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Abstract

Recent advances in reinforcement learning (RL) have led
to a growing interest in applying RL to classical planning
domains or applying classical planning methods to some
complex RL domains. However, the long-horizon goal-based
problems found in classical planning lead to sparse rewards
for RL, making direct application inefficient. In this paper, we
propose to leverage domain-independent heuristic functions
commonly used in the classical planning literature to improve
the sample efficiency of RL. These classical heuristics act as
dense reward generators to alleviate the sparse-rewards issue
and enable our RL agent to learn domain-specific value func-
tions as residuals on these heuristics, making learning eas-
ier. Correct application of this technique requires consolidat-
ing the discounted metric used in RL and the non-discounted
metric used in heuristics. We implement the value functions
using Neural Logic Machines, a neural network architecture
designed for grounded first-order logic inputs. We demon-
strate on several classical planning domains that using classi-
cal heuristics for RL allows for good sample efficiency com-
pared to sparse-reward RL. We further show that our learned
value functions generalize to novel problem instances in the
same domain. The source code and the appendix are available
at github.com/ibm/pddlrl and arxiv.org/abs/2109.14830.

Introduction
Deep reinforcement learning (RL) approaches have several
strengths over conventional approaches to decision making
problems, including compatibility with complex and un-
structured observations, little dependency on hand-crafted
models, and some robustness to stochastic environments.
However, they are notorious for their poor sample complex-
ity; e.g., it may require 1010 environment interactions to suc-
cessfully learn a policy for Montezuma’s Revenge (Badia
et al. 2020). This sample inefficiency prevents their appli-
cations in environments where such an exhaustive set of in-
teractions is physically or financially infeasible. The issue
is amplified in domains with sparse rewards and long hori-
zons, where the reward signals for success are difficult to
obtain through random interactions with the environment.

In contrast, research in AI Planning and classical planning
has been primarily driven by the identification of tractable
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fragments of originally PSPACE-complete planning prob-
lems (Bylander 1994), and the use of the cost of the tractable
relaxed problem as domain-independent heuristic guidance
for searching through the state space of the original problem.
Contrary to RL approaches, classical planning has focused
on long-horizon problems with solutions well over 1000
steps long (Jonsson 2007; Asai and Fukunaga 2015). More-
over, classical planning problems inherently have sparse
rewards — the objective of classical planning is to pro-
duce a sequence of actions that achieves a goal. However,
although domain-independence is a welcome advantage,
domain-independent methods can be vastly outperformed
by carefully engineered domain-specific methods such as
a specialized solver for Sokoban (Junghanns and Schaeffer
2000) due to the no-free-lunch theorem for search problems
(Wolpert, Macready et al. 1995). Developing such domain-
specific heuristics can require intensive engineering effort,
with payoff only in that single domain. We are thus inter-
ested in developing domain-independent methods for learn-
ing domain-specific heuristics.

In this paper, we draw on the strengths of reinforcement
learning and classical planning to propose an RL framework
for learning to solve STRIPS planning problems. We pro-
pose to leverage classical heuristics, derivable automatically
from the STRIPS model, to accelerate RL agents to learn
a domain-specific neural network value function. The value
function, in turn, improves over existing heuristics and ac-
celerates search algorithms at evaluation time.

To operationalize this idea, we use potential-based reward
shaping (Ng, Harada, and Russell 1999), a well-known RL
technique with guaranteed theoretical properties. A key in-
sight in our approach is to see classical heuristic functions as
providing dense rewards that greatly accelerate the learning
process in three ways. First, they allow for efficient, informa-
tive exploration by initializing a good baseline reactive agent
that quickly reaches a goal in each episode during training.
Second, instead of learning the value function directly, we
learn a residual on the heuristic value, making learning eas-
ier. Third, the learning agent receives a reward by reducing
the estimated cost-to-go (heuristic value). This effectively
mitigates the issue of sparse rewards by allowing the agent
to receive positive rewards more frequently.

We implement our neural network value functions as Neu-
ral Logic Machines (Dong et al. 2019, NLM), a recently pro-
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posed neural network architecture that can directly process
first-order logic (FOL) inputs, as are used in classical plan-
ning problems. NLM takes a dataset expressed in grounded
FOL representations and learns a set of (continuous relax-
ations of) lifted Horn rules. The main advantage of NLMs
is that they structurally generalize across different numbers
of terms, corresponding to objects in a STRIPS encoding.
Therefore, we find that our learned value functions are able
to generalize effectively to problem instances of arbitrary
sizes in the same domain.

We provide experimental results that validate the effec-
tiveness of the proposed approach in 8 domains from past
IPC (International Planning Competition) benchmarks, pro-
viding detailed considerations on the reproducibility of the
experiments. We find that our reward shaping approach
achieves good sample efficiency compared to sparse-reward
RL, and that the use of NLMs allows for generalization to
novel problem instances. For example, our system learns
from blocksworld instances with 2-6 objects, and the result
enhances the performance of solving instances with up to 50
objects.

Background
We denote a multi-dimensional array in bold. a; b denotes a
concatenation of tensors a and b in the last axis. Functions
(e.g., log, exp) are applied to arrays element-wise.

