a standard MDP from the environ-
mental decision process and the learned PRMs in order to
perform RL, and we provide an accompanying proof that
these products correctly simulate the original decision pro-
cesses with non-Markovian stochastic rewards. To further
motivate PRMs, we show that an exponential blowup in size
is required to emulate the system under learning by embed-
ding probabilities in the environment and using determinis-
tic reward machines. We establish theoretical guarantees on
convergence of the algorithm in the limit.

Related Work
The classical problem of grammatical inference seeks to
learn a formal language, or some representation thereof,
from a finite number of samples (Horning 1969; de la
Higuera 2010). Approaches for such learning problems are
generally categorized as either active or passive. Passive in-
ference seeks to mine the underlying specification from a
static dataset of observed traces. Active methods differ in
that the system under learning can be queried to guide the
learning process. The L? algorithm for learning regular lan-
guages (Angluin 1987) is the quintessential example of ac-
tive inference, and assumes the existence of a minimally ad-
equate teacher capable of answering membership and equiv-
alence queries. This method has been broadly adopted and
generalized to learn interface automata (Aarts and Vaan-
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drager 2010), Mealy machines (Niese 2003), automaton rep-
resentations of recurrent neural networks (Weiss, Goldberg,
and Yahav 2018, 2019), and MDPs (Tappler et al. 2021).

Grammatical inference has become a popular problem in
the context of RL and learning reward signals. While most
literature assumes a reward machine is given (Icarte et al.
2018; Hahn et al. 2019), the problem of learning the machine
from observations has only been considered recently. The
work in (Xu et al. 2020; Neider et al. 2021) explores a solv-
ing approach based on satisfiability. In (Icarte et al. 2019),
the problem of learning a reward machine is viewed through
the lens of discrete optimization. Methods that merge Q-
learning andL? for learning reward machines are considered
in (Gaon and Brafman 2020; Xu et al. 2021).

Probabilistic Reward Machines
We proceed with our treatment on PRMs with some prelim-
inary definitions pertaining to the underlying decision pro-
cess from which samples are obtained to estimate the PRM
representation of the objective.

A Transition-Markov Decision Process (TMDP) main-
tains the classical assumption that state transitions are
Markovian while generalizing the standard MDP model by
allowing history-dependent stochastic rewards.
Definition 1 (TMDP). A transition-Markov decision pro-
cess M is a tuple (X,xI , A, P,AP, L,R) where X is a fi-
nite set of states, xI ∈ X is an initial state, A is a finite set
of actions, P : (X × A × X) → [0, 1] is a probabilistic
transition function, AP is a finite set of atomic propositions,
L : (X × A×X) → 2AP is a function labelling each tran-
sition with a subset of AP, and R :

(
2AP
)∗ → Dist(R) is a

non-Markovian stochastic reward function, where Dist(R)
denotes the set of possible probability distributions over R.

A run of a TMDP is a string x0a1x1 · · · anxn ∈ X ·
(A · X)∗ such that 0 <

∏n
k=1 P (xk−1, ak, xk). For a

run x0a1x1 · · · anxn, its corresponding label sequence is
`1`2 · · · `n, where `k = L(xk−1, ak, xk), and the cor-
responding reward sequence is r1r2 · · · rn where rk ∼
R(`1 · · · `k). A trajectory is a run for which x0 = xI . A pol-
icy is a function π : (X · (A ·X)∗ ×A)→ [0, 1] specifying
a distribution over the set of actions following a run.

Given a TMDP M = (X,xI , A, P,AP, L,R), we seek to
construct a PRM that encodes the underlying reward R.
Definition 2 (PRM). A probabilistic reward machine H is a
tuple (AP,Γ, Y, yI , τ, %) where AP is a set of atomic propo-
sitions and 2AP is the input alphabet, Γ ⊂ R is a finite set of
rewards, Y is a finite set of states, yI ∈ Y is a distinguished
initial state, τ :

(
Y × 2AP × Y

)
→ [0, 1] is a probabilis-

tic transition function, and % :
(
Y × 2AP × Y

)
→ Γ is a

function mapping each transition to a reward from Γ.
A run of H is a sequence y0(`1, γ1)y1 · · · (`n, γn)yn

where γk = %(yk−1, `k, yk) and τ(yk−1, `k, yk) > 0, for
all k. Let H :

(
2AP · Γ

)
→ [0, 1]|Y |×|Y | map each pair

`, γ ∈ 2AP × Γ to the transition matrix H(`γ) such that

H(`γ)[i, j] =

{
τ(yi, `, yj) if %(yi, `, yj) = γ,

0 otherwise.
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Figure 1: A PRM defined over the office gridworld.

