
Learning General Optimal Policies with Graph Neural Networks:
Expressive Power, Transparency, and Limits
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Abstract

It has been recently shown that general policies for many clas-
sical planning domains can be expressed and learned in terms
of a pool of features defined from the domain predicates using
a description logic grammar. At the same time, most descrip-
tion logics correspond to a fragment of k-variable counting
logic (Ck) for k = 2, that has been shown to provide a tight
characterization of the expressive power of graph neural net-
works. In this work, we make use of these results to under-
stand the power and limits of using graph neural networks
(GNNs) for learning optimal general policies over a number
of tractable planning domains where such policies are known
to exist. For this, we train a simple GNN in a supervised man-
ner to approximate the optimal value function V ∗(s) of a
number of sample states s. As predicted by the theory, it is ob-
served that general optimal policies are obtained in domains
where general optimal value functions can be defined with
C2 features but not in those requiring more expressive C3 fea-
tures. In addition, it is observed that the features learned are in
close correspondence with the features needed to express V ∗

in closed form. The theory and the analysis of the domains
let us understand the features that are actually learned as well
as those that cannot be learned in this way, and let us move
in a principled manner from a combinatorial optimization ap-
proach to learning general policies to a potentially, more ro-
bust and scalable approach based on deep learning.

Introduction
Deep learning (DL) and deep reinforcement learning (DRL)
are behind most of key milestones in AI of recent years
(Mnih et al. 2015; LeCun, Bengio, and Hinton 2015; Silver
et al. 2017a,b). Yet, these methods struggle to produce solu-
tions that are structurally general (Goyal and Bengio 2020).
Even in simple tasks, such as retrieving a key to open a door
in a simple environment, they may require a large number
of simulations, and even then, they may fail to generalize to
all possible situations (Chevalier-Boisvert et al. 2019). In-
terestingly, the computation of general policies has been ad-
dressed recently in a model-based setting that assumes that
a general model of the actions is known in terms of action
schemas and predicates (Bonet and Geffner 2018; Francès,
Bonet, and Geffner 2021). This paper is a step aimed at
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bringing these threads together with two motivations: to re-
place the combinatorial methods that have been proposed
to learn general policies by more robust and scalable deep
learning methods, and to do so in a principled manner where
the intermediate representations and experimental results,
both positive and negative, can be understood.

For this, we exploit two existing results. On the one hand,
the realization that general policies and value functions for
many classical benchmark domains can be expressed in
terms of features defined from the domain predicates using a
description logic (DL) grammar (Martı́n and Geffner 2004;
Fern, Yoon, and Givan 2006; Bonet, Francès, and Geffner
2019; Francès et al. 2019). On the other, the correspon-
dence established between the expressive power of a decid-
able fragment of first-order logic, called C2, which includes
most common DLs (Baader, Horrocks, and Sattler 2008),
and the expressive power of graph neural networks (GNNs)
(Barceló et al. 2020; Grohe 2020). The two results together
suggest that general policies could be learned from the do-
main predicates directly by means of GNNs, except for those
which are not expressible in terms of C2 features at all.

In this paper, we carry out this exploration in a context
where the learned general policies are expected to be opti-
mal, leading to optimal (shortest) plans in any instance of the
target class of problems Q. In addition, instead of seeking
for representations of an optimal policy, we seek representa-
tions of the optimal value function. If this function V is opti-
mal, the policy πV greedy in V is optimal as well. The focus
on optimal values allows us to learn the general function V
using labeled data in the form of pairs 〈s, V ∗(s)〉, and to
evaluate the learned function V in a crisp manner where the
execution of a non-optimal transition at any state is an error.
The optimality requirement is thus a methodological choice
which simplifies the training and evaluation procedures in
order to determine whether the graph neural networks man-
age to learn the value functions that can be expressed in
terms of C2 features without having to make explicit the
feature pool or the underlying grammar. Recent works have
used deep learning methods for addressing similar problems
in the broader setting of stochastic MDPs (Toyer et al. 2020;
Garg, Bajpai, and Mausam 2020). Our approach is inspired
by them and follows on their footsteps, but it is not so much
focused on performance but on understanding the scope of
the methods and the features learned.
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The rest of the paper is organized as follows. We review
classical planning, general policies and value functions, and
present value functions for a number of tasks in terms of
logical features, most in C2. We review GNNs, their relation
to finite-variable logics, and define the architecture used for
learning value functions. We report the experiments and an-
alyze results, discuss related work, and conclude.