Classical Planning

We consider planning problems in the STRIPS subset of
PDDL (Fikes and Nilsson 1972), which for simplicity we
refer to as lifted STRIPS. We denote such a planning prob-
lem as a 5-tuple 〈O,P,A, I,G〉. O is a set of objects, P is
a set of predicates, and A is a set of actions. We denote the
arity of predicates p ∈ P and action a ∈ A as #p and #a, and
their parameters as, e.g., X = (x1, · · · , x#a). We denote the
set of predicates and actions instantiated on O as P (O) and
A(O), respectively, which is a union of Cartesian products
of predicates/actions and their arguments, i.e., they repre-
sent the set of all ground propositions and actions. A state
s ⊆ P (O) is a set of propositions that are true in that state.
An action is a 4-tuple 〈PRE(a), ADD(a), DEL(a), COST(a)〉,
where PRE(a), ADD(a), DEL(a) ∈ P (X) are preconditions,
add-effects, and delete-effects, and COST(a) ∈ R is a cost
of taking the action a. In this paper, we primarily assume
a unit-cost domain where COST(a) = 1 for all a. Given a
current state s, a ground action a† ∈ A(O) is applicable
when PRE(a†) ⊆ s, and applying an action a† to s yields a
successor state a†(s) = (s \ DEL(a†)) ∪ ADD(a†). Finally,
I,G ⊆ P (O) are the initial state and a goal condition, re-
spectively. The task of classical planning is to find a plan
(a1†, · · · , an† ) which satisfies an† ◦ · · · ◦ a1†(I) ⊇ G and ev-
ery action ai† satisfies its preconditions at the time of using
it. The machine representation of a state s and the goal con-
dition G is a bitvector of size |P (O)| =

∑
p∈P O

#p, i.e.,
the i-th value of the vector is 1 when the corresponding i-th
proposition is in s, or G.

Markov Decision Processes
In general, RL methods address domains modeled as a
discounted Markov decision processes (MDP), M =
〈S,A, T, r, q0, γ〉 where S is a set of states, A is a set of
actions, T (s, a, s′) : S ×A×S → [0, 1] encodes the proba-
bility Pr(s′|s, a) of transitioning from a state s to a succes-
sor state s′ by an action a, r(s, a, s′) : S × A × S → R is
a reward function, q0 is a probability distribution over initial
states, and 0 ≤ γ < 1 is a discount factor. In this paper, we
restrict our attention to deterministic models because PDDL
domains are deterministic, and we have a deterministic map-
ping T ′ : S × A → S . Given a policy π : S × A → [0, 1]
representing a probability Pr(a|s) of performing an action
a in a state s, we define a sequence of random variables
{St}∞t=0, {At}∞t=0 and {Rt}∞t=0, representing states, actions
and rewards over time t.

Our goal is to find a policy maximizing its long term
discounted cumulative rewards, formally defined as a value
function Vγ,π(s) = EAt∼π(St,·) [

∑∞
t=0 γ

tRt | S0 = s] .
We also define an action-value function to be
the value of executing a given action and subse-
quently following some policy π, i.e., Qγ,π(s, a) =
ES1∼T (s,a,·) [R0 + γVγ,π(S1) | S0 = s,A0 = a] . An op-
timal policy π∗ is a policy that achieves the optimal value
function V ∗γ = Vγ,π∗ that satisfies V ∗γ (s) ≥ Vγ,π(s) for all
states and policies. V ∗γ satisfies Bellman’s equation:

V ∗γ (s) = max
a∈A

Q∗γ(s, a) ∀s ∈ S, (1)

whereQ∗γ = Qγ,π∗ is referred to as the optimal action-value
function. We may omit π in Vγ,π , Qγ,π for clarity.

Finally, we can define a policy by mapping action-values
in each state to a probability distribution over actions. For
example, given an action-value function, Q, we can define
a policy π(s, a) = SOFTMAX(Q(s, a)/τ), where τ > 0 is
a temperature that controls the greediness of the policy. It
returns a greedy policy arg maxaQ(s, a) when τ → 0; and
approaches a uniform policy when τ →∞.

Formulating Classical Planning as an MDP
There are two typical ways to formulate a classical plan-
ning problem as an MDP. In one strategy, given a transition
(s, a, s′), one may assign a reward of 1 when s′ ∈ G, and
0 otherwise (Rivlin, Hazan, and Karpas 2019). In another
strategy, one may assign a reward of 0 when s ∈ G, and −1
otherwise (or, more generally −COST(a) in a non-unit-cost
domain). In this paper we use the second, negative-reward
model because it tends to induce more effective exploration
in RL due to optimistic initial values (Sutton and Barto
2018). Both cases are considered sparse reward problems
because there is no information about whether one action
sequence is better than another until a goal state is reached.

Bridging Deep RL and AI Planning
We consider a multitask learning setting with a training time
and a test time (Fern, Khardon, and Tadepalli 2011). During
training, classical planning problems from a single domain
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are available. At test time, methods are evaluated on held-
out problems from the same domain. The transition model
(in PDDL form) is known at both training and test time.

Learning to improve planning has been considered in RL.
For example, in AlphaGo (Silver et al. 2016), a value func-
tion was learned to provide heuristic guidance to Monte
Carlo Tree Search (Kocsis and Szepesvári 2006). Apply-
ing RL techniques in our classical planning setting, however,
presents unique challenges.

(P1): Preconditions and dead-ends. In MDPs, a failure
to perform an action is typically handled as a self-cycle to
the current state in order to guarantee that the state transition
probability T is well-defined for all states. Another formula-
tion augments the state space with an absorbing state with a
highly negative reward. In contrast, classical planning does
not handle non-deterministic outcomes (success and failure).
Instead, actions are forbidden at a state when its precondi-
tions are not satisfied, and a state is called a dead-end when
no actions are applicable. In a self-cycle formulation, ran-
dom interaction with the environment could be inefficient
due to repeated attempts to perform inapplicable actions.
Also, the second formulation requires assigning an ad-hoc
amount of negative reward to an absorbing state, which is
not appealing.

