
TempAMLSI: Temporal Action Model Learning Based on STRIPS Translation

Maxence Grand, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes, LIG, Grenoble, France

{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr

Abstract

Hand-encoding PDDL domains is generally considered dif-
ficult, tedious and error-prone. The difficulty is even greater
when temporal domains have to be encoded. Indeed, actions
have a duration and their effects are not instantaneous. In this
paper, we present TempAMLSI, an algorithm based on the
AMLSI approach to learn temporal domains. TempAMLSI is
the first approach able to learn temporal domains with Single
Hard Envelopes, and TempAMLSI is the first approach able
to deal with both partial and noisy observations. We show ex-
perimentally that TempAMLSI learns accurate temporal do-
mains, i.e., temporal domains that can be used without human
proofreading to solve new planning problems with different
forms of action concurrency.

1 Introduction
Hand-encoding and proofreading PDDL domains is gener-
ally considered difficult, tedious and error-prone by experts,
and this is even harder with temporal actions. It is therefore
essential to develop tools allowing to automatically learn
PDDL domains.

To facilitate non-temporal PDDL domain acquisition, dif-
ferent machine learning algorithms have been proposed:
ARMS (Yang, Wu, and Jiang 2007), SLAF (Shahaf and
Amir 2006), Louga (Kucera and Barták 2018), LSONIO
(Mourão et al. 2012), LOCM (Cresswell, McCluskey, and
West 2013), IRale (Rodrigues, Gérard, and Rouveirol 2010),
PlanMilner (Segura-Muros, Pérez, and Fernández-Olivares
2018). In these approaches, training data are either (possibly
noisy and partial) intermediate states and plans previously
generated by a planner, or randomly generated action se-
quences (i.e. random walks). A major open issue is to learn
Temporal PDDL domains (Fox and Long 2003). Temporal
PDDL Domains are domains allowing to represent durative
actions, i.e. actions that have a duration, and whose precon-
ditions and effects must be satisfied and applied at different
times. An important property of durative actions is that they
can be executed concurrently.

Temporal PDDL domains have different levels of action
concurrency (Cushing et al. 2007). Some are sequential,
which means that all the plan parts containing overlapping

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

durative actions can be rescheduled into a completely se-
quential succession of durative actions: each durative action
starts after the previous durative action is terminated. One
important property of sequential temporal domains is that
they can be rewritten as non-temporal domains, and there-
fore used by classical planners. Some temporal domains re-
quire other forms of action concurrency such as Single Hard
Envelope (SHE) (Coles et al. 2009). SHE is a form of action
concurrency where a durative action can be executed only
if another durative action called the envelope extends over
it. This is due to the need by the enveloped durative action
of a resource, all along its execution, added at the start of
the envelope and deleted at the end of the envelope. One im-
portant property of SHE temporal domains is that they can-
not be sequentially rescheduled. Although some approaches
have been proposed to learn temporal features (Gabel and
Su 2010; Neider and Gavran 2018; Gaglione et al. 2021;
Shah et al. 2018), only (Garrido and Jiménez 2020) pro-
posed an approach learning temporal domains. However this
approach is limited to sequential temporal domains. To our
best knowledge, there is no learning approach for both SHE
and sequential temporal domains.

In this paper, we present TempAMLSI, an accurate learn-
ing algorithm for both SHE and sequential temporal do-
mains. TempAMLSI is built on AMLSI (Grand, Fiorino, and
Pellier 2020a), an accurate STRIPS domain learner based on
grammar induction. Like AMLSI, TempAMLSI takes as in-
put feasible and infeasible action sequences to frame what
is allowed by the targeted domain. More precisely, Tem-
pAMLSI consists of three steps: (1) TempAMLSI trans-
lates temporal sequences into STRIPS sequences, (2) Tem-
pAMLSI learns a non-temporal domain with AMLSI, and
then (3) translates it into a temporal domain (see Figure - 1).

TempAMLSI contributions in Temporal PDDL domain
learning are threefold:

• Temporal actions: TempAMLSI is able to learn both se-
quential and SHE temporal domains,

• Partial and noisy observations: TempAMLSI is able to
learn temporal domains with both partial and noisy ob-
servations.

• Accuracy: TempAMLSI is highly accurate even with
highly partial and noisy learning datasets: thus, it min-
imises PDDL proofreading for domain experts. We show

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

597

AMLSI
Sample

Translation
Operators
Translation

Temporal training
data sets IT+ and IT−

Temporal Operators

Classical
training data sets

I+ and I−
STRIPS

Operators

Figure 1: Overview of the TempAMLSI approach

Sequential
Domains

SHE
Domains

All Cushing’s form of
required action concurrency

Figure 2: Different forms of required action concurrency

that in many temporal benchmarks AMLSI does not re-
quire any correction of the learned domains at all.

The rest of the paper is organized as follows. In section
2 we present a problem statement. In section 3 we give
some backgrounds on STRIPS translation and the AMLSI
approach, in section 4, we detail TempAMLSI steps. Finally,
section 5 evaluates the performance of TempAMLSI on IPC
temporal benchmarks.

2 Formal Framework
Section 2.1 introduces a formalization of non-temporal plan-
ning domain learning consisting in learning a transition
function of a grounded planning domain and in expressing
it as PDDL operators. Section 2.2 extends this formalization
to temporal domains.