As usual, we extend the domain from 2AP · Γ to
(
2AP · Γ

)∗
by setting H(`γw) = H(`γ)H(w) and H(ε) = I, where
I is the identity matrix and ε the empty string. A distribu-
tion PH :

(
(2AP)∗ × Γ∗

)
→ [0, 1] over pairs of inputs and

reward sequences is induced:

PH(`1 · · · `n, r1 · · · rn) = yIH(`1r1 · · · `nrn)1,

where yI is an initial distribution over Y (typically with an
entry of 1 at the index for state yI and zeros everywhere else)
and 1 is the vector with 1 at each entry. The PRM H is said
to encode the reward function R of a TMDP if, for any label
sequence ` = `1 · · · `n and reward sequence r = r1 · · · rn,
the following equality holds:

PH(`, r) =
n∏
k=1

R(`1 · · · `k)(rk).

Example 1. Consider the office gridworld environment
found in (Icarte et al. 2018). The original task, which takes
the form of a deterministic reward machine, requires that the
agent acquire coffee at location c and delivers the coffee to
office o, at which point the agent receives a reward of 1. If
the agent steps on an ∗, they fail the task and observe a re-
ward of 0. A variant of this task, in which the reward signal is
probabilistic, may be obtained by introducing a 10% chance
that the coffee machine malfunctions, producing weak coffee
which is rejected upon delivery and receives a reward of 0.
A graphical representation of a PRM for this task is shown
in Figure 1. An edge y

`|p−→
r

y′ indicates that y transitions

to y′ on label ` ∈ 2AP with probability p = τ(y, `, y′) and
receives reward r = %(y, `, y′).

The following property formalizes the notion of a PRM in
which every state and label uniquely determines the reward.

Definition 3 (Reward-Determinism). A PRM is reward-
deterministic if, for any y, y1, y2 ∈ Y and ` ∈ 2AP such
that τ(y, `, y1) > 0 and τ(y, `, y2) > 0, it holds that either
y1 = y2 or %(y, `, y1) 6= %(y, `, y2).
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An Excursus on L?

In the seminal work of (Angluin 1987), an algorithm called
L? is proposed by which a deterministic finite automaton
(DFA) for a given regular languageL can be learned through
the use of a minimally adequate teacher that can answer
membership and equivalence queries. When the learner ex-
ecutes a membership query, it presents a word w ∈ (2AP)∗

to the teacher and the teacher outputs whether w ∈ L. If the
learner executes an equivalence query, it presents a hypoth-
esis DFA to the teacher who must then answer whether this
automaton encodes the language to be learned. If not, the
teacher generates a counterexample in the form of a word
on which the two languages differ. The L? algorithm keeps
track of state words S ⊆ (2AP)∗, which are closed under
prefix operations (e.g. if ab ∈ S, then a ∈ S) and test words
E ⊆ (2AP)∗, which are closed under suffix operations (e.g.
if ab ∈ E, then b ∈ E). Initially, we have S = E = {ε},
where ε is the empty string. As the algorithm proceeds, there
are two critical properties that must be tracked and revolve
around the notion of E-equivalence.
Definition 4 (E-Equivalence). Given w,w′ ∈ (2AP)∗ and
set E ⊆ (2AP)∗, the words w and w′ are E-equivalent
with respect to the language L, denoted w ≡E w′, if
we ∈ L ⇐⇒ w′e ∈ L holds for every e ∈ E.
Definition 5 (Consistency). Given (S,E), the consistency
property holds if and only if for all s, s′ ∈ S, the following
implication holds: if s ≡E s′, then s` ≡E s′` for all ` ∈ Σ.
Definition 6 (Closedness). Given (S,E), the closedness
property holds if and only if for all s ∈ S and ` ∈ 2AP,
there exists some s′ ∈ S such that s` ≡E s′.

For a closed and consistent (S,E), a corresponding au-
tomaton can be derived by taking each E-equivalence class
of S to be a state, with the empty string ε as the starting state.
The transition function is defined using the closedness prop-
erty. That is, whenever we have s` ≡E s′ per the closedness
property, then we also have the transition from s to s′ upon
observing the label ` in the DFA. Furthermore, it follows
from the consistency property that s′ is unique. The accept-
ing states are those in the language of the teacher.

The L? algorithm ensures that (S,E) remains closed and
consistent until the target language is learned. This is done
by constructing a DFA from (S,E). If a counterexample is
produced, it is used to modify (S,E) by adding the coun-
terexample and all its prefixes to S. Membership queries are
then used to determine the values of the new entries.

We now consider again the RL setting where we wish
to learn the PRM representation of the objective as given
by the reward signal, and mention some challenges that
arise. Indeed, note that the seemingly innocuous member-
ship queries must now be answered indirectly through the
TMDP. This introduces two challenges to the adoption of
the L? algorithm within RL. First, there is no obvious way
to perform membership queries. The construction of a mean-
ingful w is not obvious on the part of the learner and an-
swering this query is difficult on the part of the teacher. This
is because we can only reason about these words indirectly
through the TMDP, whereas traditional approaches reason
directly over the target language.