(P2): Objective functions. While the MDP framework
itself does not necessarily assume discounting, the majority
of RL applications aim to maximize the expected cumula-
tive discounted rewards of trajectories. In contrast, classi-
cal planning tries to minimize the sum of costs (negative
rewards) along trajectories, i.e., cumulative undiscounted
costs, thus carrying the concepts in classical planning over
to RL requires caution.

(P3): Input representations. While much of the deep RL
literature assumes an unstructured (e.g., images in Atari) or
a factored input representation (e.g., location and velocity
in cartpole), classical planning deals with structured inputs
based on FOL to perform domain- and problem-independent
planning. This is problematic for typical neural networks,
which assume a fixed-sized input. Recently, several network
architectures were proposed to achieve invariance to size
and ordering, i.e., neural networks for set-like inputs (Zaheer
et al. 2017). Graph/Hypergraph Neural Networks (Scarselli
et al. 2009; Rivlin, Hazan, and Karpas 2019; Shen, Trevizan,
and Thiébaux 2020; Ma et al. 2020, GNNs/HGNs) have also
been recently used to encode FOL inputs. While the choice
of the architecture is arbitrary, our network should be able to
handle FOL inputs.

Value Iteration for Classical Planning
Our main approach will be to learn a value function that
can be used as a heuristic to guide planning. To learn es-
timated value functions, we build on the value iteration (VI)
algorithm (line 1, Algorithm 1), where a known model of
the dynamics is used to incrementally update the estimates
Vγ,π(s) of the optimal value function Vγ,π∗(s). The current
estimates Vγ,π(s) is updated by the r.h.s. of Eq. 1 until a fix-
point is reached. In classical planning, however, state spaces
are too large to enumerate its states (line 3), or to represent
the estimates Vγ,π(s) in a tabular form (line 4).

Algorithm 1: VI, RTDP, RTDP for Classical Planning
1: Value Iteration (VI):
2: while not converged do
3: for s ∈ S do
4: Vγ,π(s)← maxa∈AQγ,π(s, a)

5: Approximate RTDP with Replay Buffer:
6: Buffer B ← ∅
7: while not converged do
8: s ∼ q0, t← 0
9: while t < D and s is non-terminal do

10: a← arg maxaQγ,π(s, a)
11: s← T ′(s, a)
12: B.push(s)

13: SGD( 12 (Vγ,π(s)− Ea∈AQγ,π(s, a))
2
, B)

14: t← t+ 1

15: Approximate RTDP for Classical Planning:
16: Buffer B ← [∅, ∅, ∅, . . .]
17: while not converged do
18: 〈D, O, I,G〉 ∼ q0, t← 0, s← I ,
19: while t < D, s 6∈ G, s is not a deadlock do
20: a← arg maxa∈{a|PRE(a)⊆s}Qγ,π(s, a)

21: s← T ′(s, a)
22: B[|O|].push(s)

23: SGD( 12 (Vγ,π(s)− Ea∈AQγ,π(s, a))
2
, B)

24: t← t+ 1

To avoid the exhaustive enumeration of states in VI,
Real Time Dynamic Programming (Sutton and Barto 2018,
RTDP, line 5) samples a subset of the state space based on
the current policy. In this work, we use on-policy RTDP,
which replaces the second maxa with Ea (line 13) for the
current policy defined by the SOFTMAX of the current
action-value estimates. On-policy methods are known to be
more stable but can sometimes lead to slower convergence.

Next, to avoid representing the value estimates in an ex-
haustive table, we encode Vγ,π using a neural network pa-
rameterized by weights θ and applying the Bellman updates
approximately with Stochastic Gradient Descent (line 13).

As a common practice called experience replay (Lin
1993; Mnih et al. 2015), we store the state history into a
fixed-sized FIFO buffer B (lines 6-12), and update Vγ,π(s)
with mini-batches sampled from B to leverage GPU paral-
lelism. The oldest record retires when |B| reaches a limit.

We modify RTDP to address the assumptions (P1) in clas-
sical planning, resulting in line 15. First, in our multitask set-
ting, where goals vary between problem instances, we wish
to learn a single goal-parameterized value function that gen-
eralizes across problems (Schaul et al. 2015). We omitted the
goal for notational concision, but all of our value functions
are implicitly goal-parameterized, i.e., V (s) = V (s,G).

Next, problem instances with different numbers of ob-
jects have state representations (tensors) of varying sizes and
dimensions. Such a set of arrays with non-uniform shapes
makes it challenging from a mini-batch processing on GPUs.
Moreover, since larger problem instances typically require
more steps to solve, states from these problems are likely to
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dominate the replay buffer. This can make updates to states
from smaller problems rare, which can lead to catastrophic
forgetting. To address this, we separate the buffer into buck-
ets (line 22), where states in one bucket are from problem
instances with the same number of objects. When we sam-
ple a mini-batch, we randomly select a bucket and randomly
select states from this bucket.

Next, instead of terminating the inner loop and sampling
the initial state in the same state space, we redefine q0 to be
a distribution of problem instances, and select a new training
instance and start from its initial state (line 18).

Finally, since arg maxa in RTDP is not possible at a state
with no applicable actions (a.k.a. deadlock), we reset the en-
vironment upon entering such a state (line 19). We also se-
lect actions only from applicable actions and do not treat an
inapplicable action as a self-cycle (line 20). Indeed, training
a value function along a trajectory that includes self-cycles
has no benefit because the test-time agents never execute
them due to duplicate detection.