2.1 STRIPS Learning Problem
A STRIPS planning problem is a tuple P =
(L,A, S, s0, G, δ, λ), where L is a set of logical propositions
describing the world states, S is a set of state labels, s0 ∈ S
is the label of the initial state, and G ⊆ S is the set of goal
labels. λ is an observation function λ : S → 2L that assigns
to each state label the set of logical propositions true in
that state. A is a set of action labels. Action preconditions,
positive and negative effects are given by the functions
prec, add and del that are included in δ = (prec, add, del).
prec is defined as prec : A → 2L. The functions add and
del are defined in the same way. Without loss of generality,
we chose this formal framework inspired by (Höller et al.
2016) in order to define the STRIPS learning problem as
the lifting of a state transition system into a propositional
language.

The function τ : S×A → {true, false} returns whether
an action is applicable to a state, i.e. τ(s, a) ⇔ prec(a) ⊆

λ(s). Whenever action a is applicable in state si, the state
transition function γ : S × A → S returns the resulting
state si+1 = γ(si, a) such that λ(si+1) = [λ(si) \ del(a)]∪
add(a).

A sequence (a0a1 . . . an) of actions is applicable to a state
s0 when each action ai with 0 ≤ i ≤ n is applicable to
the state si. Given an applicable sequence (a0a1 . . . an) in
state s0, γ(s0, (a0a1 . . . an)) = γ(γ(s0, a0), (a1 . . . an)) =
sn+1. It is important to note that this recursive defini-
tion of γ entails the generation of a sequence of states
(s0s1 . . . sn+1). A goal state is a state s such that g ∈ G
and λ(g) ⊆ λ(s). s satisfies g, i.e. s |= g if and only if s
is a goal state. An action sequence is a solution plan to a
planning problem P if and only if it is applicable to s0 and
entails a goal state.

In formal languages, a set of rules is given that de-
scribes the structure of valid words and the language is the
set of these words. For STRIPS planning problem P =
(L,A, S, s0, G, δ, λ), this language is defined as (0 ≤ i ≤
n):

L(P) = {ω = (a0a1 . . . an)|ai ∈ A, γ(s0, ω) |= g}

We know that the set of languages generated by STRIPS
planning problems are regular languages (Höller et al.
2016). In other words, a STRIPS planning problem P =
(L,A, S, s0, G, δ, λ) generates a language L(P) that is
equivalent to a Deterministic Finite Automaton (DFA) Σ =
(S,A, γ). S and A are respectively the nodes and the edges
of the DFA, and γ is the transition function.

For any edge a ∈ A, we call pre-set of a the set
µAnte(a) = {s ∈ S | γ(s, a) = s′} and post-set of a the
set µPost(a) = {s′ ∈ S | γ(s, a) = s′} (see Figure 3).

A STRIPS learning problem is as follows: given a set of
observations Ω ⊆ L(P), is it possible to learn the DFA Σ,
and then infer P ?

For instance, suppose Ω = {a, ab, ba, bab, abb, . . . } such
that s0

a−→ s2, s0
a−→ s2

b−→ s2, s0
b−→ s1

a−→ s2, s0
b−→ s1

a−→
s2

b−→ s2, s0
a−→ s2

b−→ s2
b−→ s2 . . . (Grand, Fiorino, and Pel-

lier 2020b) show that it is possible to learn Σ (see Figure 3)
and infer P with actions {a, b}, the initial state s0 and some
states marked as goal (G = {s2} in the above example).

2.2 Temporal Learning Problem
A Temporal planning problem (Fox and Long 2003) is a tu-
ple TP = (L,A, S, d, s0, G, δ, λ, T). As for STRIPS prob-
lems, L is a set of logical propositions, S is a set of state
labels, s0 ∈ S is the label of the initial state, G is the set
of goal labels, and λ is the observation function. A is a set
of durative action labels. T is an infinite set of timestamps
and d : A → R is the duration function. Unlike STRIPS

598

s0start

s2

s1

b

a

a b

µPost(a)

µAnte(a)

Figure 3: An example of DFA with pre-states and post-states

planning problem, action preconditions, positive and nega-
tive effects are labeled with time labels at-start, at-end and
overall. More precisely, δ includes:

• prec : A × {s, o, e} → 2L: preconditions of a ∈ A at
start, over all, and at end, respectively.

• add : A× {s, e} → 2L: positive effects of a ∈ A at start
and at end, respectively.

• del : A× {s, e} → 2L: negative effects of a ∈ A at start
and at end, respectively.

The semantics of durative actions is defined in terms of
two discrete events starta and enda, each of which is natu-
rally expressed as a STRIPS action. Starting a durative ac-
tion a in state s is equivalent to applying the STRIPS action
starta in s, first verifying that prec(starta) holds in s. End-
ing a in state s′ is equivalent to applying enda in s′, first by
verifying that prec(enda) holds in s′. starta and enda are
defined as follows:

starta : prec(a, s) = prec(starta) add(a, s) = add(starta)
del(a, s) = del(starta)

enda : prec(a, e) = prec(enda) add(a, e) = add(enda)
del(a, e) = del(enda)

starta and enda are constrained by the duration of a, de-
noted d(a) and the overall precondition: enda has to occur
exactly d(a) time units after starta, and the over all pre-
condition has to hold in all states between starta and enda.
Although a has a duration, its effects apply instantaneously
at the start and the end of a, respectively. The preconditions
prec(a, s) and prec(a, e) are also checked instantaneously,
but prec(a, o) has to hold for the entire duration of a. The
structure of a durative action is summarized in the Figure 4.

