
Beyond Value: CHECKLIST for Testing Inferences in Planning-Based RL

Kin-Ho Lam, Delyar Tabatabai, Jed Irvine, Donald Bertucci, Anita Ruangrotsakun,
Minsuk Kahng, Alan Fern

Oregon State University
{lamki, tabatase, jed.irvine, bertuccd, ruangroc, minsuk.kahng, alan.fern}@oregonstate.edu

Abstract
Reinforcement learning (RL) agents are commonly evaluated
via their expected value over a distribution of test scenarios.
Unfortunately, this evaluation approach provides limited evi-
dence for post-deployment generalization beyond the test dis-
tribution. In this paper, we address this limitation by extend-
ing the recent CHECKLIST testing methodology from natu-
ral language processing to planning-based RL. Specifically,
we consider testing RL agents that make decisions via on-
line tree search using a learned transition model and value
function. The key idea is to improve the assessment of future
performance via a CHECKLIST approach for exploring and
assessing the agent’s inferences during tree search. The ap-
proach provides the user with an interface and general query-
rule mechanism for identifying potential inference flaws and
validating expected inference invariances. We present a user
study involving knowledgeable AI researchers using the ap-
proach to evaluate an agent trained to play a complex real-
time strategy game. The results show the approach is effective
in allowing users to identify previously-unknown flaws in the
agent’s reasoning. In addition, our analysis provides insight
into how AI experts use this type of testing approach, which
may help improve future instantiations.

1 Introduction
Evaluating reinforcement learning (RL) agents is typically
done by estimating a single quantity, the expected value,
via Monte-Carlo simulation over a set of validation scenar-
ios. However, this single quantity alone provides little in-
sight into the agent’s underlying behavior and reasoning.
As a result, this evaluation methodology may not uncover
flaws in the agent that hurt generalization to reasonable post-
deployment situations. For example, an agent may learn be-
haviors that maximize reward by abusing details of the sim-
ulator used for training and validation (Baker et al. 2020),
learn aberrant behaviors unrelated to the general task, or the
training reward function may not always relate to task ac-
complishment after deployment (Clark 2019; Gleave et al.
2021). Further, for planning-based RL agents, a systemic er-
ror in the model may go undetected during evaluation, but
still manifest in rare, but serious, post-deployment failures.

One approach to improving confidence in RL agents dur-
ing validation is to produce explanations of agent decisions

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that can be evaluated by a human (Puiutta and Veith 2020;
Heuillet, Couthouis, and Dı́az-Rodrı́guez 2021). There are a
wide range of explanation mechanisms for RL, which pri-
marily focus on explaining learned reactive policies. For ex-
ample, explanations may highlight the most salient parts of
an agent’s input (e.g. (Greydanus et al. 2018; Mott et al.
2019)), extract interpretable structure of the agent’s policy
(Koul, Fern, and Greydanus 2019; Verma et al. 2018; Asai
and Muise 2020; Madumal et al. 2020), provide a rationale
for preferring one action over another (van der Waa et al.
2018; Juozapaitis et al. 2019; Lin, Lam, and Fern 2021),
or visualize the internal representations (Wang et al. 2018;
Tabatabai et al. 2021; Mishra et al. 2022). Unfortunately,
these and most other types of explanations in RL provide no
insight into the internal “reasoning steps” that result in ac-
tion selection. This limits evaluation to the level of overall
decisions/actions, for example, noticing that an agent paid
attention to seemingly irrelevant information when selecting
a particular action.

One way to provide explanations at the level of reason-
ing steps is to consider planning-based RL agents, which
plan using learned models and control knowledge. In con-
cept, this allows for human-validation of an agent’s internal
reasoning used for action selection. This approach, however,
raises at least two challenges.

First, such agents may perform at a superhuman level
where the reasoning is too complex for human consumption
(e.g. enormous minimax trees). While work on explainable
planning (Fox, Long, and Magazzeni 2017; Chakraborti,
Sreedharan, and Kambhampati 2020) attempts to mitigate
this issue, humans ultimately have limited capacity. In this
work, we address this issue by assuming the RL agents
use sound planning algorithms (e.g. minimax), which means
mistakes are due to inaccuracies in the learned models
and/or control knowledge. This implies humans can focus
validation effort towards building confidence in the predic-
tion accuracy of learned components, rather than under-
standing how the planner combines the predictions into an
overall decision.

Second, the sheer volume of information to be validated
(e.g. thousands to millions of possible actions considered by
RL agents) raises the question of how humans can efficiently
inspect and analyze them. We address this challenge by tak-
ing inspiration from the recent CHECKLIST methodology

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

606

for testing learned systems for natural language processing
(NLP) (Ribeiro et al. 2020). CHECKLIST allows human ex-
perts or developers to create rules that capture invariants or
other properties the learned system should never satisfy. In
this way, rules provide an empirical and reproducible vali-
dation metric for humans to identify flaws in NLP systems.