Classical Planning
A classical planning instance is a pair P = 〈D, I〉 where D
is a first-order planning domain and I is instance informa-
tion (Geffner and Bonet 2013; Ghallab, Nau, and Traverso
2016). The planning domain D contains a set of predicate
symbols p and a set of action schemas with preconditions
and effects given by atoms p(x1, . . . , xk) where each xi is
an argument of the schema. The instance information is a
tuple I = 〈O, Init,Goal〉 where O is a (finite) set of ob-
ject names ci, and Init and Goal are sets of ground atoms
p(c1, . . . , ck). This is the structure of planning problems ex-
pressed in PDDL (Haslum et al. 2019) where the domain
and instance information are provided in separate files.

A classical problem P = 〈D, I〉 encodes a state model
S(P ) = 〈S, s0, SG, Act, A, f〉 in compact form where the
states s ∈ S are sets of ground atoms from P , s0 is the ini-
tial state I , SG is the set of goal states s such that SG ⊆ s,
Act is the set of ground actions in P , A(s) is the set of
ground actions whose preconditions are (true) in s, and f
is the transition function so that f(a, s) for a ∈ A(s) rep-
resents the state s′ that follows action a in the state s. An
action sequence a0, . . . , an is applicable in P if ai ∈ A(si)
and si+1 = f(ai, si), for i = 0, . . . , n, and it is a plan if
sn+1 ∈ SG. The cost of a plan is assumed to be given by its
length and a plan is optimal if there is no shorter plan.

The representation of planning problems P in two parts
D and I , one that is general, and the other that is specific,
is essential for defining and computing general policies, as
the instances are assumed to come all from the same do-
main. Recent work has addressed the problem of learning
such first-order representations from unstructured data (Asai
2019; Bonet and Geffner 2020; Rodriguez et al. 2021).

General Policies and Value Functions
Generalized planning studies the representation and com-
putation of policies that solve many classical planning in-
stances from the same domain at once (Srivastava, Immer-
man, and Zilberstein 2008; Bonet, Palacios, and Geffner
2009; Hu and De Giacomo 2011; Belle and Levesque 2016).

For example, Qclear consists of all classical problems in
Blocksworld where a block x must be cleared, regardless of
the number or initial configuration of blocks, and a general
policy for Qclear can be expressed in terms of the two fea-
tures Φ = {H,n}, where H is a true in a state if a block
is being held, and n represents the number of blocks above
the target block x, by means of the rules {¬H,n> 0} 7→
{H,n↓} and {H} 7→ {¬H} (Bonet and Geffner 2018). The
first rule says that when the gripper is empty and there are
blocks above x, any action that decreases n and makes H
true should be selected. The second that when the gripper is

not empty, any action that makesH false and does not affect
n should be selected. It has been shown that general policies
of this form can be learned without supervision by solving
a Max-Weighted SAT theory T (S,F ) where S is a set of
sampled state transitions, and F is a large but finite pool of
Boolean and numerical features obtained from the domain
predicates (Francès, Bonet, and Geffner 2021).

In this work, it is convenient to represent policies in terms
of value functions. As it is usual in dynamic programming
and RL (Sutton and Barto 1998; Bertsekas 1995), a value
function V defines a (non-deterministic) greedy policy πV
that selects in a state s any possible successor state s′ with
minimum V (s′) value, under the assumption that actions are
deterministic and of the same cost. A policy π solves an in-
stance P if the state transitions compatible with π, starting
with the initial state, always end up in a goal state, and π
solves a class of problems Q if it solves each problem in
the class. Similarly, π solves P andQ optimally when goals
are always reached optimally. Clearly, if V is optimal, i.e.,
V is the optimal cost function V ∗, the greedy policy πV is
optimal too. The general value functions are defined over
general features φi, which are well-defined state functions
over the states arising in instances of Q as:

V (s) = F (φ1(s), . . . , φk(s))

where φi(s) is the value of the feature φi in state s. Value
functions that are linear have the form:

V (s) =
∑

1≤i≤k wiφi(s)

where the coefficients wi are constants that do not depend
on the states. For example, the general value function for the
collection of problems Qclear, assuming different actions
for picking and placing objects, is:

V = 2n+H

where the states are left implicit, and the Boolean feature
H is assumed to have value 1 when true, and 0 otherwise
(the opposite for ¬H). This value function is optimal for
Qclear. In planning, two types of linear value functions
that have been used are “potential heuristics” (Pommeren-
ing et al. 2015), that are instance-dependent and use features
that stand for conjunction of atoms, and “generalized poten-
tial heuristics” (Francès et al. 2019) that use the Boolean
and the numerical description logic features introduced by
Bonet, Francès, and Geffner (2019).