A temporal action sequence is a set of action-time pairs
{(a1, t1), . . . , (an, tn)}. Each action-time pair (a, t) is com-
posed of a durative action a ∈ A and a scheduled start
timestamp t ∈ T of a, and induces two events starta and
enda with associated timestamps t and t + d(a), respec-
tively. Events starta (resp. enda) is applied in the state
st (resp. st+d(a)), st (resp. st+d(a)) being a state time-
stamped with t (resp. t + d(a)). Then, the temporal tran-
sition function γ to learn can be rewritten as: γ(s, a, t) =
(γ(st, starta), γ(st+d(a), enda)). The transition function
γ(s, a, t) is defined if and only if: prec(a, s) ⊆ λ(st),
prec(a, e) ⊆ λ(st+d(a)) and ∀t′ such that t ≤ t′ ≤ t+ d(a)
prec(a, o) ⊆ λ(st′).

prec(a, s)

add(a, s)
del(a, s)

prec(a, o) prec(a, e)

add(a, e)
del(a, e)

d(a)

Figure 4: Structure of a durative action a

Finally, we can define a Temporal planning Problem
TP = (L,A, S, d, s0, G, δ, λ, T) as a formal language:

L(TP) = {ω = ((a0, t0)(a1, t1) . . . (an, tn))|ai ∈ A, ti ∈ T, g ∈ G, γ(s0, ω, t0) |= g}

A Temporal planning Problem is as follows: given a set
of observations Ω ⊆ L(TP), is it possible to learn TP ?

3 Background
Some planners (Fox and Long 2002; Halsey, Long, and Fox
2004; Celorrio, Jonsson, and Palacios 2015; Furelos Blanco
et al. 2018) solve Temporal planning Problems by using
non-temporal planners. To that end, they convert Temporal
planning Problems into STRIPS planning problems, solve
them with a non-temporal planner. Then they convert the
classical plan into a temporal plan with rescheduling tech-
niques. In this paper, we build on this idea in order to learn
temporal domains: we learn a STRIPS planning problem P
and then infer a Temporal planning Problem TP from P .

In this section we present some backgrounds on STRIPS
translation techniques. Next, we outline AMLSI on which
TempAMLSI is based. AMLSI is an accurate STRIPS
learner robust to partial and noisy observations (Grand, Fior-
ino, and Pellier 2020b,a).

3.1 Temporal Planning and STRIPS Translation
Temporal PDDL domains have different levels of required
action concurrency (Cushing et al. 2007). Some of them are
sequential, which means that all the plan parts containing
overlapping durative actions can be rescheduled into a com-
pletely sequential succession of durative actions: each du-
rative action starts after the previous durative action is ter-
minated. One important property of sequential temporal do-
mains is that they can be rewritten as classical domains, and
therefore used by classical non-temporal planners.

To solve a sequential temporal problem, we can translate
each durative actions a ∈ A to a compressed STRIPS ac-
tion Ca that simulates all of a at once (Coles et al. 2009).
The precondition of Ca is the union of the preconditions
at-start of a with the preconditions overall and at-end not
achieved by the add effect at-start. The effect of Ca is the
effect at-start of a followed immediately by its effect at-end.
Formally, the compressed action Ca is defined as follows:
• prec(Ca) = prec(a, s) ∪ {{prec(a, o) ∪ prec(a, e)} \
del(a, s)}

• add(Ca) = {add(a, s) \ del(a, e)} ∪ add(a, e)

• del(Ca) = {del(a, s) \ add(a, e)} ∪ del(a, e)

Once the durative actions are translated, the Temporal plan-
ning Problem becomes a STRIPS problem that can be

599

(: d u r a t i v e − a c t i o n mend
:parameters (? f − f ?m−m)
: d u r a t i o n (=? d u r a t i o n 2)
: c o n d i t i o n (and

(a t s t a r t (h a n d f r e e))
(o ve r a l l (l i g h t ?m)))

: e f f e c t (and
(a t s t a r t (not (h a n d f r e e)))
(a t end (mended ? f))
(a t end (h a n d f r e e))
))

(a) Durative declaration of the operator mend

(: a c t i o n m e n d − s t a r t
:parameters (? f − f ?m−m)
: p r e c o n d i t i o n (and

(h a n d f r e e)
(l i g h t ?m))

: e f f e c t (and
(not (h a n d f r e e))))

(: a c t i o n mend−end
:parameters (? f − f ?m−m)
: p r e c o n d i t i o n (and

(l i g h t ?m))
: e f f e c t (and

(mended ? f)
(h a n d f r e e)))

(b) STRIPS 2-operators declaration of the
operator mend

(: a c t i o n m e n d − s t a r t
:parameters (? f − f ?m−m)
: p r e c o n d i t i o n (and

(h a n d f r e e))
: e f f e c t (and

(not (h a n d f r e e))))
(: a c t i o n mend−inv

:parameters (? f − f ?m−m)
: p r e c o n d i t i o n (and

(l i g h t ?m))
: e f f e c t ())
(: a c t i o n mend−end
:parameters (? f − f ?m−m)
: p r e c o n d i t i o n ()
: e f f e c t (and (mended ? f)

(h a n d f r e e)))

(c) STRIPS 3-operators declaration of the
operator mend

Figure 5: Comparison between the durative declaration and the classical declaration of the operator ”mend” of the Match
domain.

solved using a classical planner. When the STRIPS problem
is solved, the plan containing compressed actions is trans-
lated into a plan with durative actions executed one after an-
other.