Our main contribution is an adaptation of CHECKLIST for
validation of planning-based RL agents, which we refer to
as CHECKLIST for RL (C4RL). While simple in concept, we
are unaware of prior work that operationalizes and evalu-
ates such an approach in the context of RL. C4RL allows a
human to use their domain and RL-architecture knowledge
to create logical assertions, called query-rules. A query-rule
is a model-agnostic, domain-specific relational-algebra ex-
pression that asserts a property the agent’s reasoning should
never, or very rarely, satisfy. For example, query-rules might
specify known invariants or pairwise action-value orderings
of a learned value function. We present three general classes
of query-rules that can be used for testing reasoning traces
produced during validation runs as well as counterfactual sit-
uations derived from the traces.

Our second contribution is a formative user study to ob-
serve how one might use C4RL to find agent reasoning
flaws. Participants were provided with an interface to vali-
date a complex real-time strategy (RTS) game played by a
planning-based agent, while creating and evaluating query-
rules. They successfully formed a range of query-rules that
identify known and previously-unknown flaws in the agent’s
reasoning.

2 RL Architecture and Game Environment
While the C4RL methodology is domain and model agnos-
tic and can be instantiated for different application domains
and types of RL agents, for concreteness, we present C4RL
in the context of a game environment and RL architecture
developed for our user study. This section describes our real-
time strategy game, Tug-of-War, and RL agent used.

2.1 Experimental Domain: Tug-of-War
Tug-of-War (ToW) is an adversarial two-player RTS game,
built on using the StarCraft 2 game engine. ToW is a chal-
lenging domain for RL because of the large state and action
spaces, complex dynamics, sparse reward, etc. We used the
ToW environment we developed in prior work (Lam et al.
2021). Below we provide an overview.

In ToW, two players, Friendly AI (on the left) and Enemy
AI (on the right), adversarily play against each other. The
map is divided into the top and bottom lanes, where player’s
bases are placed on opposite ends (Figure 1). The game pro-
ceeds in 30 second waves, where before each wave, each
player may select either the top or bottom lane and decide
which military-unit production buildings to build in the se-
lected lane with their available currency.

At the start of each wave, each production building pro-
duces one unit of the specified type. The units automatically
walk across the lane toward the enemy base and automati-
cally attack incoming enemy units or the opponent’s base if
close enough. Each unit has an initial amount of health that

Figure 1: The Tug of War map is divided into two separate
lanes, top and bottom. The Friendly AI (left) and Enemy
AI (right) own bases (gold star-shaped buildings) on oppo-
site sides of the map. Each round, troops from the opposing
player automatically march towards their opponent’s side of
the map and attack the closest enemy in their lane.

decreases when attacked until no health is remaining and
the unit disappears. The three unit types, Marines, Immor-
tals, and Banelings, form a rock-paper-scissors relationship
with respect to the amount of damage done when one unit
attacks another. The first player to destroy one of the oppo-
nent bases wins. If no base is destroyed after 40 waves (20
minutes), the player with the lowest health base loses.

Importantly, players do not control the detailed movement
and target selection of individual units as they move across
the map, but rather control only the higher-level choice of
how to spend resources each wave. Thus, the possible ac-
tions/choices available at each wave are the different pur-
chase combinations that can be afforded with the current re-
sources, which can range from 10s to 1000s of possible ac-
tions. At any moment of the game there can be 10s to 100s
of units on the map, which creates an enormous state space.

Preceding each wave, the RL agents observe the state of
the map and select an action that will dictate resource spend-
ing at the start of the next round. In concept, the observations
provide perfect state information. The game dynamics have
randomness due to variations in unit movements, organiza-
tion, and attacks, making future states and opponent actions
difficult to predict. The sparse reward is zero for both play-
ers at each decision point until the end of the game where
the winning player receives +1 reward and the losing player
receives 0. The ToW discrete state space describes the quan-
tity of each troop on the field, the health of the bases, current
buildings owned by each player, and available currency to
purchase buildings. The discrete action space describes the
quantity of each building type a player may purchase.

2.2 Planning-Based Agent Architecture
We used an agent we developed in prior work, and below we
overview its architecture (Lam et al. 2021). This planning-
based RL architecture makes decisions via tree search using
a learned game dynamics model and leaf evaluation func-
tion. We use the terminology “planning-based RL” rather
than “model-based RL” to emphasize that decisions are
made via deliberative planning. This is in contrast to many
model-based RL agents, which primarily use the learned
model to train a reactive policy with additional simulated ex-
perience (e.g. (Sutton 1990; Kaiser et al. 2020)). The search
trees produced by the planning-based architecture can serve
as a type of explanation for each decision and will be the
main artifacts being validated via C4RL.

607

The agent architecture is similar to AlphaZero (Silver
et al. 2018), an RL agent based on game-tree search, ex-
cept that our agent uses a learned model rather than an ex-
act model for tree construction. Our agent searches over
human-interpretable abstract states, each providing informa-
tion about the health of bases, building counts, the number
of friendly/enemy troops of each type in each of four evenly
divided grid cells per lane, etc. This abstraction (see Figure
2-C-1) is rich enough for humans to understand the states
and make reasonable decisions.