Domain Predicates, Features, and Logics
A key problem in reinforcement learning (RL), and in partic-
ular in RL with linear function approximation, is the choice
of the features (Wu and Givan 2010; Geramifard et al. 2013;
Song et al. 2016; Bellemare et al. 2019). A relevant observa-
tion made early on is that the features can often be defined
using a simple DL grammar from the domain predicates
(Martı́n and Geffner 2004; Fern, Yoon, and Givan 2006). For
example, if q(z) and r(x, y) are two domain predicates of
arities 1 and 2 respectively, one can define new unary pred-
icates p1(x) and p2(x) as ∃y[q(y)∧r(x, y)] and ∀y r(x, y),
and use the new unary predicates to define new ones, etc.
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Unary predicates p can be used to define numerical features
np, whose value is the number of objects that satisfy p in a
state s, and Boolean features bp, whose value is true when
np is greater than 0 (Bonet, Francès, and Geffner 2019).

Interestingly, most variants of DLs are parts of a fragment
of first-order logic (FOL) known as FO2, that involves just
two variables, such as x and y above (Baader, Horrocks, and
Sattler 2008). In other words, DLs can express some FO-
formulas that make use of two variables but not three. The
extension of FOk, with k variables, with counting quantifiers
∃≥i to express that there are at least i different objects that
comply with a formula is the logic Ck.

The relation between the features required for expressing
general policies and value functions, and the finite-variable
logics required to express such features is relevant as it has
been shown recently that guarded C2 (GC2), which corre-
sponds to a standard description logic, provides a tight char-
acterization of the expressive power of (message passing)
graph neural nets (Barceló et al. 2020; Grohe 2020). This
suggests that GNNs can be used to learn general policies us-
ing the domain predicates without having to generate a pool
of C2 features by assuming some fixed grammar and a bound
on the complexity of the features. This is the hypothesis that
we explore in this work by focusing on the problem of learn-
ing general value functions that are optimal.

Value Functions for Tractable Tasks
We consider optimal value functions for a number of tasks
and domains, selected mostly from Lipovetzky and Geffner
(2012), where they are shown to be solvable, optimally, in
polynomial time, suggesting that a compact optimal value
function may exist. All features are defined in terms of the
domain predicates, and for simplicity, they are all Boolean.
Predicates pG refer to predicates p evaluated in the goal
(goal predicates); i.e., while an atom like ON(a, b) is true
or false in a state, the atom ONG(a, b) is true in a state iff it
is true in the goal of the instance (Martı́n and Geffner 2004).

In these domains, the optimal value functions are linear
and expressed as sums V ∗(s) =

∑N
i=1 ci[[ϕi(s)]], where ci

is a constant and [[ϕi]] is the Iverson bracket that evaluates to
1 if feature ϕi holds in s, and else to 0. The formulas ϕi all
belong to the logic Ck for k = 2, and in one case, for k = 3.

In many domains, we need features that reflect the exis-
tence of paths of length k from object x to some object y
such that some condition T (y) holds, where objects are con-
nected by “edges” E(x, y). This can be expressed in C2 as:

P0(x) = T(x) ,

Pk(x) = ∃y(E(x, y) ∧ Pk−1(y)) .

The distance of a shortest path of length k is then captured
by SPk(x) = Pk(x)∧¬Pk−1(x), while the existence of such
path of length up toN is captured by CONNN (x) = P0(x)∨
· · · ∨ PN (x). The constant N is related to a hyperparam-
eter L in the architecture, to be described below. Nota-
tion SPk[T′, E′] (resp. CONNN [T′, E′]) denotes SPk (resp.
CONNN ) where T/E are replaced by T ′/E′ resp. Addition-
ally, P1(x) = ∃y P(x, y) and P2(x) = ∃y P(y, x) denote that
x appears as first and second argument of some atom. Lastly,
P−1(x, y) holds iff P(y, x) holds.

Blocksworld: Clear and On. Gupta and Nau (1992)
showed that finding an optimal solution for Blocksworld is
NP-hard. We thus consider a tractable version where the
goal CLEAR(x) is to clear a specific block x. The optimal
value function decomposes as

V ∗ = [[α ∧H]] +
∑N

k=1(2k − 1)[[Bk]]

for features

α = ∃x(CLEARG(x) ∧ ¬CLEAR(x)) ,

H = ∃xHOLDING(x) ,

Bk = ∃x(CLEARG(x) ∧ ηk(x)) ,

ηk(z) = SPk[CLEAR,ON−1](z)

where α holds in a state, if it is not a goal state,H , if holding
some block, andBk (resp. ηk(z)), if there are k blocks above
x (resp. z), k ≤ N .