The second challenge lies in performing equivalence
queries, since the teacher cannot answer whether the cur-
rently learned PRM encodes the reward of the underlying
TMDP. However, it is worth noting that counterexamples
are obtained naturally through the RL process. These coun-
terexamples are words that either have not been seen before
or whose corresponding reward sequence differs from other
encounters of the same word. The latter case arises due to
the stochastic nature of the reward signal. Thus, the answers
to equivalence queries are obtained implicitly through RL.

Explicating Probabilistic Machines from
Non-Markovian Reward Signals

We now describe an algorithm that learns a PRM represen-
tation of the stochastic reward function of a TMDP.

Definition 7 (Sampling Observation Table). For an underly-
ing PRM (AP,Γ, Y, yI , τ, %), an observation table is a tuple
(S,E, T ), where S ⊂ (2AP · Γ)∗ is a prefix-closed set of
samples, E ⊂ (2AP ·Γ)∗ ·2AP is a suffix-closed set of exper-
iments, and T : S ·

(
(2AP · Γ) ∪ {ε}

)
· E → (Γ → N) is a

function mapping label-reward words to reward frequencies.

Defining appropriate analogs of closedness and consis-
tency for this type of observation table relies on a notion
of statistical difference, based on the Hoeffding bound.

Definition 8. We say that the sequences s, s′ ∈ S · 2AP are
statistically different, written difff (s, s′), with respect to a
function f : (2AP · Γ)∗ · 2AP → (Γ→ N) if either

• 0 < N =
∑
g∈Γ f(s)(g) and 0 < N ′ =

∑
g∈Γ f(s′)(g),

• or there exists γ ∈ Γ such that we have the inequality√
1
2 ln 2

C

(√
1
N +

√
1
N ′

)
<
∣∣∣ f(s)(γ)

N − f(s′)(γ)
N ′

∣∣∣, where

C is a data-dependent confidence level. 1

Two cells se and s′e′ of an observation table (S,E, T )
are compatible, denoted se ∼ s′e′, if diffT (se, s′e′) is false.
We say that two rows s, s′ are compatible, denoted s E∼ s′

if se ∼ s′e holds for all e ∈ E. Based on these relations,
S can be partitioned into compatibility classes which are
groups of statistically similar samples. Unlike in traditional
L?, where each sample translates to a state in the derived
automaton, each state of the derived PRM will correspond
to a representative from a compatibility class. Each class
is defined via compatibility to its representative. Note that
the compatibility relation is not an equivalence relation; a
given sample may be compatible with several representa-
tives and two elements of a compatibility class may be in-
compatible. To resolve these ambiguities, define the func-
tion rank : S → N as rank (s) =

∑
`∈2AP

∑
γ∈Γ T (s`)(γ),

to quantify the amount of information about each sample
contained in the table. The unique representative of s is
then defined as the compatible sample of maximal rank and
is characterized by the function rep : S → S, given as
rep (s) = arg maxs′∈S{rank (s′) : s

E∼ s′}. Denote by
rep (S) the set {rep (s) : s ∈ S} of all representatives.

1A good choice (Tappler et al. 2021) for C is 1
M3 where M is

the number of samples taken thus far.
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Algorithm 1: L?-based Active Inference for PRM representation of Stochastic Non-Markovian Reward
Output: Observation table O and/or PRM H .

1 Initialize observation table O = (S,E, T )
2 repeat
3 if exists counterexample χ = `1γ1 · · · `nγn then
4 Prefixes← {`1γ1 · · · `kγk : 1 ≤ k ≤ n}
5 Queries← Prefixes ·

(
(2AP · Γ) ∪ {ε}

)
· E

6 S ← S ∪ Prefixes
7 repeat
8 if O is not consistent then
9 Choose s, s′ ∈ S, ` ∈ 2AP, γ ∈ Γ, e ∈ E such that s E∼ s′ and diffT (s`γe, s′`γe).

10 E ← E ∪ {`γe}
11 Queries← Queries ∪

(
S ·
(
(2AP · Γ) ∪ {ε}

)
· {`γe}

)
12 else if O is not closed then
13 Choose s ∈ S, ` ∈ 2AP, γ ∈ Γ such that T (s`)(γ) > 0 and s`γ E� r for all r ∈ rep (S).
14 S ← S ∪ {s`γ}
15 Queries← Queries ∪

(
{s`γ} ·

(
(2AP · Γ) ∪ {ε}

)
· E
)

16 for ζ ∈ Queries do
17 T ← MEMBERSHIPQUERY(ζ, T )
18 Queries← ∅
19 until O is closed and consistent
20 T, χ← EQUIVALENCEQUERY(O)
21 until there exists no counterexample χ

Definition 9 (Sampling Closedness). An observation table
is closed if, for all s`γ ∈ S · 2AP · Γ with T (s`)(γ) > 0,

there exists r ∈ rep (S) such that s`γ E∼ r holds.