Planning Heuristics as Dense Rewards
The fundamental difficulty of applying RL-based ap-
proaches to classical planning is the lack of dense reward to
guide exploration. We address this by combining heuristic
functions (e.g., hFF, hadd) with a technique called potential-
based reward shaping. To correctly perform this technique,
we should take care of the difference between the discounted
and non-discounted objectives (P2).

Potential-based reward shaping (Ng, Harada, and Russell
1999) is a technique that helps RL algorithms by modifying
the reward function r. Formally, with a potential function
φ : S → R, a function of states, we define a shaped reward
function on transitions, r̂ : S ×A× S → R, as follows:

r̂(s, a, s′) = r(s, a, s′) + γφ(s′)− φ(s). (2)

Let M̂ be a MDP with a shaped reward r̂, and M be the
original MDP. When the discount factor γ < 1, or when
the MDP is proper, i.e., every policy eventually (t → ∞)
reaches a terminal state with probability 1 under γ = 1,
any optimal policy π̂∗ of M̂ is an optimal policy π∗ ofM
regardless of φ, thus RL converges to an policy optimal in
the original MDP M. Also, the optimal value function V̂ ∗γ
under M̂ satisfies

V ∗γ (s) = V̂ ∗γ (s) + φ(s). (3)

In other words, an agent trained in M̂ is learning an off-
set of the original optimal value function from the potential
function. The potential function thus acts as prior knowledge
about the environment, which initializes the value function
to non-zero values (Wiewiora 2003).

Building on this theoretical background, we propose to
leverage existing domain-independent heuristics to define a
potential function that guides the agent while it learns to
solve a given domain. A naive approach that implements
this idea is to define φ(s) = −h(s). The h value is negated
because the MDP formulation seeks to maximize reward
and h is an estimate of cost-to-go, which should be min-
imized. Note that the agent receives an additional reward

when γφ(s′)− φ(s) is positive (Eq. 2). When φ = −h, this
means that approaching toward the goal and reducing h is
treated as a reward signal. Effectively, this allows us to use
a domain-independent planning heuristic to generate dense
rewards that aid in the RL algorithm’s exploration.

However, this straightforward implementation has two is-
sues: (1) First, when the problem contains a dead-end, the
function may return ∞, i.e., h : S → R+0 ∪ {∞}. This
causes a numerical error in gradient-based optimization. (2)
Second, the value function still requires a correction even if
h is the “perfect” oracle heuristic h∗. Recall that V ∗γ is the
optimal discounted value function with−1 rewards per step.
Given an optimal unit-cost cost-to-go h∗(s) of a state s, the
discounted value function and the non-discounted cost-to-go
can be associated as follows:

V ∗γ (s) =

h∗(s)∑
t=1

γt · (−1) = −1− γh∗(s)

1− γ
6= −h∗(s). (4)

Therefore, the amount of correction needed (i.e., V̂ ∗γ (s) =
V ∗γ (s) − φ(s)) is not zero even in the presence of an ora-
cle φ = −h∗. This is a direct consequence of discounting
difference.

To address these issues, we propose to use the discounted
value of the heuristic function as a potential function. Recall
that a heuristic function h(s) is an estimate of the cost-to-go
from the current state s to a goal. Since h(s) does not pro-
vide a concrete idea of how to reach a goal, we tend to treat
it as a black box. An important realization, however, is that it
nevertheless represents a sequence of actions; thus its value
can be decomposed into a sum of action costs (below, left),
and we define a corresponding discounted heuristic function
hγ(s) (below, right):

h(s) =

h(s)∑
t=1

1, hγ(s) =

h(s)∑
t=1

γt · 1 =
1− γh(s)

1− γ
. (5)

Notice that φ = −h∗γ results in V̂ ∗γ (s) = 0. Also, hγ is
bounded within [0, 1

1−γ ], avoiding numerical issues.

Value-Function Generalized over Problems
To learn domain-dependent, instance-independent heuris-
tics, the value function used in the reward-shaping frame-
work discussed above must be invariant to the number, the
order, and the textual representation of propositions and ob-
jects in a PDDL definition (P3). We propose the use of Neu-
ral Logic Machines (Dong et al. 2019, NLMs), a differen-
tiable ILP system for a learning task over FOL inputs. Be-
low, we describe how it works and how we encode and pass
states s and goal condition G to NLM to obtain V (s,G).

Neural Logic Machines NLMs represent a state in terms
of binary arrays representing the truth value of each propo-
sition. Propositions are grouped by the arity N of the predi-
cates they were grounded from. This forms a set of (N+1)-d
arrays denoted as z/N , where the leading dimensions are in-
dexed by objects and the last dimension is indexed by pred-
icates of arity N . For example, when we have objects a,
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b, c and four binary predicates on, connected, above and
larger, we enumerate all combinations on(a,a), on(a,b) ...
larger(c,c), resulting in an array z/2 ∈ [0, 1]3×3×4. Simi-
larly, we may have z/1 ∈ [0, 1]3×2 for 2 unary predicates,
and z/3 ∈ [0, 1]3×3×3×5 for 5 ternary predicates. The to-
tal number of elements in all arrays combined matches the
number of propositions |P (O)| =

∑
p∈P O

#p. In the fol-
lowing, we call this representation a Multi-Arity Predicate
Representation (MAPR).