At each decision point, an action is selected by build-
ing a minimax search tree using three learned components:
1) Transition Model, which predicts the next abstract state
(i.e., 30 seconds after) given a current abstract state and both
players’ actions; 2) Action Ranker, which returns a numeric
ranking over actions in an abstract state based on their esti-
mated action values; and 3) State-Value Function, which re-
turns a value estimate (probability of winning) given an ab-
stract state. The transition model supports building the tree
starting at the current abstract state which becomes the root
node. The action ranker prunes actions from the tree among
many possible friendly and enemy action combinations, to
include between 20 to 5 friendly AI’s actions and between
10 to 3 enemy’s actions depending on the depth of the tree.
We specified the depth of the tree as 2, meaning that the tree
is a two-step look-ahead. Figure 2-C illustrates a subset of
the tree: the leftmost node is the root (C-1); six action com-
binations are shown next to the root (C-2); the next states
are predicted by the agent (C-3); and the rightmost node is a
leaf of the tree at depth 2.

3 CHECKLIST for Planning-Based RL
Our work takes inspiration from the recent CHECKLIST
methodology for validating natural language processing
(NLP) systems. We first overview CHECKLIST for NLP, and
then describe our adaptation for planning-based RL agents.

3.1 Background: CHECKLIST for NLP
State-of-the-art in NLP is dominated by machine-learning
approaches trained on large data corpuses. Validation of
such NLP systems is complicated by both their black-box
nature and the vastness of possible natural-language inputs.
Recently, Ribeiro et al. (2020) proposed CHECKLIST as a
methodology for validating NLP systems and demonstrated
its potential. At a high level, CHECKLIST directs NLP de-
velopers to use behavioral-testing approaches from software
engineering to identify categories of errors (e.g. violating
prediction invariance to types of input perturbations). A
domain-specific language (DSL) is used to define abstract
test cases that via rules that can generate a large corpus of
ground test cases for validation. This approach allows a de-
veloper or tester to quickly produce thousands of valid and
reproducible tests for an NLP system using their linguistic,
domain, and NLP knowledge.

In more detail, CHECKLIST allows human testers to de-
fine test types that specify classes of inputs (e.g. sentences of
a specific form) and desired outputs (e.g. a sentiment clas-
sification). The test types are instantiated via human-created

test templates, that specify general sentence structures with
variables for which specified sets of words can be substi-
tuted. For example, in sentiment analysis, a template may
transform a pre-existing “positive” sentiment test sentence to
a negated form, which should result in the system producing
a “negative” sentiment classification. This approach demon-
strated human testers were able to effectively bring large
quantities of previously unknown failures in NLP sentiment-
analysis systems to the attention of developers.

3.2 Adapting CHECKLIST to RL
While the problems studied in NLP and RL are quite differ-
ent, we describe how the high-level idea of CHECKLIST for
NLP can be adapted to flaw identification for planning-based
RL. Conceptually, CHECKLIST for NLP allows a tester
to translate common-sense and domain-specific knowledge
into sets of examples (i.e. sentences), each with desired sys-
tem responses that can be checked. Similarly, an RL engi-
neer “CheckLists” an RL agent by translating their common-
sense and domain-specific knowledge to tests on reasoning
steps of an RL agent. Thus, rather than regarding an RL
agent’s performance by the value of its cumulative rewards
on hold-out data, C4RL encourages engineers to also judge
an agent based on the quality of its reasoning.

More specifically, CHECKLIST for NLP is based on defin-
ing test types that are instantiated into test templates for
example generation. C4RL instead uses query classes and
query rules, which can apply to search trees. While we ex-
pect the space of query classes to increase as C4RL evolves,
in this work, we support the following three classes.
1. Static State Rules. Agent search trees contain many

abstract states produced by learned knowledge that are
also evaluated (e.g. estimating the win probability). Static
state rules look for violations of constraints among state
variables and value estimates that should always or typi-
cally hold. For example, in our ToW domain, there can-
not be units of a certain type on the field unless there are
production buildings for that unit type.

2. Transition Rules. Agent search trees contain state-
action-state transitions that should capture the causal dy-
namics of a domain. Transition rules look for violations
of causal properties that should always or typically hold.
For example, in ToW, base health can never increase, so
transitioning from one state to another should never re-
sult in increasing a base’s health.

3. Symmetry Rules. In many planning domains there will
be “common sense” symmetries based on domain knowl-
edge, where correct inferences depend on learning a spe-
cific relationship. Similar to metamorphic testing (Barr
et al. 2015), symmetry rules validate the agent has
learned such logical consistencies. For example, in ToW,
an agent’s knowledge and reasoning should be invariant
to swapping the top and bottom lanes or switching the
sides of the two players. Our C4RL system includes na-
tive support for defining such rules.

To support the construction of rules for an RL domain,
we assume a semantically-meaningful domain schema that
defines the relevant entities, attributes, and relations. The

608

Query Class Example Query Rule

Static State Rules:
Validate a single
output state

Example 1-1. This outputs state produced by the agent places a troop
(immortal) on the field although there are no buildings to produce it.
outputState.friendlyImmortalBldgsTop = 0 AND (
outputState.friendlyImmortalTopGrid1 +
outputState.friendlyImmortalTopGrid2 + ... +
outputState.friendlyImmortalTopGrid4) > 0

Example 1-2. The agent assigns a non-zero probability of winning the
game by destroying the enemy’s bottom base despite having already
lost. outputState.friendlyHealthTop = 0 AND
(winProb.probabilityOfWinInTopLane +
winProb.probabilityOfWinInBottomLane) != 0

Transition Rules:
Validate the rela-
tionships between
an output state and
its input.