Definition 10 (Sampling Consistency). An observation ta-
ble is consistent, if, for all compatible pairs in the set
{(s, s′) ∈ S × S : s

E∼ s′} and all `, γ ∈ 2AP × Γ, either

T (s`)(γ) = 0 or T (s′`)(γ) = 0, or s`γ E∼ s′`γ.

With the above definitions established, we are now in po-
sition to describe the high-level flow of the learning proce-
dure, which is specified explicitly in algorithm 1. While the
details of the sub-procedures are significantly different from
those involved in traditional L?, the overall structure of the
process is quite similar. The algorithm starts with an empty
observation table and enters the loop at line 2. Since the ta-
ble is empty to begin with and there does not exist a coun-
terexample, the conditional at line 3 and the inner loop are
bypassed and an equivalence query is executed at line 20.
Deferring the details for now, the equivalence query builds a
hypothesis PRM from the observation table and challenges
the teacher to find a counterexample showing a discrepancy
between the hypothesis and the true reward function. If no
counterexample is found, the halting condition at line 21 is
met and the algorithm terminates.

If a counterexample is found, it is returned and stored in
the variable χ and we return to the beginning of the loop.
In this case, the conditional block at line 3 is entered and
the counterexample χ and all of its prefixes are added to the
set of samples S of the observation table. Additionally, we
would like to gain more information about the counterexam-

ple, so we save it and its extensions in the variable Queries.
Next, the loop at line 7 is entered, in which the table is

checked for consistency. If the table is inconsistent (lines
8-11), a witness `γe is found, added to the set E of exper-
iments, and the set of all samples extended by this witness
is added to the set Queries. If the table is consistent, we
proceed (lines 12-15) by checking if it is closed. If it is not
closed, we similarly find a witness, this time s`γ, add it to
the sample set S and add its extensions by the set of all ex-
periments to the set Queries. For each string in Queries
a membership query is executed to gather more data into
the table (lines 16-17). The variable Queries is then emp-
tied (line 17), and this sub-process (lines 7-19) is iterated
until the observation table is both closed and consistent. At
this point, a hypothesis PRM can be constructed again, and
the entire process repeats until the equivalence query fails to
produce a counterexample to the current hypothesis.

The reward-determinism property (c.f. definition 3) is in-
spired by the label-determinism property used for learning
MDPs in (Tappler et al. 2021). Algorithm 1 always learns a
reward-deterministic PRM, even if the true reward is speci-
fied as a non-reward-deterministic PRM.

Equivalence Queries
In order to construct a hypothesis PRM, we need a statisti-
cally significant amount of data about system trajectories to
be stored in the observation table. We assume that a thresh-
old parameter N ∈ N specifying the minimum number of
samples necessary to estimate a transition probability is pro-
vided. We use ⊥ to denote a sink state to which transitions
are diverted when the data is insufficient for estimating tran-
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Algorithm 2: Equivalence Query
Data: Nstop

1 Function EQUIVALENCEQUERY(O):
2 Make hypothesis H from table O, initialize QH .
3 flag ← false
4 for 1 ≤ i ≤ Nstop do
5 λ,QH , f lag ← QUERY(QH , H, equiv)
6 for prefix `1r1 · · · `krk of λ do
7 λk ← `1r1 · · · `k
8 T (λk)(rk)← T (λk)(rk) + 1
9 if flag then return T , λ

10 return T , None

sition probabilities otherwise.
Definition 11 (Hypothesis Reward Machine). Given a
closed and consistent observation table (S,E, T ), we con-
struct a PRM H = (AP,Γ, Y, yI , τ, %) as follows:
• Y = (rep (S)× Γ) ∪ {yI ,⊥} with yI = (ε, 0),

• τ(y, `, y′) =



0 if y = ⊥ and y′ 6= ⊥,
1 if y = y′ = ⊥,
1 if

∑
Γ T (y`)(g) < N,

and y′ = ⊥
if
∑

Γ T (y`)(g) ≥ N,
T (y`)(γ)∑
Γ T (y`)(g) y′ = (rep (r`γ) , γ),

and y = (r, η),

• %(y, `, y′) =

{
0 if y = ⊥ or y′ = ⊥,
γ if y′ = (rep (r`γ) , γ) and y = (r, η).

Equivalence queries are one of two interfaces between
the learner and the teacher. In our setting, the teacher does
not have complete knowledge of the system under learning,
and so the equivalence query amounts to repeatedly execut-
ing the system and the hypothesis in tandem, trying to find
inconsistencies between the two. Algorithm 2 specifies the
procedure, which takes a closed and consistent observation
table as its single parameter. It begins on line 2 by construct-
ing a hypothesis PRM according to definition 11 and initial-
izing the corresponding Q-table QH . The variable flag is
initially set to false and will be set to true if the teacher
finds a counterexample, i.e. a label-reward string impossible
under the hypothesis PRM, including those leading to the
failure state ⊥. Additionally, each call to the teacher (line
5) returns a label-reward string λ and an updated Q-table
QH . Regardless of whether λ is a counterexample, its data is
added to the observation table (lines 6-8). Next (lines 9-10),
we check if flag is set to true, indicating λ is a counterex-
ample, and if so, the updated table is returned along with λ,
ending the loop early. Otherwise, the loop repeats, and halts
after Nstop iterations without encountering a counterexam-
ple. In this case, the updated table is returned and the “coun-
terexample” returned is None.