NLMs are designed to learn a class of FOL rules with the
following set of restrictions: Every rule is a Horn rule, no
rule contains function terms (such as a function that returns
an object), there is no recursion, and all rules are applied
between neighboring arities. Due to the lack of recursion,
the set of rules can be stratified into layers. Let Pk be a set of
intermediate conclusions in the k-th stratum. The following
set of rules are sufficient for representing any rules in this
class of rules (Dong et al. 2019):

(expand) ∀x#pk ; pk(X;x#pk)← pk(X),

(reduce) pk(X)← ∃x#pk ; pk(X;x#pk),

(compose) pk+1(X)←

F

(⋃
π

((
Pk ∪ Pk ∪ Pk)/#pk+1

)
(π(X))

))
.

Here, pk, pk, pk, pk+1 ∈ Pk, Pk, Pk, Pk+1 (respectively) are
predicates, X = (x1, . . .) is a sequence of parameters, and
F(T ) is a formula consisting of logical operations {∧,∨,¬}
and terms T . Intermediate predicates pk and pk have one less
/ one more parameters than pk, e.g., when #pk = 3, #pk = 4
and #pk = 2. (Pk ∪ Pk ∪ Pk)/#pk+1 extracts the predicates
whose arity is the same as that of pk+1. π(X) is a permuta-
tion of X , and

⋃
π iterates over π to generate propositional

groundings with various argument orders. F(·) represents
a formula that combines a subset of input propositions. By
chaining these set of rules from Pk to Pk+1 for a sufficient
number of times (e.g., from P1 to P5), it is able to represent
any FOL Horn rules without recursions (Dong et al. 2019).

All three operations (expand, reduce, and compose) can
be implemented as tensor operations over MAPRs (Figure
1). Given a binary tensor z/n of shape On × |P/n|, expand
copies the n-th axis to n + 1-th axis resulting in a shape
On+1×|P/n|, and reduce takes the max of n-th axis result-
ing in a shape On−1 × |P/n|, representing ∃.

Finally, the COMPOSE operation combines the informa-
tion between the neighboring tensors z/n, z/n−1, z/n+1. In
order to use the information in the neighboring arities (P , P
and P ), the input concatenates z/n with EXPAND(z/n−1)
and REDUCE(z/n+1), resulting in a shape On × C where
C = |P/n| + |P/n−1| + |P/n+1|. Next, a PERM function
enumerates and concatenates the results of permuting the
first n axes in the tensor, resulting in a shape On × (!n ·C).
It then applies a n-D pointwise convolutional filter fn with
Q output features, resulting in On × Q, i.e., applying a
fully connected layer to each vector of length !n · C while
sharing the weights. It is activated by any nonlinearity σ
to obtain the final result, which is a sigmoid activation
function in our implementation. We denote the result as

aa ab ac
ba bb bc

cc

z/2

z/1

z/0
expand

{
{

{
reduce

(horizontal copying)

a b c

(vertical max)

a b c
a
b
c

aa ab ac
ba bb bc
ca cb cc aa

ab
ac

ba
bb
bc

ca
cb
cc

Perm

aa

ac

ca

cc3x3x4
(O=3,|P/2|=4) 3x3x(!2・4)

fc x 9
pointwise conv

(shared weight)     
output

(!2 output)

ab

a b c

a
b
c

a b c

Figure 1: (Left) EXPAND and REDUCE operations performed
on a boolean MAPR containing nullary, unary, and binary
predicates and three objects, a, b, and c. Each white / black
square represents a boolean value (true / false). (Right)
COMPOSE operation performed on 4 binary predicates. Each
predicate is represented as a 3 × 3 matrix, resulting in a
R3×3×4 tensor. For a matrix, PERM is equivalent to con-
catenating the matrix with its transposition, resulting in a
R3×3×(!2·4) tensor. After PERM, a shared fully-connected
layer is applied to each combination of arguments (such an
operation is sometimes called a pointwise convolution).

COMPOSE(z, n,Q, σ). Formally, ∀j ∈ 1..n, ∀oj ∈ 1..O,

Π(z) = PERM
(

EXPAND(z/n−1); z/n; REDUCE(z/n+1)
)
,

COMPOSE(z, n,Q, σ)o1···on = σ(fn(Π(z)o1···on)) ∈ RQ.
An NLM contains N (the maximum arity) COM-

POSE operation for the neighboring arities, with appro-
priately omitting both ends (0 and N + 1) from the
concatenation. We denote the result as NLMQ,σ(z) =
(COMPOSE(z, 1, Q, σ), · · · , COMPOSE(z, N,Q, σ)). These
horizontal arity-wise compositions can be layered vertically,
allowing the composition of predicates whose arities differ
more than 1 (e.g., two layers of NLM can combine unary
and quaternary predicates). Since fn is applied in a convolu-
tional manner over On object tuples, the number of weights
in an NLM layer does not depend on the number of objects
in the input. However, it is still affected by the number of
predicates in the input, which alters C.

NLMs/GNNs/HGNs We prefer NLMs over GNNs/HGNs
for two reasons. First, unlike GNNs/HGNs, operations in
NLMs have clear logical interpretations: ∀/∃ (REDUCE /
EXPAND) and combining input formula with different argu-
ments (COMPOSE). Next, the arity in NLMs’ hidden layers
can be EXPAND-ed arbitrarily large. GNNs are limited to bi-
nary/unary relations (edge/node-embeddings). The arity of a
hidden HGN layer can be higher, but must match the input.
FactorGNN (Zhang, Wu, and Lee 2020) is similar.

Value Function as NLMs To represent a goal-generalized
value function V (s,G) with NLMs, we concatenate each el-
ement of two sets of binary arrays: One set representing the
current state and another the goal conditions. The last di-
mension of each array in the resulting set is twice larger.