Example 2-1. Base health cannot increase due to game
rules. In this example, the output state’s base health is
higher than the input’s. See Section 5.1 for more details.
outputState.enemyHealthTop -
inputState.enemyHealthTop > 5.0

Example 2-2. The enemy’s marine troop disappears
although there is no friendly troop to destroy it. Ad-
ditionally, the enemy’s bottom base loses health even
though there are no friendly troops to damage it.
(outputState.friendlyMarineBldgsBottom
+ outputState.friendlyBanelingBldgsBottom
+ outputState.friendlyImmortalBldgsBottom = 0) AND
outputState.enemyHealthBottom < inputState.enemyHealthBottom

Symmetry Rules:
Validate if the
agent has learned
the symmetric or
player-agnostic
properties of the
domain.

Example 3-1. Reversing the features for the two
players where the friendly agent becomes the en-
emy and the enemy becomes the friendly should
produce a perfectly reversed output state. In this ex-
ample the agent failed to mirror the immortal troop.
outputState.friendlyMarineTopGrid1 > 0
AND outputState.friendlyMarineTopGrid1
!= outputStateForReversedInputs.enemyMarineTopGrid4

Example 3-2. Flipping the top and bottom lanes
should produce a perfectly flipped output state. In
this example, the agent failed to produce a flipped
version of the output state (bottom right).
outputState.friendlyMarineTopGrid2 !=
outputStateForFlippedInputs.
friendlyMarineBottomGrid2

Table 1: Three classes of C4RL query rules with examples

schema should be rich enough to capture the the states
and actions of the agent’s search trees. Given a domain
schema, query rules can be constructed using a domain-
specific language (DSL), which may be application specific
or more general purpose. As detailed in Section 4, we lever-
age database technology for this purpose, where query rules
are converted to SQL for efficient processing.

Note that by assuming a domain schema, we are restrict-
ing the proposed C4RL framework to RL agents that build
search trees over interpretable states and actions (e.g. Al-
phaGo searches over explicit Go positions). This rules out

agents that build search trees over learned latent state repre-
sentations, which are not directly human interpretable (e.g.
MuZero (Schrittwieser et al. 2020)). Such a restriction is
currently necessary whenever humans want to interact with
an agent’s knowledge and reasoning, since the problem of
interpreting learned latent representations is in very early
stages of research (e.g. (Voskuil et al. 2021)). Indeed, there
are no current approaches that can reliably map such latent
representations to human-interpretable schemas over which
C4RL query rules could be defined.

609

4 C4RL Instantiation for Tug-of-War
We describe the C4RL instantiation for ToW used for our
evaluation in Section 5. While some elements of the instan-
tiation are necessarily specialized to ToW, the general struc-
ture can serve as a schema for C4RL in other domains.

4.1 Schema & Query Language
Given a collection of game episodes, we store the agent’s
search trees (one per decision point) into a relational
database and transform users’ query-rule expressions into
SQL queries to retrieve matched records from the databases.
In this work, we consider game episodes played against op-
ponents added to the opponent pool during training. Our re-
lational schema consists of the following tables:

• Episodes (episodeId, isWin, ...)

• States (id, episodeId, decisionIdx,
isRoot, friendlyMarineBldgsTop,
friendlyMarineBldgsBottom, ...)

• Actions (id, parentStateId,
numOfMarineBldgsPurchasedByFriendly, ...)

• WinProbabilityOfState (id, parentStateId,
probabilityOfDestroyingEnemyTopBase, ...)

This schema allows for representing the agent’s tree
at each decision point (decisionIdx) of each episode
(episodeID), by encoding each tree path as chains of states
and parent actions. The state schema has attributes for de-
scribing the agent’s state abstraction, including the num-
ber of each type of building, current base health, etc. The
action attributes encode the action parameters of both the
friendly and enemy agent at a decision point, which specify
the exact purchases made by the friendly and enemy agent.
Importantly, recall that the trees are constructed based on
learned transition models. Thus, some state attributes in the
trees are produced via predictions from those models. In ad-
dition, the agent also makes learned predictions about the
probability of each win/loss condition at each state, captured
by WinProbabilityOfState. Using this schema, our
three rule types, for validating the learned predictions, can
be captured as follows

Static State Rules apply to records in the States
table and have a general relational algebra form:
σuser-specified ruleStates, where user-specified rule
is a boolean expression over the numeric state attributes.
Table 1 gives two examples of such user defined rules.

Transition Rules apply to predicted state transitions in
the search trees, where we refer to the parent state of a pre-
dicted transition as the input state and the child state as
the output state. Transition rules have the following gen-
eral relational algebra form: σuser-specified ruleStates ./
Actions ./ States where the first States represents
the input state, the second States represents the output
state, and ./ is the join operator. Again, user-specified rule
is a boolean expression over the numeric attributes of the
input/output states and action. Table 1 gives two examples.