Membership Queries
Membership queries are the second interface between
learner and teacher, and are designed to gather data on

Algorithm 3: Membership Query
Data: Nquery

1 Function MEMBERSHIPQUERY(ζ, T ):
2 Construct query machine Hζ and initialize Qζ .
3 for 1 ≤ i ≤ Nquery do
4 λ,Qζ ← QUERY(Qζ , Hζ ,member)
5 for prefix `1r1 · · · `krk of λ do
6 λk ← `1r1 · · · `k
7 T (λk)(rk)← T (λk)(rk) + 1
8 return T

strings that are witnesses to the observation table’s open-
ness or inconsistency. Following (Xu et al. 2021), we per-
form a membership query for each such witness string using
a pseudo-“reward machine”, defined below.
Definition 12 (Membership Query Machine). Given a query
string ζ = `1γ1 · · · γn−1`n, the corresponding membership
query machine is Hζ = (AP,Γ, Y, yI , τ, %) where
• Y = {y0, y1, . . . , yn} with yI = y0,

• τ(yk, `, y
′) =


1 if ` = `k+1 and y′ = yk+1

or if ` 6= `k+1 and y′ = yk,

0 otherwise,

• %(yk, `, y
′) =

{
1 if ` = `k+1 and y′ = yk+1,

0 otherwise.
This reward machine incentivizes exploration along the

query trace. Algorithm 3 gives the membership query spec-
ification, which takes as parameters a query string ζ and the
map T from the observation table. First (line 2), a mem-
bership PRM Hζ is constructed for ζ, according to defini-
tion 12 and a corresponding Q-table Qζ is initialized . Next,
the learner passes the membership PRM and the Q-table to
the teacher (line 4) and is given back a label-reward string
λ and the updated Q-table. As in equivalence queries, the
data contained in λ is added to the observation table (lines
5-7), and the process repeats Nquery times, where Nquery is
a contextual parameter, known a-priori. Finally, the modified
observation table is returned (line 8).

RL-Based Teacher
The function QUERY used in both equivalence and member-
ship queries belongs to the teacher and encapsulates the RL
portion of the algorithm. It leverages the fact that the product
of a TMDP and a PRM results in a standard MDP.
Definition 13. Let M = (X,xI , A, P,AP, L,R) be a
TMDP and let H = (AP,Γ, Y, yI , τ, %) be a PRM. The
product M ×H is an MDP (X ′, x′I , A, P

′,AP, L′, R′) with
a Markovian reward function R′ : 2AP → Γ such that:
• X ′ = X × Y with x′I = (xI , yI),
• P ′((x, y), a, (x′, y′)) = P (x, a, x′)·τ(y, L(x, a, x′), y′),
• L′((x, y), a, (x′, y′)) = L(x, a, x′), and
• R′(L′((x, y), a, (x′, y′))) = %(y, L(x, a, x′), y′).

Any convergent RL algorithm working on the product
of the TMDP and membership reward machine, will con-
verge to a policy generating the desired membership query
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Algorithm 4: Generic RL-driven Query
Data: Nep, M = (X,xI , A, P,AP, L,R), ε, β, α

1 Function QUERY(Q,H, type):
2 x, y, λ, flag ← xI , yI , ε,false
3 for 1 ≤ i ≤ Nep do
4 a← EPSILONGREEDYACTION(Q, x, y, ε)
5 x′, r ← STEP(M , x, a)
6 λ← λ · L(x, a, x′) · r
7 y′, γ ← STEP(H , y, L(x, a, x′))
8 if type = member then
9 Q(y, x, a)← (1− α)Q(y, x, a) + α (γ + βmaxa′∈AQ(y′, x′, a′))

10 else if type = equiv then
11 Q(y, x, a)← (1− α)Q(y, x, a) + α(r + βmaxa′∈AQ(y′, x′, a′))
12 if λ is a counterexample then
13 flag ← true
14 x, y ← x′, y′

15 if type = member then
16 return λ,Q
17 else if type = equiv then
18 return λ,Q, flag

with optimal probability. The RL algorithm optimizes over
the product of the TMDP and the membership reward ma-
chine, and continues to observe the reward signals from the
PRM. In doing so, the policy that maximizes these rewards
is guided towards answering the underlying membership
query by finding a trajectory of states in the decision pro-
cess whose induced trace of labels answers the membership
query. Similarly, any convergent RL algorithm working on
the product of the TMDP and hypothesis reward machine,
will converge to an optimal policy with respect to the re-
wards consistent with the hypothesis reward machine. If the
hypothesis correctly encodes the true reward function, we
get an optimal policy for the environment.