When the predicates in the input PDDL domain have a
maximum arity N , we specify the maximum intermediate
arity M and the depth of NLM layers L as a hyperparame-
ter. The intermediate NLM layers expand the arity up to M
using EXPAND operation, and shrink the arity near the out-
put because a value function has a scalar (arity 0) output.
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For example, with N = 2, M = 3, L = 7, the arity of each
layer follows (2, 3, 3, 3, 2, 1, 0). Higher arities are not nec-
essary near the output because the information in each layer
propagates only to the neighboring arities. Since each ex-
pand/reduce operation only increments/decrements the arity
by one, L,N,M must satisfy N ≤ M ≤ L. Intermediate
conclusions in NLM is fixed to Q = 8.

The output of this NLM is unactivated, similar to a regres-
sion task, because we use its raw value as the predicted cor-
rection to the heuristic function. In addition, we implement
NLM with a skip connection that was popularized in ResNet
image classification network (He et al. 2016): The input of
l-th layer is a concatenation of the outputs of all previous
layers. Due to the direct connections between the layers in
various depths, the layers near the input receive more gra-
dient information from the output, preventing the gradient
vanishing problem in deep neural networks.

Experimental Evaluation
Our objective is to see whether our RL agent can improve the
efficiency of a Greedy Best-First Search (GBFS), a standard
algorithm for solving satisficing planning problems, over a
domain-independent heuristic. The efficiency is measured
by the number of node-evaluations performed during search.
We also place an emphasis on generalization: We hope that
NLMs are able to generalize from smaller training instances
with fewer objects to instances with more objects.

We train our RL agent with rewards shaped by hFF and
hadd heuristics obtained from pyperplan library. We write
blind heuristic ∀s;hbl(s) = 1 to denote a baseline without
shaping. While our program is compatible with a wide range
of unit-cost IPC domains (see the list of 25 domains in the
appendix), we focus on extensively testing its selected sub-
set with a large enough number of independently trained
models with different random seeds (20), to produce high-
confidence results. This is because RL algorithms tend to
have a large variance in their outcomes (Henderson et al.
2018), induced by sensitivity to initialization, randomization
in exploration, and randomization in experience replay.

We trained our system on five domains in (Rivlin, Hazan,
and Karpas 2019): 4-ops blocksworld, ferry, gripper, logis-
tics, satellite, and three additional IPC domains: miconic,
parking, and visitall. In all domains, we generated problem
instances using existing parameterized generators (Fawcett
et al. 2011). For each domain, we provided between 195
and 500 instances for training, and between 250 and 700
instances for testing. The generator parameters for test in-
stances contain the ranges used for IPC instances. We re-
move trivial instances whose initial states satisfy the goals,
which are produced by the generators occasionally, espe-
cially for small parameter values used for training instances.
Each agent is trained for 50000 steps, which takes about 4
to 6 hours on Xeon E5-2600 v4 and Tesla K80. The domain
generator parameters and the training hyperparameters can
be found in the appendix.

We ran GBFS on the test instances using −V (s,G) =

−V̂ (s,G) +hγ(s) as a heuristics. (Discounting does not af-
fect the expansion order in GBFS and unit cost domains.) In-

stead of setting time or memory limits, we limited the max-
imum node evaluations in GBFS to 100,000. If a problem
was solved within the limit, the configuration gets the score
1 for that instance, otherwise it gets 0. The sum of the scores
for each domain is called the coverage in that domain. Table
1 shows the coverage in each of the tested domains, compar-
ing our configurations to the baselines, as well as to the prior
work (Section ). The baselines are denoted by their heuris-
tic (e.g., hFF is the GBFS with hFF), while our heuristics,
obtained by a training with reward shaping φ = −hγ , are
denoted with a capital H (e.g., HFF). Additionally, Figure 2
goes beyond the pure coverage and compares the node eval-
uations. These results answer the following questions:

(Q1) Do our agents learn heuristic functions at all, i.e.,
is GBFS(hbl) < GBFS(Hbl) (green dots in Figure 2),
where GBFS(hbl) is similar to breadth-first search with du-
plicate detection, and GBFS(Hbl) is baseline RL without re-
ward shaping? With the exception of visitall and miconic,
GBFS(hbl) could not solve any instances in the test set, while
using the heuristics learned without shaping (GBFS(Hbl))
significantly improved coverage in 5 of the 6 domains.

(Q2) Do they improve over the baselines they were initial-
ized with, i.e., is GBFS(h) < GBFS(H)? In domains where
they did not solve every instances (blocks, ferry, logistics,
parking, satellite), Table 1 suggests that the reward-shaping-
based training has successfully improved the coverage in
blocks, ferry, parking. Since the number of solved instances
is not a useful metric in domains where both configura-
tions solved nearly all instances (lack of coverage improve-
ment does not imply lack of improvement in efficiency), we
next compare the number of node evaluations, which di-
rectly evaluates the search efficiency. Figure 2 shows that
the search effort tends to be reduced, especially on the best
seed. However, this is sensitive to the random seed, and the
improvement is weak on logistics. These results suggest that
while RL can improve the planning efficiency, we need sev-
eral iterations of random experiments to achieve improve-
ments due to the high randomness of RL.

(Q3) Do our agents with reward shaping outperform our
agents without shaping? According to Table 1, HFF and
Hadd outperforms Hbl. Notice that hFF and hadd also outper-
form hbl. This suggest that the informativeness of the base
heuristic used for reward shaping affects the quality of the
learned heuristic. This matches the theoretical expectation:
The potential function plays the role of domain knowledge
that initializes the policy.