Symmetry Rules differ from the above classes in that
they involve testing of the agent’s prediction on counterfac-
tual states that were not in the original episodes. An exam-
ple is to check if the win probabilities of the agent change

significantly if the top and bottom lanes were swapped.
While there exist many ways to support this, we create addi-
tional database tables that store attributes of counterfactual
states and actions resulting from symmetry transformations
of the original states and actions. Specifically, we perturb
all static states and their corresponding action pairs, produc-
ing flipped or reversed versions of the originals. We then
run inference on all flipped or reversed static states and ac-
tions, and include a reference in the schema linking the in-
ference result of a flipped or reversed state and action to its
original result. The relational algebra form of the queries
is like that of transitions, except the join involves an orig-
inal state-action-state and corresponding transformed state-
action-state. The user-specified rule can then be any boolean
expression that compares information between the original
and transformed transition data. Table 1 gives two examples.

4.2 Visualization of Search Trees
To help users examine the results from C4RL queries, we de-
veloped a visualization of the agent’s search trees by adapt-
ing our earlier work (Khanna et al. 2022; Tabatabai et al.
2021). A tree starts with the root node (Figure 2 C-1), which
represents the state at the selected decision point. Each state
node has a compact view (smaller box with 4 health points
for each base) and a larger state view (graphical representa-
tion with thumbnail of the game map) that can be expanded
by the user. Nodes connected to the root node in the tree
show combinations of friendly (blue) and enemy (orange)
actions (at C-2) and states the friendly agent predicts next (at
C-3). Figure 2-C shows 6 children of the root node, where
one of them is expanded, while the remaining five are in
the compact view. For the expanded example (right of C-
1), the friendly agent’s action is buying 2 baneling build-
ings and 1 immortal building in the bottom lane and the en-
emy agent’s action is buying 1 marine building in the top
lane. The agent’s prediction of the state at the next decision
point (30 seconds after action) is displayed to the right of the
corresponding action (C-3). Each predicted state includes
the predicted win probabilities at the top of the state. The
four percentages give the probability that the friendly/en-
emy agent will win in the top/bottom lanes. For example,
at C-3 the predicted state shows the agent is 95.4% confi-
dent it will end up winning the game from the top lane. This
state node is followed by another pair of actions, and the
predicted grandchild state (leaf of the search tree).

4.3 C4RL Interface
We design and build an interactive C4RL user interface for
specifying query rules and visualizing violations. For pur-
poses of the user study, the current interface is optimized to
explore a single selected game at a time, though it is straight-
forward to support multiple game repositories. The interface
(shown in Figure 2) consists of three sections: A. Query Rule
Specification, B. Flaw Count over Decisions, and C. Search
Tree Visualization with Flaws Highlighted. Figure 2 illus-
trates a case of checking whether the agent’s transition pre-
dictions violate the monotonicity constraint that the Health
Points (HP) of a base can never increase.

610

Figure 2: C4RL user interface displaying results of a query rule. Above, a user constructs a query rule stating the agent’s base
Health Points (HP) cannot increase (section A). After applying this rule, the user selects decision point #6 which contains 17
flaws (section B). This displays a visualization of the matching subset of paths from the full search tree (section C). The root
state (C-1) depicts the state at the selected decision point. Nodes connected to this state represent Friendly (blue) and Enemy
(orange) actions (C-2) and subsequent predicted next states (C-3). Nodes can be expanded to show the full state features. Nodes
matching this query rule (thus containing a flaw) are highlighted in yellow.

A. Query Rule Specification. The user can specify
the monotonicity-checking rule using the first section
(at Figure 2-A). They specify the rule class using the
dropdown menu, (i.e., Transition) and the rule using a
SQL-like statement: inputState.friendlyHealthTop
< outputState.friendlyHealthTop. The interface
provides a visual guide for users to simply click components
to auto-complete their attribute names.

B. Violations over Decisions. Upon clicking the apply
button, the system internally transforms the rule into an SQL
query and runs it over the database. A bar chart is shown to
denote the number of query-rule violations in the tree at each
decision point during the game (depicted at Figure 2-B). The
user can then select decision points for a deeper investigation
of violations in a particular search tree.

C. Search Tree Examinations. Upon selecting a decision
point, the interface displays a subset of the search tree where
query-rule matching nodes are highlighted in yellow. In Fig-
ure 2-C, grandchildren nodes on the right are highlighted
because the base’s health (HP = 1994) is greater than that
of the parent state (HP = 1991) which match the query rule

specified by the user. In other words, this is a flaw where
health monotonicity is violated.

Users may perform further analysis by expanding the col-
lapsed representation of the nodes (or the sub-trees), to ex-
amine the details of the other highlighted violations or other
decision points. The end result of this exploration might be
a report that gives concrete examples of violations, which
AI engineers can use to judge the severity of violations, lo-
cate the cause of faults, and plan for potential fixes (e.g.
additional training in specific scenarios)(Nushi, Kamar, and
Horvitz 2018; Khanna et al. 2022).

5 Qualitative Experimental Study
We present two qualitative investigations for C4RL in the
context of Tug-of-War. We describe a case study where
agent developers used C4RL to discover agent flaws and a
user study we conducted with 7 human-subject participants.