Some temporal domains require different forms of action
concurrence such as Single Hard Envelope (SHE) (Coles
et al. 2009). SHE is a form of action concurrency where
the execution of a durative action a is required for the ex-
ecution of a second durative action a′. Formally, a SHE is
a durative action a′ that adds a proposition p at-start and
deletes it at-end while p is an overall precondition of a dura-
tive action a. Contrary to sequential temporal domains, for
temporal domains containing SHE there exists temporal ac-
tion sequences that cannot be sequentially rescheduled. For
instance, see the Match domain (Figure 5) and the following
durative actions:

• mend(?f ?m) such that (light ?m) ∈
prec(mend(?f ?m), o)

• light(?m) such that (light ?m) ∈ add(light(?m), s)
and (light ?m) ∈ del(light(?m), e)

The durative action mend(?f ?m) cannot start before the
start of the durative action light(?m) and mend(?f ?m)
cannot end after the end of light(?m), so mend(?f ?m)
has to start after the start of light(?m) and to end before the
end of light(?m): it is therefore impossible to sequentially
reschedule such temporal action sequences.

Generally, to solve SHE Temporal planning problems,
planners start by translating durative actions into STRIPS
actions. For instance, the CRICKEY planner (Coles et al.
2009) translates each durative action a into three STRIPS
actions starta, inva and enda. Then classical planners are
used to solve the problem. Finally, scheduling techniques are
used to translate the plans. For instance, the CRICKEY plan-
ner builds a set of partially ordered plans with the STRIPS
actions. Then, a Simple Temporal Network is used to trans-
late the set of partially ordered plans into a temporal plan.

In addition, it should be noted that there are other forms
of required action concurrency besides SHE (Cushing et al.
2007).

3.2 The AMLSI Algorithm
AMLSI generates the set of observations Ω by using ran-
dom walks to learn Σ = (S,A, γ) and deduce P =
(L,A, S, s0, G, δ, λ). AMLSI assumes L, A, S, s0 known
and the observation function λ possibly partial and noisy (a
partial observation is a state where some propositions are
missing and a noisy obsevation is a state where the truth
value of a proprosition is erroneous). No knowledge of the
goal states G is required. Once Σ is learnt, AMLSI has to
deduce δ from the transition function γ. Concretely, δ can
be represented as a STRIPS planning domain containing all
the actions of the problem P and by induction the classical
PDDL operators.

The AMLSI algorithm consists of 4 steps: (1) generation
of the observations, (2) learning the DFA corresponding to
the observations, (3) induction of the PDDL operators from
the learnt DFA; (4) finally, refinement of these operators to
deal with noisy and partial state observations:

Step 1: AMLSI generates a random walk by applying an
action from the initial state of the problem. If the action is
applicable in the current state the sequence of actions from
the initial state is valid and is added to I+, the set of posi-
tive samples. Otherwise the random walk is stopped and the
sequence is added to I−, the set negative samples.

Step 2: to learn the DFA Σ = (S,A, γ) AMLSI uses a
variant (Grand, Fiorino, and Pellier 2020b) of a classical reg-
ular grammar learning algorithm called RPNI (Oncina and
Garcı́a 1992). The learning is based on both I+ and I−.

Step 3: AMLSI begins by inducing the preconditions and
effects of the actions. For the preconditions prec(a) of ac-
tion a, AMLSI computes the logical propositions that are in
all the states preceding a in Σ:

prec(a) = ∩s∈µAnte(a)λ(s)

For the positive effects add(a) of action a, AMLSI com-
putes the logical propositions that are never in states before
the execution of a, and always present after a execution:

add(a) = ∩s∈µPost(a)λ(s) \ prec(a)
Symetrically,

del(a) = prec(a) \ ∩s∈µPost(a)λ(s)

600

Once preconditions and effects are induced, actions are
lifted to PDDL operators based on OI-subsumption (sub-
sumption under Object Identity) (Esposito et al. 2000): first
of all, constant symbols in preconditions and effects are sub-
stituted by variable symbols. Then, the less general precon-
ditions and effects, i.e. preconditions and effects encoding
as many propositions as possible, are computed as intersec-
tion sets. This generalization method allows to ensure that
all the necessary preconditions, i.e. the preconditions allow-
ing to differentiate the states where actions are applicable
from states where they are not, to be rightfully coded in the
corresponding operators.

Step 4: to deal with noisy and partial state observations,
AMLSI starts by refining the operator effects to ensure
that the generated operators allow to regenerate the induced
DFA. To that end, AMLSI adds all the effects ensuring that
each transition in the DFA are feasible. Then, AMLSI refines
the preconditions of the operators. As in (Yang, Wu, and
Jiang 2007), it makes the following assumptions: the nega-
tive effects of an operator must be used in its preconditions.
Thus, for each negative effect of an operator, AMLSI adds
the corresponding propositions in the preconditions. Since
effect refinements depend on preconditions and precondition
refinements depend on effects, AMLSI repeats these two re-
finements steps until convergence, i.e., no more precondition
or effect is added. Finally, AMLSI performs a Tabu Search to
improve the PDDL operators independently of the induced
DFA, on which operator generation is based. Once the Tabu
Search reaches a local optimum, AMLSI repeats all the three
refinement steps until convergence.