The RL-driven query is given in algorithm 4, which takes
a Q-table, a reward machine, and type indicating whether
the query is for membership or equivalence. Furthermore,
the procedure assumes access to contextual parameters ε for
choosing the next action (line 4), α and β as the learning rate
and discount factor, respectively, used in the Q-table updates
(lines 9 and 11), and Nep as the episode length of each RL
execution. Note that the teacher interacts with the environ-
mental TMDP and the given PRM individually, but by doing
so in tandem, it simulates the execution of their product. It
treats both M and H as black-boxes in the sense that it may
only observe the current state and outputs of each after exe-
cuting them with particular inputs using the STEP function.
It is also assumed that the environmentM resets to its initial
state after the QUERY function returns.

Correctness, Convergence, & Compactness
In this section we establish theoretical properties related
to PRMs and the learning procedure presented above. In
particular we show that the product construction of defini-
tion 13 preserves TMDP semantics, prove that algorithm 1
converges in the limit, and establish that TMDPs with PRM

encoded reward functions are more compact than TMDPs
with deterministic reward machines when representing se-
mantically equivalent systems.

Definition 14 (TMDP Semantics). The semantics of a
TMDP M = (X,xI , A, P,AP, L,R) is a function [[M ]] :
A∗ → Dist

(
(2AP)∗ × R

)
such that

[[M ]](w)(`, r) =


1 if w = ε and ` = ε, and r = 0

⊥ if w, ` is not observable
p · q if w, ` is observable with prob. p

and q = R(`)(r)

Define the language L(M) of the TMDP M as the set{
(w, `) ∈ A∗ × (2AP)∗ : ∃r ∈ R. [[M ]](w)(`, r) 6= ⊥

}
.

Definition 15 (MDP Semantics). The semantics of an
MDP M = (X,xI , A, P,AP, L,R) is a function [[M ]] :(
A∗ × (2AP)∗

)
→ Dist(R) such that

[[M ]](w, `)(r) =


1 if w = ε and ` = ε and r = 0

⊥ if w, ` is not observable
p if w, ` is observable with prob. p

and ` = `′l and r = R(l)

Define the language L(M) of the MDP M as the set{
(w, `) ∈ A∗ × (2AP)∗ : ∃r ∈ R. [[M ]](w, `)(γ) 6= ⊥

}
.

Two MDPs M,M ′ are equivalent iff, for all w ∈ A∗ and
` ∈ (2AP)∗, it holds that [[M ]](w, `) = [[M ′]](w, `).

Theorem 1. If M is a TMDP with a reward encoded by a
PRM H , then, for all w ∈ A∗, ` ∈ (2AP)∗, and γ ∈ Γ:

[[M ]](w)(`, γ) = [[M×H]](w, `)(γ).

Proof. Suppose that M = (X,xI , A, P,AP, L,R) is a
TMDP, H = (AP,Γ, Y, yI , τ, %) is a PRM encoding R, and
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M×H = (X ′, x′I , A, P
′,AP, L′, R′) is their product con-

structed according to definition 13. If [[M ]](w)(`, γ) 6= ⊥,
then, by definition 14, there exists p, q ∈ [0, 1] such that
[[M ]](w)(`, γ) = pq and w, ` is observable with probabil-
ity p and R(`)(γ) = q. If H encodes the reward function
of M , then it follows from the definition of PRM semantics
that PH(`,Γ|`|−1γ) = R(`)(γ), where Γ|`|−1 denotes all
reward sequences length |`| − 1. Notice that PH(s,Γn) =∑
r∈Γn PH(s, r) = 1 for any n and any s ∈ (2AP)∗. Sup-

pose now that ` = `′l and w = w′a. Assuming H is
reward-deterministic, there must be states y, y′ ∈ Y such
that PH(`,Γ|`|−1γ) = R(`)(γ) = τ(y, l, y′) = q and
%(y, l, y′) = γ. Moreover, the probability p of observingw, `
in M×H , depends only on the transition probability func-
tion P of M whenever the reward probabilities are not in
consideration. Therefore we have that Pr[(w, `) ∈ L(M)]
is equivalent to Pr[(w′, `′) ∈ L(M×H)] · P (x, a, x′) for
some x, x′ ∈ X . Since we have established that R(`)(γ) =
τ(y, l, y′), we may conclude that

[[M ]](w)(`, γ) = Pr[(w, `) ∈ L(M)] ·R(`)(γ)

= Pr[(w′, `′) ∈ L(M×H)] · P (x, a, x′) · τ(y, l, y′)

= Pr[(w, `) ∈ L(M×H)]

= [[M×H]](w, `)(γ).

For an MDP M and a positive integer n, define L≤n(M)
as the set

⋃
k≤n

{
(w, `) ∈ Ak×(2AP)k : (w, `) ∈ L(M)

}
.