5.1 Agent Developer Case Study
A subset of the authors who developed the agent “Check-
List” it using C4RL. For a learned agent which is able to

611

win 80% to 90% of ToW games against different model-free
agents, we selected one game replay where the agent lost.
This game consists of 29 decision points and 103,520 tran-
sition inferences, where a single search tree has a maximum
of 1,227 transitions, of which contain 3,680 static states. Us-
ing C4RL, developers investigated how the agent’s reason-
ing flaws at the inference level contributed to its defeat.

No buildings but units on the field (Example 1-1). Ex-
ample 1-1 in Table 1 depicts an abstract state produced by
the agent where it expects to have an immortal unit on the
field; an impossible inference because the agent has not built
any buildings to produce this unit. This query rule finds a to-
tal of 663 unique instances of this static state flaw in the en-
tire game from 3 of 29 decision points. There are 611 static
state flaws occured at decision point 29 (the last decision
point in the game before the agent loses) out of 3,680 static
states. This type of error could completely change the eval-
uation of a static state and its upstream transitions. The de-
velopers hypothesize the agent has not experienced enough
situations with immortals as the agent rarely uses immortals
or has not learned the unit/building association. Modifying
this query rule to check whether this flaw occurs with an-
other troop, banelings, yields only two static state violations
in the entire game, all occurring at decision point 2. This
shows the agent is missing some common-sense regarding
production of baneling troops too, but the static state viola-
tions involving the immortal troops are more prevalent. This
could be due to the fact that the agent has more training ex-
perience with banelings. Banelings are cheaper to purchase
and are bought more frequently than immortals.

Monotonicity violation (Example 2-1). In Tug-of-War,
the health of a base can never increase. Example 2-1 in Ta-
ble 1 checks for non-trivial violations of this monotonicity
property for the enemy’s top base. It found 26,540 violations
out of all 103,520 predicted transitions in the game trees.
The violations occur at almost all decision points, except
for the first two. Interestingly, in the specific flaw instance
shown in Example 2-1, the agent’s bottom base also violates
the monotonicity property. Modifying this prompt to instead
check monotonicity for the agent’s top base finds 2,403 vi-
olations dispersed across 5 decision points. This is a serious
error that clearly demonstrates the the agent has not fully
learned some key constraints of the game. The developers
noticed that the flaws occur most frequently in states where
the agent’s base has lower health, which suggests more agent
training is needed in such situations.

Phantom Health Decrease (Example 2.2). If an agent
does not have any buildings, the opponent’s base should
have full health (2000), because no troops are present to
damage it. This fact is expressed by the query rule shown
in Example 2-2 in Table 1 which returns 6,311 violations,
all occurring in the first five decision points. This is another
indicator that the agent has not fully captured common sense
constraints about the health dynamics of bases.

5.2 User Study
We conducted an in-person qualitative user study to investi-
gate how researchers and engineers with AI expertise, but no
prior experience with the agent or domain, would use C4RL.

Participants and Protocol Recruited participants in-
cluded 7 graduate students at our university (2 M.S. and 5
Ph.D), who had taken a course on Reinforcement Learning
and did not have previous experience with the task, domain,
or the C4RL interface.

Participants were invited to a two hour session in a con-
trolled laboratory environment and were compensated with
a $20 gift card at the conclusion of the study. All sessions
began with a 30 minute tutorial covering the ToW domain,
agent architecture basics, and one query-rule example for
each query-rule class. Participants were then asked to use
the C4RL interface to construct as many query-rules as they
could for the remainder of the session. To help formulate
query-rules, participants were provided a cheat-sheet with
examples from the tutorial. Participants recorded and de-
scribed the intent of their rules in a spreadsheet.

Analysis User-study result analysis was conducted based
on the following five research questions.

Q1. Are participants able to produce correct rules? We
consider three cases of rule correctness. Sound rules are log-
ical consequences of the domain constraints. Violation of
a sound rule imply said violation is true a reasoning flaw.
Suspicion rules correspond to common-sense game condi-
tions that will usually hold, thus a violation should be inves-
tigated. Finally, unsound rules are invalid rules that indicate
the participant formed an incorrect assumption; violations of
aforementioned do not reflect agent flaws.

Participants constructed a total of 126 query-rules. The
research team analyzed their correctness and found 16 un-
sound, 98 sound, and 12 suspicion rules. This indicates par-
ticipants, given a short tutorial, were able to “checklist” the
agent.

Q2. What types of rules did participants specify? Re-
searchers grouped the 110 sound or suspicion rules into mul-
tiple categories, through affinity diagramming, a well-known
technique used in user study analysis. Two of the authors
went through the 110 rules independently, assigned cate-
gories based on the type of RL violations they would detect,
and discussed standard category names to resolve disagreed
rule categorizations. The following four high-level rule cat-
egories were identified.
• Monotonicity Violation. While the values of certain fea-

tures must behave monotonically, the agent’s output (e.g.
predicted state) may not follow this property. For exam-
ple, base health, a feature for a state, cannot increase.

• Value Out Of Range Violation. The values of some fea-
tures must be within certain ranges defined by domain
constraints. For example, base health must always be
within a range of 0 to 2000.

• Causal Violation. The values of some features can only
be changed when other features are changed. An example
of causal violation includes when the agent produces a
state where there are troops on the field, but there is no
buildings that can produce them.

• Symmetry Violation. This includes all cases for the sym-
metry rules class. When inputs are flipped, nearly per-
fectly flipped outputs are expected.