(Q4) Did heuristics accelerate exploration during training
and contribute to the improvement? Table 2 shows the num-
ber of goals reached during training, indicating that reward
shaping helps the agent receive real rewards at goals more
often. See the appendix figures for cumulative plots.

(Q5) Do the learned heuristics maintain their improve-
ment in larger problem instances, i.e., do they generalize
to more objects? Figure 2 (Right) plots the number of ob-
jects (x-axis) and the ratio of success (y-axis) over blocks
instances. The agents are trained on 2-6 objects while evalu-
ated on 10-50 objects. It shows that the heuristic accuracy is
improved in instances whose size far exceeds the training in-
stances for hbl, hFF, hadd. Due to space limitations, plots for
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Baselines Ours (mean±stderr (max) of 20 runs) GBFS GBFS GBFLS
(incomparable)

domain (total) hbl hadd hFF Hbl Hadd HFF -HGN -H -V (-H -V)

blocks (250) 0 126 87 73.1±2.8(94) 186.6±7.5(229) 104±1.5(114) 3 208 0 250 250
ferry (250) 0 138 250 40.4±3.2(62) 233.9±4(249) � 250±0(250) 27 240 0 250 250

gripper (250) 0 250 250 47.5±5(85) � 250±0(250) � 250±0(250) 63 139 0 250 250
logistics (250) 0 106 243 0±0(0) 54.1±6.8(115) 79.8±12.9(189) - 0 0 30 33
miconic (442) 171 442 442 143.3±6.8(246) � 442±0(442) � 440.8±1.3(442) - 0 0 442 442
parking (700) 0 607 700 0.9±0.2(3) 619±32.4(689) � 696.9±0.5(700) - 333 0 403 357
satellite (250) 0 249 222 26.5±5(99) � 233.3±5.2(250) 163.2±11(205) - 9 0 137 135

visitall (252) 252 252 252 207.6±5.3(238) � 251.9±0.1(252) � 252±0(252) - 101 0 249 249

Table 1: Coverage of GBFS with 100,000 node evaluations limit. Our scores are highlighted in bold and underline when our
average score is significantly better/worse than the baseline (|ours − baseline| > stderr, where stderr = stdev√

20
). Some scores

are � marked for caution when both ours and baselines solved nearly all instances. They were too easy to measure coverage
differences, and thus the lack thereof does not imply the lack of improvement in the heuristics. Instead, node evaluation plots
(Figure 2) show reduction in the search effort. In conclusion, our approach generally improves the performance in many domains
except logistics, where only the best seed of hadd managed to improve upon the baseline (106→ 115).

domain hbl hadd hFF

blocks 362±42 527±58 621±31
ferry 516±52 976±19 949±21
gripper 275±33 673±18 600±20
logistics 93±21 502±33 488±32
miconic 542±18 708±9 722±9
parking 400±51 809±24 814±27
satellite 212±37 658±34 654±26
visitall 211±22 198±20 350±17

Table 2: The cumulative number of goal states the agent has
reached during training. The numbers are average and stan-
dard deviation over 20 seeds. Best numbers among heuris-
tics are highlighted in bold, with ties equally highlighted
when there are no statistically significant differences be-
tween them under Wilcoxon’s rank-sum test (p ≥ 0.05). The
results indicate that reward shaping significantly accelerates
the exploration compared to no shaping (hbl).

the remaining domains are in the appendix.

Comparison with Previous Work Next, we compared
our learned heuristics with two recent state-of-the-art
learned heuristics. The first approach, STRIPS-HGN (Shen,
Trevizan, and Thiébaux 2020), is a supervised learn-
ing method that can learn domain-dependent or domain-
independent heuristics depending on the dataset. It uses hy-
pergraph networks (HGN), a generalization of Graph Neu-
ral Networks (GNNs) (Scarselli et al. 2009). The authors
have provided us with pre-trained weights for three domains:
gripper, ferry, and blocksworld for the domain-dependent set-
ting. STRIPS-HGN was originally developed and evaluated
for use with A∗, for obtaining near-optimal plans. Since we
do not optimize plan quality in this work, we instead use
it with GBFS to find goals more quickly at the expense of
plan quality. We recognize it may not have been designed for
this scenario and that therefore may not best demonstrate its

strengths. It remains useful as a baseline point of compari-
son for our work. We denote this variant GBFS-HGN.

The second approach we compare to is GBFS-GNN
(Rivlin, Hazan, and Karpas 2019), an RL-based heuristic
learning method that trains a GNN-based value function.
The authors use Proximal Policy Optimization (Schulman
et al. 2017), a state of the art RL method that stabilizes
the training by limiting the amount of policy change in
each step (the updated policy stays in the proximity of the
previous policy). The value function V (s) is a GNN op-
tionally equipped with attentions (Veličković et al. 2018;
Vaswani et al. 2017). In addition, the authors proposed to
adjust V (s) by the policy π(a|s) and its entropy Hπ =∑
a π(a|s) log π(a|s). The heuristic value of the successor

state s′ = a(s) is given by h(s′) = π(a|s)V (s)
1+Hπ

. We call it an
entropy-adjusted value function.

The authors also proposed a variant of GBFS which
launches a greedy informed local search after each expan-
sion. We distinguish their algorithmic improvement and the
heuristics improvement by naming their search algorithm as
Greedy Best First Lookahead Search (GBFLS). Our formal
rendition of GBFLS can be found in the appendix.