Lemma 1 ((Tappler et al. 2021)). Two MDPs M and M ′
with n and at most n states, respectively, are equivalent iff
[[M ]](w, `) = [[M ′]](w, `), for all (w, `) ∈ L≤n2+1(M).

The following result follows from the convergence of
L? for label-deterministic MDPs, shown in (Tappler et al.
2021). In that work, the authors show that under uniformly
randomized testing strategies, the sampling-based L? algo-
rithm converges almost surely in the limit to the MDP under
learning. Our learning algorithm can be seen as a variant of
sampling-based L? in which sampling is implemented via
reinforcement learning. By resetting the learning rate pa-
rameter to very low values at the start of each query and
gradually increasing it after a sufficiently long initial pe-
riod of exploration results in period of essentially random
exploration and thus simulates a uniformly random testing
strategy. This allows us to apply the convergence arguments
from (Tappler et al. 2021) to our setting to assert that our
learning procedure converges almost surely in the limit to
the PRM (or an equivalent PRM) encoding the reward func-
tion of the TMDP under learning. In particular, lemma 1 pro-
vides a lower bound on the reinforcement learning episode
lengths necessary to achieve convergence in the limit.

Theorem 2. Fix a TMDP M , and suppose that there exists
a PRMH , with k states, encoding the reward function ofM .
LetHn be the hypothesis PRM passed to the nth equivalence
query, and suppose that the episode length is at least k2 +1.

1. If every possible ` ∈ (2AP)∗ occurs in a pair (w, `) ∈
L(M), then Hn → H almost surely as n→∞.

2. Otherwise, M×Hn →M×H almost surely as n→∞.

Theorem 2 tells us that algorithm 1 almost surely con-
verges to a PRM H encoding the reward function of the
TMDP M under learning, under the assumption that every
possible label sequence is attainable fromM . If this assump-
tion does not hold, then we cannot claim that the true PRM
encoding the reward function has been learned, since we
cannot sample the behavior of the system on unobservable
traces. On the other hand, we can say that the learned PRM
is equivalent to H , modulo the language of M . Given suffi-
cient interactions, the algorithm will almost surely converge
to a PRM that is equivalent to H on those label sequences in
the language of M . Therefore, optimal strategies for M×H
can be learned from the product of M and the learned PRM.

The following result justifies the use of PRMs by estab-
lishing that PRMs can provide a more compact representa-
tion of systems than might otherwise be modeled by embed-
ding probabilities capturing the stochasticity of a stochastic
non-Markovian reward function directly into the environ-
ment and using a deterministic reward machine to encap-
sulate the non-Markovian aspects of the reward function.

Theorem 3. Suppose that M is a TMDP with reward func-
tion encoded by a reward-deterministic PRM H . If M has
m states and H has n states, then there exists an TMDP M ′
withmn states with a deterministic reward function encoded
by deterministic reward machine H ′ with O(2n) states such
that the product MDPs M×H and M ′×H ′ are equivalent.

Proof. Suppose that M = (X,xI , A, P,AP, L,R) is a
TMDP, H = (AP,Γ, Y, yI , τ, %) is a PRM encoding R. We
proceed to construct a deterministic PRM as follows:

1. We construct an NFA N from H such that rewards are
moved into the states and a transition is included in N
for every transition of positive probability in H .

2. A DFA D is produced using a subset construction on N .
3. A deterministic reward machine H ′ is obtained by inter-

changing deterministic transitions in D with transitions
of probability 1 and bringing rewards back out onto the
transitions while still keeping them in the states.

Note that reward-determinism of H ensures that the deter-
minization step can be carried out without introducing se-
quences of rewards in H ′ that were unobtainable in H . The
three steps above can be composed into a single step to ob-
tain a deterministic PRMH ′ = (AP,Γ, Y ′, y′I , τ

′, %′) where

• Y ′ = 2Y×Γ with y′I = {(yI , 0)},
• τ ′(Y1, l, Y2) = 1 iff τ(y, l, y′) > 0 and %(y, l, y′) = γ′,

for all (y, γ) ∈ Y1 and (y′, γ′) ∈ Y2

• %′(Y1, l, Y2) = γ iff Y2 ⊆ {(y, γ) : y ∈ Y }.

Now, we construct, as a modified product of H and M , a
TMDP M ′ = (X ′, x′I , A, P

′,AP, L′, R′) which simulates
the transition probabilities of H and has a deterministic re-
ward function encoded by H ′:

• X ′ = X×Y with x′I = (xI , yI),
• P ′((x, y), a, (x′, y′)) = P (x, a, x′)·τ(y, L(x, a, x′), y′),
• L′((x, y), a, (x′, y′)) = L(x, a, x′),
• R′(`)(γ) = PH′

(
`,Γ|`|−1γ

)
.
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Taking the product ofM ′ andH ′ yields an MDPM ′×H ′ =
(X ′′, x′′I , A, P

′′,AP, L′′, R′′) such that

• X ′′ = X ′ × Y ′ with x′′I = (x′I , y
′
I),

• P ′′((x′1, y
′
1), a, (x′2, y

′
2)) =

P ′(x′1, a, x
′
2)·τ ′(y′1, L′(x′1, a, x′2), y′2),

• L′′((x′1, y
′
1), a, (x′2, y

′
2)) = L′(x′1, a, x

′
2),

• R′′(L′′((x′1, y
′
1), a, (x′2, y

′
2)))=%′(y′1, L

′(x′1, a, x
′
2), y′2).