612

Category Sub-categories (domain-specific) Count

Monotonicity Base health (increasing) 4
Building count 3

Value Out
of Range

Base health 12
Win probability 7
Number of units 1

Causal
Violation

Not supposed to win/lose 26
No building but troops 19
No building but health change 7
Unit positioning 5
No troops but health change 3
Rock-paper-scissors 1

Symmetries

Base health 9
Win probability 8
Unit count 4
Building count 1

Table 2: Violation Categories Table: Four categories of high-
level RL violations and 15 sub-categories according to the
domain. The rightmost column displays total rule counts
constructed by participants.

Table 2 further decomposes the high-level categories into
sub-categories that are Tug-of-War specific and provides the
count for each. The most common rule type was causal vio-
lations (61 rules), followed by symmetries (22 rules), value-
out-of-range (20 rules), and monotonicity (7 rules). There
were 6 sub-categories of causal violations, some of which
were surprising. Notably, participants identified a number
of rules that captured situations when the agent erroneously
predicted a win/loss (i.e., “not supposed to win/lose”). For
example, participant #1 specified a causal relationship be-
tween the chance of winning and the agent’s base health as
“[If the base health of friendly AI in the top lane is equal to
zero, then the chance of winning for friendly AI in the top
lane should be zero.]” The fact that the agent violated such
a rule was surprising and clearly a point of concern.

Q3. Can participants creatively construct new rules?
Participants were given two types of guidance: a handout of
example rules and screenshots of trees with flaws. We ana-
lyzed how many of the participant rules were variations of
the guidance versus original constructions. Each rule was
judged whether it was ideated from: 1) handout, 2) a screen-
shot, or 3) none of these (i.e. original). Of the 110 sound or
suspicion rules, only 5 were direct adaptations of rules ex-
plicitly given in the handout and 30 were constructed based
on flaws in the tree examples provided. The remaining 76
rules (68%) appeared to be original and functionally distinct
from the provided examples. This included a number of rule
forms that the research team had not previously considered.
For example, participant #1 reported a suspicion rule regard-
ing the “Rock-Paper-Scissors” relationship among the three
types of troops as “If the friendly AI has some Banelings
and the enemy AI did not purchase any Immortal buildings,
it should be guaranteed that the enemy base health is going
to be reduced.” Participants also expressed rules in English
that the current version of the C4RL syntax does not sup-
port. For example, participant #3 wrote, “... a violation type

to combine player swap and lane swap. ... When both play-
ers and lanes are swapped, friendly top base health become
enemy bottom base health.”

Q4. How diverse are the rules formed by each partic-
ipant? Overall there were a diversity of rules among the
4 categories and 15 sub-categories. However, this leaves
the question of the diversity of rules for individual partici-
pants. To address this, we counted the number of unique sub-
categories generated by each participant. On average par-
ticipants form rules from 6.7 categories and all participants
constructed at least four unique sub-categories of rules. This
shows that participants were naturally considering different
types of relationships throughout their investigation. We ob-
served that the participants differed in their quantity and di-
versity of query rules and the strategies to find rules. For
example, participant #2 constructed 41 sound or suspicion
rules, the highest quantity among all participants. They fo-
cused exhaustively on checking all bounds for a narrow set
of features (e.g., out of range violations). On the other hand,
although participant #6 constructed only 13 rules (which is
less than the average), they successfully created rules from
10 different sub-categories. This suggests further study into
the types of strategies taken by C4RL users and how they
might be guided toward the most effective strategies.

Q5. Are there any patterns in the participants’ explo-
ration? Lastly, we wondered if there exist any interesting
patterns in the list of query-rules which participants con-
structed. One interesting observation is that some partic-
ipants formed query-rules based on what they previously
constructed. For example, after participant #2 formed a rule
as “If friendly AI dies in the top lane, then enemy wins,” they
constructed 7 query-rules that have almost the same struc-
ture, such as “If friendly AI dies in the bottom lane, then
enemy wins,” “If enemy dies in the top lane, then friendly
AI wins,” and so on. This implies that some of the rules have
many variations that can easily be populated systematically.
An interesting future direction would be to create templates
for the rules, so that the system automatically creates or sug-
gests combinations for rules so that the users do not need to
construct variations of the same rule manually.

6 Summary
We present CheckList for Reinforcement Learning (C4RL),
a behavioral testing methodology adapted for RL agents; al-
lowing researchers to evaluate an agent beyond some mea-
surement of expected value. We formalized three classes of
query-rules and developed a C4RL system in the context of
a planning-based agent for a real-time strategy game. Our
qualitative studies demonstrates users can use C4RL to iden-
tify a diverse range of flaws in the agent’s reasoning. Overall,
C4RL is a straightforward yet effective approach for validat-
ing RL agents, and there are several possible variations to be
explored.

Acknowledgements
This work was supported in part by DARPA (N66001-17-2-
4030), Google (GCP19980904), and NAVER AI Lab.