4 Temporal AMLSI
TempAMLSI (summarized in Figure - 1) is an extension
of AMLSI. It has three steps. (1) After having generated
the samples of temporal sequences (including both feasi-
ble and infeasible sequences), TempAMLSI translates them
into non-temporal sequences (see Section - 4.1), (2) Tem-
pAMLSI uses AMLSI to learn STRIPS operators (see Sec-
tion - 3), and (3) translates them into Temporal operators
(see Section - 4.2).

In practice, the temporal sequences generated by Tem-
pAMLSI are timestamped start and end event sequences. For
instance:
{(0, start light(m)), (0.5, start mend(f1,m)), (2.5, end mend(f2,m)),
(2.6, start mend(f2,m)), (4.6, end mend(f2,m)), (5, end light(m))}

Meaning durative action light(m) starts at 0 and finishes
at 5, mend(f1,m) starts at 0.5 and finishes at 2.5 and
mend(f2,m) starts at 2.6 and finishes at 4.6. In the rest of
this section we focus on the sample and operator translation
steps. We will present two variants for these translations:

2-Operators Translation: The STRIPS action sequences
contain, for each durative action a, the start action starta
and the end action enda corresponding to the events of a
durative action (see Section - 2.2). This method only trans-
lates the events observed in the temporal sequences. But,
it does not directly represent the overall preconditions that
constrain the ”life cycle” of a durative action. Indeed, for a
durative action a to be executed the at-start preconditions

must be checked at the start event, and the at-end precon-
ditions must be checked at the end event, but it is also nec-
essary that the overall preconditions are satisfied on all the
duration of action a.

3-Operators Translation: The STRIPS action sequences
contain, for each durative action a, as for the 2-Operators
translation, the start action starta and the end action enda
corresponding to the events of a durative action. However,
they also contains inva: an invariant action. This invariant
action allows to represent the overall preconditions.

4.1 Sample Translation
Let ωT be a temporal sequence such that:
ωT = {(0, start light(m)), (0.5, start mend(f1,m)), (2.5, end mend(f1,m)),
(2.6, start mend(f2,m)), (4.6, end mend(f2,m)), (5, end light(m))}

2-Operators Each durative action a is converted into two
event actions starta and enda. After conversion:
ω = {startlight(m), startmend(f1,m), endmend(f1,m),

startmend(f2,m), endmend(f2,m), endlight(m)}
3-Operators In this case, each durative action a is con-
verted into three event actions starta inva and enda. After
conversion, we have the following sequence:

ω = {startlight(m), invlight(m), startmend(f1,m),
invlight(m), invmend(f1,m), endmend(f1,m),
invlight(m), startmend(f2,m), invlight(m),
invmend(f2,m), endmend(f2,m), endlight(m)}

4.2 Operators Translation
After having learnt the STRIPS domain with AMLSI, Tem-
pAMLSI converts STRIPS operators into temporal opera-
tors. The Figure - 5 gives an example of conversion for the
mend operator of the Match domain for the 2-Operators and
3-Operators variants.

2-Operators translation is as follows:
prec(a, s) = prec(starta) \ prec(enda)
add(a, s) = add(starta)
del(a, s) = del(starta)
prec(a, e) = prec(enda) \ prec(starta)
add(a, e) = add(enda)
del(a, e) = del(enda)
prec(a, o) = prec(starta) ∩ prec(enda)

at-start (resp. at-end) effects are the effects of start (resp.
end) STRIPS operators. overall preconditions are the inter-
section of preconditions of start and end STRIPS operators.
And, at-start (resp. at-end) preconditions are the precondi-
tions of the start (resp. end) STRIPS operators excluding
end (resp. start) preconditions.

3-Operators translation is as follows:
prec(a, s) = prec(starta)
add(a, s) = add(starta)
del(a, s) = del(starta)
prec(a, e) = prec(enda))
add(a, e) = add(enda)
del(a, e) = del(enda)
prec(a, o) = prec(inva)

601

at-start (resp. at-end) effects are the effects of start (resp.
end) STRIPS operators. overall preconditions are the pre-
conditions of inv STRIPS operators. And, at-start (resp. at-
end) preconditions are the preconditions of start (resp. end)
STRIPS operators.

5 Experiments and Evaluations
The evaluation consists in the comparison of the perfor-
mance of the 2-Operators and 3-Operators variants (see Sec-
tion - 4) of TempAMLSI. First, we compare the performance
of both variants for a given learning dataset. In order to study
the performance of both variants with respect to noisy and
partial state observations, we use six different experimental
scenarios classically used to evaluate domain learning algo-
rithm:
1. Complete intermediate observations (100%) and no noise

(0%)
2. Complete intermediate observations (100%) and low

level of noise (1%)
3. Complete intermediate observations (100%) and high

level of noise (10%)
4. Partial intermediate observations (25%) and no noise

(0%)
5. Partial intermediate observations (25%) and low level of

noise (1%)
6. Partial intermediate observations (25%) and high level of

noise (10%)
Then, we compare the performance of both variants as a
function of the size of the training dataset.