What remains to be shown is that the MDPs M×H and
M ′×H ′ are equivalent. We proceed by induction on (w, `).

Base case: (w, `) = (ε, ε).
It follows immediately from definition 15 that

[[M×H]](ε, ε)(γ) = [[M ′×H ′]](ε, ε)(γ), for any γ ∈ Γ.

Inductive case: If [[M×H]](w′, `′) = [[M ′×H ′]](w′, `′), for
w′ ∈ A∗ and `′ ∈

(
2AP
)∗

, then it follows, for all a ∈ A and
l ∈ 2AP, that [[M×H]](w′a, `′l) = [[M ′×H ′]](w′a, `′l).

Let w ∈ A∗, ` ∈ (2AP)∗, and γ ∈ Γ, and suppose that
w = w′a and ` = `′l. Then, the following derivation holds
for some x, x′ ∈ X , y, y′ ∈ Y and Y1, Y2 ⊆ Y .

[[M ′×H ′]](w, `)(γ)

= Pr [(w, `) ∈ L(M ′×H ′) and γ = R′′(l)]

= Pr [(w′, `′) ∈ L(M ′×H ′)]
· P ′′(((x, y), Y1), a, ((x′, y′), Y2))

= Pr [(w′, `′) ∈ L(M ′×H ′)] · P (x, a, x′)

· τ(y, l, y′) · τ ′(Y1, l, Y2)

= Pr [(w′, `′) ∈ L(M ′×H ′)] · P (x, a, x′) · τ(y, l, y′)

= [[M ′×H ′]](w′, `′)(γ) · P (x, a, x′) · τ(y, l, y′)

= [[M×H]](w′, `′)(γ) · P (x, a, x′) · τ(y, l, y′)

= [[M×H]](w, `)(γ)

Empirical Evaluation
While the key contribution of this paper is theoretical, we
implemented the proposed algorithms in Python to evaluate
their effectiveness via a number of small-sized benchmarks.
Recall the office gridworld scenario and the corresponding
PRM shown in fig. 1. Notice that this PRM is neither mini-
mal nor reward-deterministic, yet our algorithm was able to
learn the equivalent PRM, shown in fig. 2, which is both
minimal and reward-deterministic. We experimented with
other small-sized environments and PRMs, and showed that
our algorithm can consistently learn PRMs in less than 1
minute on a typical personal laptop.

As expected, the run-time of the algorithm increases ex-
ponentially with the number of states in the concept PRM;
however our experiments showed that the algorithm scales
gracefully (linearly) with the number of transitions. When
varying the size of the environment, however, we noticed
that certain kinds of environments seemed much more chal-
lenging than others. Upon further inspection, this coincided
with the distinction that some of the PRMs operate on the
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Figure 2: The PRM learned from the office gridworld.

predicates over the set of actions while others on the pred-
icates over the set of states (observations). The office grid-
world example, for instance, is labelled by observations c
or o, while the actions the agent correspond to the direc-
tion of the movement (n, e, w, s). Of course, the key differ-
ence when the PRMs operate on predicates over actions is
that every label is observable from every state and hence the
MDP can generate every word, resulting in efficient mem-
bership queries. Interestingly, increasing the size of the en-
vironment where labels are observable from every state had
minimal effect on the performance of the learning. On the
other hand, if increasing the size resulted in very low proba-
bilities of observing certain labels, the algorithm struggled to
learn correct PRMs. This difference is a direct consequence
of our definition of statistical difference. The employed no-
tion of difference only distinguishes traces that have some
data recorded in the table; it does not differentiate traces if
either has no data at all. Thus, the algorithm cannot tell if
the lack of data is because traces have yet to be sampled or
if traces are unobservable. This issue can be alleviated by
introducing oracle queries capable of answering questions
regarding the observation language of the environment.

Conclusion
We introduced probabilistic reward machines as an exten-
sion of reward machines to accommodate non-Markovian
and stochastic dynamics. We developed a learning algo-
rithm to obtain PRMs from underlying decision processes
via a combination of model-free reinforcement learning and
a probabilistic variant of the L? active inference method.
While this work establishes a theoretical foundation for the
use of reward machines to learn non-Markovian stochastic
rewards, further research is needed to assess the practical-
ity of our approach. We believe that certain tweaks, such
as allowing oracle queries on the environmental observation
language or using alternative notions of statistical difference
and compatibility, will improve performance in practice.
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