We counted the number of test instances that are solved
by these approaches within 100,000 node evaluations. In
the case of GBFLS, the evaluations also include the nodes
that appear during the lookahead. We evaluated GBFS-HGN
on the domains where pretrained weights are available. For
GBFS-GNN, we obtained the source code from the au-
thors (private communication) and minimally modified it to
train on the same training instances that we used for our
approach. We evaluated 4 variants of GBFS-GNN: GBFS-
H, GBFS-V, GBFLS-H, and GBFLS-V, where “H” denotes
entropy-adjusted value function, and “V” denotes the origi-
nal value function. Note that fair evaluation should compare
our method with GBFS-H/V, not GBFLS-H/V.

Table 1 shows the results. We first observe that large part
of the success of GBFS-GNN should be attributed to the
lookahead extension of GBFS. This is because the score
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Hbl hbl Hadd hadd HFF hFF

blocks 94 0 224 5 109 9
ferry 62 0 249 0 250 0
gripper 85 0 250 0 200 50
logistics 0 0 108 14 167 77
miconic 234 17 381 61 442 0
parking 2 0 508 105 484 173
satellite 93 0 115 110 155 63
visitall 192 60 216 36 192 59

Figure 2: Best on computer screens. Remaining domains are in the appendix. (Left, Top) Number of instances where
GBFS(Hx) had less evaluations than GBFS(hx) did (and vice versa), excluding ties and instances failed by both. GBFS(Hx)
is a result of the best training seed with the least sum of evaluations across the instances in a domain. They show that RL im-
proves the performance both with (HFF, Hadd) and without (Hbl) reward shaping in the best case. (Right) Scatter plot showing
the number of node evaluations on 8 domains, where x-axis is for GBFS with hbl, hFF, hadd and y-axis is for Hbl, HFF, Hadd.
Each point corresponds to a single test problem instance. Results of 20 random seeds are plotted against a single determinis-
tic baseline. Failed instances are plotted on the border. Red points highlight the best seed from HFF. (Left, Bottom) The rate
of finding a solution (y-axis) for blocks instances and the number of objects (x-axis), demonstrating that the improvements
generalize to larger instances. The agents are trained on 2-6 objects while the test instances contain 10-50 objects.

is GBFLS-V � GBFS-H � GBFS-V, i.e., GBFLS-V per-
forms very well even with a bad heuristics (V (s)). While
we report the coverage for both GBFLS-H/V and GBFS-
H/V, the configurations that are comparable to our setting
are GBFS-H/V. First, note that GBFS-HGN is significantly
outperformed by all other methods. Comparing to the other
two, both Hadd and HFF outperform GBFS-H in 7 out of the
8 domains, losing only on blocks. It is worth noting that Hbl

outperforms GBFS-H in miconic, satellite, and visitall. Since
both Hbl and GBFS-H are trained without reward shaping,
the difference is due to the network shape (NLM vs GNN)
and the training (Modified RTDP vs PPO).

Related Work
Early attempts to learn heuristics include shallow, fully con-
nected neural networks (Arfaee, Zilles, and Holte 2011), its
online version (Thayer, Dionne, and Ruml 2011), combin-
ing SVMs (Cortes and Vapnik 1995) and NNs (Satzger and
Kramer 2013), learning a residual from heuristics (Yoon,
Fern, and Givan 2008), or learning a relative ranking be-
tween states (Garrett, Kaelbling, and Lozano-Pérez 2016).
More recently, Ferber, Helmert, and Hoffmann (2020)
tested fully-connected layers in modern frameworks. ASNet
(Toyer et al. 2018) learns domain-dependent heuristics using
a GNN-like network. They are based on supervised learning
methods that require the high-quality training dataset (accu-
rate goal distance estimates of states) that are prepared sep-
arately. Our RL-based approaches explore the environment
by itself to collect data, which is automated (pros) but could
be sample-inefficient (cons).

A large body of work utilize ILP techniques to learn a

value function (Gretton and Thiébaux 2004) features (Wu
and Givan 2010), pruning rules (Krajnanský et al. 2014), or
a policy function by classifying the best action (Fern, Yoon,
and Givan 2006). NLM is a differentiable ILP system that
subsumes first-order decision lists / trees used in ILP.

Other RL-based approaches include Policy Gradient with
FF to accelerate exploration for probabilistic PDDL (Buf-
fet, Aberdeen et al. 2007), and PPO-based Meta-RL (Duan
et al. 2016) for PDDL3.1 discrete-continuous hybrid do-
mains (Gutierrez and Leonetti 2021). They do not use re-
ward shaping, thus our contributions are orthogonal.

Grounds and Kudenko (2005) combined RL and STRIPS
planning with reward shaping, but in a significantly different
setting: They treat a 2D navigation as a two-tier hierarchical
problem where unmodified FF (Hoffmann and Nebel 2001)
or Fast Downward (Helmert 2006) are used as high-level
planner, then their plans are used to shape the rewards for the
low-level RL agent. They do not train the high-level planner.

Conclusion
In this paper, we proposed a domain-independent rein-
forcement learning framework for learning domain-specific
heuristic functions. We addressed the difficulty of training
an RL agent with sparse rewards using a novel reward-
shaping technique that leverages existing heuristic func-
tions. We showed that our framework not only learns a
heuristic function from scratch (Hbl), but also learns bet-
ter if aided by heuristic functions (reward shaping). Further-
more, the learned heuristics outperform the baseline across
a wide range of problem sizes, demonstrating its generaliza-
tion over the number of objects in the environment.
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