5.1 Experimental Setup
Our experiments are based on 5 temporal IPC domains1 (see
Table - 1). More precisely we test TempAMLSI with three
Sequential domains (Peg Solitaire, Sokoban, Zenotravel),
and two SHE domains (Match, Turn and Open). We test each
IPC domain with 3 different initial states over five runs, and
we use five seeds randomly generated for each run. Then,
the length of the random walk sequences is randomly cho-
sen between 10 and 30 durative actions. Finally we generate
partial observations by randomly removing a fraction of the
propositions of the states, and we generate noise by chang-
ing the value of a fraction of the observable propositions. All
the tests were performed on an Ubuntu 14.04 server with a
multi-core Intel Xeon CPU E5-2630 clocked at 2.30 GHz
with 16GB of memory. PDDL4J library (Pellier and Fiorino
2018) was used to generate the benchmark data.2

5.2 Evaluation Metrics
We evaluate TempAMLSI with three different metrics: the
syntactical error (Zhuo et al. 2010) that computes the dis-
tance between the original domain and the domain learnt,
the accuracy (Zhuo, Nguyen, and Kambhampati 2013) that
expresses the capability of the domain learnt to solve new

1https://www.icaps-conference.org/competitions/
2The experimental setup and results are uploaded at https:

//gitlab.com/grandmaxIm2ag/amlsi/.

0 50 100 150 200
0

5

10

15

20

Size

E
σ
(%

)

0 50 100 150 200
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

2-Operators 3-Operators

Figure 6: Performance of 2-Operators and 3-Operators vari-
ants when the training data set size increases in number of
actions.

problems (without proofreading). Even though the syntacti-
cal error is the most used metric in the literature, we argue
that the accuracy is the most important metric in pratice for
planning because it measures to what extent a learnt domain
is useful. Indeed, it often happens that one missing precon-
dition or effect, which amounts to a small syntactical error,
makes the learnt domain unable to solve planning problems.
Finally, the last metric is the FScore that expresses the ca-
pability of the learnt domain to satisfy the level of required
action concurrency in the original domain.

Formally, the syntactical error error(a) for an action a
is defined as the number of extra or missing predicates in
the preconditions prec(a), the positive effects add(a) and
the negative effects del(a) divided by the total number of
possible predicates (Hamming distance). By extension, the
syntactical error for a domain composed of a set of actions
A is: Eσ = 1

|A|
∑

a∈A error(a).

Then, Accuracy = N
N∗ is the ratio between N , the num-

ber of correctly solved problems with the learnt domain, and
N∗, the total number of problems to solve. In the rest of this
section the accuracy is computed over 20 problems. We also
report in our results the ratio of (possibly incorrectly) solved
problems. A problem is incorrectly solved when a solution
plan is found with the learnt domain that is not correct with
respect to the original domain. In the experiments, we solve
the benchmark problems with the TP-SHE (Celorrio, Jons-
son, and Palacios 2015) planner. Plan validation is done with
VAL, the IPC competition validation tool (Howey and Long
2003).

Finally, FScore = 2.P.R
P+R where R is the recall, i.e. the

rate of sequences e accepted by the original IPC domain that
are successfully accepted by the learnt domain, computed
as R = |{e∈E+ | accept(δ,e)}|

|E+| , and P is the precision, i.e.
the rate of sequences e accepted by the learnt domain that
are also accepted by the original IPC domain, computed as
P = |{e∈E+ | accept(δ,e)}|

|{e∈E+ | accept(δ,e)}∪{e∈E− | accept(δ,e)}| . The test sets
E+ and E− used to compute the FScore are generated by
random walks as in Section - 3.

602

Domain Operators Predicates Type |I+| |I−| |E+| |E−| |ωT
+| |ωT

−| |e+| |e−|
Peg Solitaire 1 3 Sequential 30 1293 100 4314 4 4 4 4

Sokoban 2 3 Sequential 30 13510 100 45000 20 12 20 12
Zenotravel 5 4 Sequential 30 5555 100 18273 20 12 20 12

Match 2 4 SHE 30 983 100 3308 4 4 4 4
Turn and Open 5 8 SHE 30 5635 100 18523 20 11 20 11

Table 1: Benchmark domain characteristics. The columns indicate respectively the number of operators and predicates, the
temporal domain type, the number of sequences in I+, I−, E+ and E−. E+ and E− are the test sets for the FScore, the average
length of the positive (resp. negative) training sequences ωT

+ ∈ I+ (resp. ωT
− ∈ I−) and the average length of the positive (resp.

negative) test sequences e+ ∈ E+ (resp. e− ∈ E−)

Domain Observability Noise Algorithm Eσ FScore Solved Accuracy Time

Peg

100%

0%
2-Operators 0.9 100 100 100 14
3-Operators 0.9 100 100 100 36.9

1%
2-Operators 0.9 100 100 100 39.7
3-Operators 0.9 100 100 100 19.6

10%
2-Operators 0.90.90.9 100 100 100 31.9
3-Operators 1.3 100 100 100 41.1

25%

0%
2-Operators 0.9 100 100 100 34.1
3-Operators 0.9 100 100 100 77.3

1%
2-Operators 1 100 100 100 83.7
3-Operators 1 100 100 100 49.6

10%
2-Operators 1.41.41.4 98.798.798.7 100100100 100100100 73.2
3-Operators 3.5 86.6 86.7 62.7 84.7

Zenotravel

100%

0%
2-Operators 2.4 100 100 100 370.3
3-Operators 2.4 100 100 100 483.6

1%
2-Operators 2.72.72.7 92.692.692.6 93.393.393.3 93.393.393.3 665.3
3-Operators 3.4 58.3 83.3 34 447

10%
2-Operators 3.43.43.4 81.881.881.8 97.797.797.7 808080 554.1
3-Operators 3.8 26.6 87 55 495