613

References
Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic
Descriptive Planning Models via Cube-Space Priors: The
Voyage Home (to STRIPS). In 29th International Joint Con-
ference on Artificial Intelligence.
Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.;
McGrew, B.; and Mordatch, I. 2020. Emergent Tool Use
From Multi-Agent Autocurricula. arXiv:1909.07528.
Barr, E. T.; Harman, M.; McMinn, P.; Shahbaz, M.; and Yoo,
S. 2015. The Oracle Problem in Software Testing: A Survey.
IEEE Transactions on Software Engineering, 41(5).
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable Automated Plan-
ning & Decision Making. In IJCAI, 4803–4811.
Clark, J. 2019. Faulty reward functions in the wild.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Gleave, A.; Dennis, M.; Wild, C.; Kant, N.; Levine, S.; and
Russell, S. 2021. Adversarial Policies: Attacking Deep Re-
inforcement Learning. arXiv:1905.10615.
Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2018. Vi-
sualizing and Understanding Atari Agents. In Proceedings
of the 35th International Conference on Machine Learning,
volume 80, 1792–1801. PMLR.
Heuillet, A.; Couthouis, F.; and Dı́az-Rodrı́guez, N. 2021.
Explainability in deep reinforcement learning. Knowledge-
Based Systems, 214: 106685.
Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-
Velez, F. 2019. Explainable reinforcement learning via re-
ward decomposition. In Proceedings of the IJCAI 2019
Workshop on Explainable Artificial Intelligence, 47–53.
Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osiński, B.; Camp-
bell, R.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski,
P.; Levine, S.; Mohiuddin, A.; Sepassi, R.; Tucker, G.; and
Michalewski, H. 2020. Model Based Reinforcement Learn-
ing for Atari. In International Conference on Learning Rep-
resentations.
Khanna, R.; Dodge, J.; Anderson, A.; Dikkala, R.; Irvine,
J.; Shureih, Z.; Lam, K.-h.; Matthews, C.; Lin, Z.; Kahng,
M.; Fern, A.; and Burnett, M. 2022. Finding AI’s Faults
with AAR/AI: An Empirical Study. ACM Transactions on
Interactive Intelligent Systems (TiiS), 12(1).
Koul, A.; Fern, A.; and Greydanus, S. 2019. Learning Fi-
nite State Representations of Recurrent Policy Networks. In
International Conference on Learning Representations.
Lam, K.-H.; Lin, Z.; Irvine, J.; Dodge, J.; Shureih, Z. T.;
Khanna, R.; Kahng, M.; and Fern, A. 2021. Identifying
Reasoning Flaws in Planning-Based RL Using Tree Expla-
nations. arXiv:2109.13978.
Lin, Z.; Lam, K.-H.; and Fern, A. 2021. Contrastive Ex-
planations for Reinforcement Learning via Embedded Self
Predictions. In International Conference on Learning Rep-
resentations.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020.
Explainable reinforcement learning through a causal lens.

In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 2493–2500.
Mishra, A.; Soni, U.; Huang, J.; and Bryan, C. 2022. Why?
why not? when? visual explanations of agent behavior in re-
inforcement learning. In Proceedings of Pacific Visualiza-
tion Symposium (PacificVis).
Mott, A.; Zoran, D.; Chrzanowski, M.; Wierstra, D.; and
Jimenez Rezende, D. 2019. Towards Interpretable Rein-
forcement Learning Using Attention Augmented Agents. In
Advances in Neural Information Processing Systems.
Nushi, B.; Kamar, E.; and Horvitz, E. 2018. Towards Ac-
countable AI: Hybrid Human-Machine Analyses for Char-
acterizing System Failure. CoRR, abs/1809.07424.
Puiutta, E.; and Veith, E. M. 2020. Explainable reinforce-
ment learning: A survey. In International Cross-Domain
Conference for Machine Learning and Knowledge Extrac-
tion, 77–95. Springer.
Ribeiro, M. T.; Wu, T.; Guestrin, C.; and Singh, S. 2020.
Beyond Accuracy: Behavioral Testing of NLP Models with
CheckList. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL).
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Sutton, R. S. 1990. Integrated Architectures for Learn-
ing, Planning, and Reacting Based on Approximating Dy-
namic Programming. In International Conference on Ma-
chine Learning, 216–224.
Tabatabai, D.; Ruangrotsakun, A.; Irvine, J.; Dodge, J.;
Shureih, Z.; Lam, K.-H.; Burnett, M.; Fern, A.; and Kahng,
M. 2021. ”Why did my AI agent lose?”: Visual Analytics
for Scaling Up After-Action Review. In 2021 IEEE Visual-
ization Conference (VIS). IEEE.
van der Waa, J.; van Diggelen, J.; van den Bosch, K.; and
Neerincx, M. A. 2018. Contrastive Explanations for Re-
inforcement Learning in terms of Expected Consequences.
ArXiv, abs/1807.08706.
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically interpretable reinforcement
learning. In International Conference on Machine Learning,
5045–5054. PMLR.
Voskuil, K.; Moerland, T. M.; Plaat, A.; et al. 2021. Visual-
izing MuZero Models. In ICML 2021 Workshop on Unsu-
pervised Reinforcement Learning.
Wang, J.; Gou, L.; Shen, H.-W.; and Yang, H. 2018. Dqnviz:
A visual analytics approach to understand deep q-networks.
IEEE Transactions on Visualization and Computer Graph-
ics, 25(1).

614