25%

0%
2-Operators 2.42.42.4 100100100 100100100 100100100 923
3-Operators 2.9 86.3 90.7 73.3 1279.8

1%
2-Operators 3.53.53.5 71.271.271.2 93.393.393.3 73.373.373.3 1417
3-Operators 4.1 51.7 90.3 33.3 985.7

10%
2-Operators 5.6 31.531.531.5 69.7 56.356.356.3 1346.3
3-Operators 5.35.35.3 26.9 83.783.783.7 37 1921.3

Sokoban

100%

0%
2-Operators 0 100 100 100 289.5
3-Operators 0 100 100 100 582.9

1%
2-Operators 1.91.91.9 58.658.658.6 100 86.786.786.7 476
3-Operators 2.3 27.7 100 80 1150.9

10%
2-Operators 2.92.92.9 77.777.777.7 78.778.778.7 58.758.758.7 609.3
3-Operators 4.2 16.6 86.7 46.7 1364.9

25%

0
2-Operators 0 100 100 100 315.3
3-Operators 0 100 100 100 550.4

1%
2-Operators 222 57.657.657.6 100 100 469.7
3-Operators 2.8 38.8 100 100 1132.1

10%
2-Operators 3.23.23.2 61.361.361.3 86.786.786.7 86.786.786.7 487.9
3-Operators 5.3 29.3 64.7 29.3 1248.7

Table 2: Domain learning results on sequential temporal domains. For each metric, results are in percentage and the best results
are in bold. Learning time is in seconds.

5.3 Results
Sequential Temporal Domains Table - 2 gives the results
for Sequential Temporal Domains. For Sequential Temporal
Domains, we can observe that the 2-Operators variant is gen-
erally more robust than the 3-Operators variant. Also, in the

majority of domains TempAMLSI learns accurate domains
(Accuracy ≥ 50%) when observations are complete what-
ever the level of noise. When observations are partial, Tem-
pAMLSI is generally not able to learn accurate domains with
a high level of noise. Also, we can note that in 2 domains

603

Domain Observability Noise Algorithm Eσ FScore Solved Accuracy Time

Match

100%

0%
2-Operators 3.6 97.9 100 100 7.2
3-Operators 3.6 87.6 100 100 13.1

1%
2-Operators 4 89.389.389.3 93.3 93.3 16.2
3-Operators 3.73.73.7 84.2 100100100 100100100 15.7

10%
2-Operators 444 83.783.783.7 80 80 16.2
3-Operators 4.5 77.9 100100100 100100100 38

25%

0%
2-Operators 4.84.84.8 83.683.683.6 100100100 100100100 20.4
3-Operators 6.1 56.7 93.3 93.3 31.7

1%
2-Operators 4.84.84.8 87.787.787.7 93.3 93.3 38.3
3-Operators 5.6 58.9 93.3 93.3 27.2

10%
2-Operators 6.76.76.7 84.684.684.6 86.786.786.7 86.786.786.7 27.4
3-Operators 8.1 49.3 66.7 66.7 31.2

Turn and Open

100%

0%
2-Operators 1.21.21.2 100100100 95 959595 295.7
3-Operators 1.5 84.3 95 85 904.9

1%
2-Operators 1.91.91.9 868686 88.3 797979 1043
3-Operators 2.6 72.5 89.389.389.3 64.7 841.1

10%
2-Operators 444 60.860.860.8 74.3 23.723.723.7 759
3-Operators 4.2 58.4 757575 18.3 973.8

25%

0%
2-Operators 2.4 989898 56.7 50 1259.1
3-Operators 2.4 77.2 92.392.392.3 63.763.763.7 223.4

1%
2-Operators 3.5 82 44.3 37 2811.1
3-Operators 2.32.32.3 777777 88.788.788.7 70.370.370.3 2478.2

10%
2-Operators 5.65.65.6 44.744.744.7 63 28.328.328.3 2582.8
3-Operators 5.7 39 87.387.387.3 23 2943.2

Table 3: Domain learning results on SHE temporal domains. For each metric, results are given in percentage and the best
results are in bold. Learning time is in seconds.

(Peg-Solitaire and Zenotravel) the syntactical error is not
equal to 0 when accuracy is optimal. This is because Tem-
pAMLSI learns implicit preconditions that are not encoded
in the IPC domain. An implicit precondition is a precon-
dition that is implied by another precondition. Also, some
at-start preconditions are encoded as overall preconditions
in the learnt domains, and vice versa.

SHE Temporal Domains Table - 3 gives the results for
SHE Temporal Domains. For SHE Temporal Domains, we
can observe that the 2-Operators variant is generally more
robust than the 3-Operators variant when observations are
complete whatever the level of noise. When observations
are partial the 2-Operators variant is more robust than the
3-Operators variant only for the Match domains. Also, for
all domains TempAMLSI learns accurate domains when the
level of noise is not high whatever the level of observabil-
ity. With a high level of noise TempAMLSI learns accurate
domains only for the Match domains.

The fact that the 2-Operators variant is more robust than
the 3-Operators variant can be explained in different ways.
First of all, the fact that action sequences of 2-Operators
variants are shorter than action sequences of 3-Operators
variants makes DFAs easier to learn since they have fewer
states. The better the DFA learning, the better the operator
learning. Moreover, it is easier for 2-Operators variants than
for 3-Operators variants because 2-Operators variants have
less operators. Finally, Figure 6 shows the average perfor-
mance of 2-Operators and 3-Operators obtained on the 5 do-
mains of our benchmarks when varying the training data set
size. The size of the training set is indicated in number of

actions. For the sake of compactness, we present here only
the results obtained on the most difficult scenario 6 (par-
tial intermediate observations (25%) and high level of noise
(10%)). We observe that the 2-Operators variant needs very
little data to obtain a relatively large accuracy (almost 50%
with only a learning dataset of 200 actions) in the most diffi-
cult scenario. Also, we observe that the 2-Operators variant
outperforms the 3-Operators variant with little data.

6 Conclusion
In this paper we have presented TempAMLSI, a novel al-
gorithm to learn temporal PDDL domains. TempAMLSI is
built on the AMLSI approach and the idea to use classical
PDDL domain translation: TempAMLSI converts temporal
action sequences into non-temporal sequences. Then Tem-
pAMLSI uses AMLSI algorithm to learn a classical PDDL
domain and converts it into a temporal PDDL domain. Our
experimental results show that TempAMLSI is able to learn
accurately both sequential and SHE temporal domains from
partial and noisy datasets. However, SHE are not the only
form of required action concurrency. Indeed, there exist dif-
ferent levels of required action concurrency for each Allen’s
interval algebra. So in future works, TempAMLSI will be
extended to encompass more temporal relations.

Acknowledgments
This research is supported by the French National Re-
search Agency under the ”Investissements d’avenir” pro-
gram (ANR-15-IDEX-02) on behalf of the Cross Disci-
plinary Program CIRCULAR.

604

References
Celorrio, S. J.; Jonsson, A.; and Palacios, H. 2015. Tem-
poral Planning With Required Concurrency Using Classical
Planning. In Proc. of ICAPS, 129–137.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence, 173(1):
1–44.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowledge
Engineering Review, 28(2): 195–213.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In
Proc. of IJCAI, 1852–1859.
Esposito, F.; Semeraro, G.; Fanizzi, N.; and Ferilli, S. 2000.
Multistrategy Theory Revision: Induction and Abduction in
INTHELEX. Machine Learning, 38(1-2): 133–156.
Fox, M.; and Long, D. 2002. Fast Temporal Planning in a
Graphplan Framework. In Proc. of AIPS workshop, 9–17.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Furelos Blanco, D.; Jonsson, A.; Palacios Verdes, H. L.; and
Jiménez, S. 2018. Forward-search temporal planning with
simultaneous events. In Proc. of Constraint Satisfaction
Techniques for Planning and Scheduling Workshop.
Gabel, M.; and Su, Z. 2010. Online inference and enforce-
ment of temporal properties. In Proc. of ICSE, 15–24.
Gaglione, J.; Neider, D.; Roy, R.; Topcu, U.; and Xu, Z.
2021. Learning Linear Temporal Properties from Noisy
Data: A MaxSAT-Based Approach. In Proc. of ATVA, 74–
90.
Garrido, A.; and Jiménez, S. 2020. Learning Temporal Ac-
tion Models via Constraint Programming. In Proc. of ECAI,
2362–2369.
Grand, M.; Fiorino, H.; and Pellier, D. 2020a. AMLSI: A
Novel and Accurate Action Model Learning Algorithm. In
Proc. of the (KEPS) Workshop.
Grand, M.; Fiorino, H.; and Pellier, D. 2020b. Retro-
engineering state machines into PDDL domains. In Proc.
of ICTAI), 1186–1193.
Halsey, K.; Long, D.; and Fox, M. 2004. CRIKEY-a tem-
poral planner looking at the integration of scheduling and
planning. In Proc. of the IPS Workshop, 46–52.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proc. of ICAPS,
158–165.
Howey, R.; and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2. 1 used in the international
planning competition. In Proc. of the International Work-
shop on the International Planning Competition, 28–37.
Kucera, J.; and Barták, R. 2018. LOUGA: Learning Plan-
ning Operators Using Genetic Algorithms. In Proc. of
PKAW Workshop, 124–138.

Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Proc. of UAI, 614–623.
Neider, D.; and Gavran, I. 2018. Learning Linear Temporal
Properties. In Proc. of FMCAD, 1–10.
Oncina, J.; and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1, 49–61. World Scientific.
Pellier, D.; and Fiorino, H. 2018. PDDL4J: a planning do-
main description library for java. Journal of Experimental
and Theoretical Artificial Intelligence, 30(1): 143–176.
Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental Learning of Relational Action Models in Noisy En-
vironments. In Proc. of ILP, 206–213.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares,
J. 2018. Learning Numerical Action Models from Noisy
and Partially Observable States by means of Inductive Rule
Learning Techniques. In Proc. of the KEPS workshop.
Shah, A.; Kamath, P.; Shah, J. A.; and Li, S. 2018. Bayesian
Inference of Temporal Task Specifications from Demonstra-
tions. In Prof. of NeurIPS, 3808–3817.
Shahaf, D.; and Amir, E. 2006. Learning Partially Observ-
able Action Schemas. In Proc. of AAAI Conference on Arti-
ficial Intelligence, 913–919.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107–143.
Zhuo, H.; Yang, Q.; Hu, D.; and Li, L. 2010. Learning com-
plex action models with quantifiers and logical implications.
Artificial Intelligence, 174(18): 1540–1569.
Zhuo, H. H.; Nguyen, T. A.; and Kambhampati, S. 2013. Re-
fining Incomplete Planning Domain Models Through Plan
Traces. In Proc. of IJCAI, 2451–2458.

605