The other version of Blocksworld corresponds to in-
stances with single-atom goals of the form ON(x, y) for
some x and y. In this case, the optimal value function for
problems with up to N blocks above x or y decomposes as

V ∗ = [[α ∧H]] + 2[[α ∧ L]] + 2
∑N

k=1 k([[Xk]] + [[Yk]])

for features

α = ∃xy(ONG(x, y) ∧ ¬ON(x, y)),

L = ∃xy(ONG(x, y) ∧ (¬CLEAR(y) ∨ ¬HOLDING(x))),

Xk = ∃xy(ONG(x, y) ∧ ηk(x) ∧ ¬CONNN [ON2
G,ON](x)),

Yk = ∃xy(ONG(x, y) ∧ ηk(y) ∧ ¬CONNN [ON1
G,ON](y))

where L holds if x is not held or cannot be stacked on y, and
Xk (resp. Yk) holds if there are k blocks above x (resp. y)
and x (resp. y) is not above y (resp. x).

Gripper. There is a robot with two grippers, and a set of
rooms containing balls. While the goal is to move every ball
to the correct room, we consider the subproblem of moving
a single ball, whose goal is just AT(x, y) for some ball x and
room y. The optimal value function is
V ∗ = [[α∧P ]] + 3[[α∧B]] + [[α∧D]] + 2[[α∧G]] + [[α∧F ]]

for features

α = ∃xy(ATG(x, y) ∧ ¬AT(x, y)) ,

P = ∃xy(AT(x, y) ∧ AT1
G(x) ∧ AT-ROBBY(y)) ,

B = ∃xy(AT(x, y) ∧ AT1
G(x) ∧ ¬AT-ROBBY(y)) ,

D = ∃xy(ATG(x, y) ∧ AT-ROBBY(y)) ,

G = ∃xy(ATG(x, y) ∧ ¬AT-ROBBY(y)) ,

F = ∃xy(AT1
G(x) ∧ AT(x, y) ∧
¬∃x(GRIPPER(x) ∧ FREE(x))) .

where α holds when the goal is not achieved, P (resp. B)
holds when Robby is (resp. is not) in the same room as the
ball x and Robby should pick up x (resp. move to pick it up),
D (resp. G) holds when Robby is (resp. is not) in the room
y, and F holds when no gripper is free and Robby is not
carrying the ball x. It is important to note that when Robby
picks up a ball, the ball is no longer in any room.
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Transport. The task is to deliver packages using trucks of
bounded capacity. We consider a version where the goal is an
atom AT(x, y) for package x and destination y. The optimal
value function V ∗ decomposes as the sum for 1≤ k≤N of

(k + 1)
(
[[α∧Tk]] + [[α∧Dk]] + [[α∧D′`]]

)
+ [[α∧Tk∧Fk]]

for features

α = ∃xy(ATG(x, y) ∧ ¬AT(x, y)) ,

β(x, y) = AT(x, y) ∧ AT1
G(x) ,

γ(x, y) = IN(x, y) ∧ AT1
G(x) ,

L(y) = ∃x(VEHICLE(x) ∧ AT(x, y)) ,

C(y) = ∃x(VEHICLE(x) ∧ AT(x, y) ∧
∃y(CAPACITY(x, y) ∧
∃x CAPACITY-PREDECESSOR(x, y))) ,

Tk = ∃xy(β(x, y) ∧ SPk[L, ROAD−1](y)) ,

Fk = ∃xy(β(x, y) ∧ ¬SPk[C, ROAD−1](y)) ,

Dk = ∃xy(β(x, y) ∧ SPk[AT2
G, ROAD](y)) ,

D′k = ∃xy(γ(x, y) ∧
∃x(AT(y, x) ∧ SPk[AT2

G, ROAD](x)))

where α holds iff the goal is not achieved, Tk determines
the distance to the closest truck, Tk ∧ Fk determines if all
closest trucks are full and need to drop a package, and Dk

(resp. D′`) determines the distance from the package (resp.
truck the package is in) to the destination.

Rovers. Multiple rovers equipped with different capabili-
ties (soil analysis, etc) must perform experiments and send
results back to lander. A simple version where just the soil
at some specific location must be sampled is considered.

A feature for identifying the closest available and capable
rover to sample soil is needed. Since each rover has its own
map, shortest-path on different graphs must be considered:

P0(r, x) = AT-SOIL-SAMPLE(x) ,

Pk(r, x) = ∃y(CAN-TRAVERSE(r, x, y) ∧ Pk−1(r, y)) ,

SPk(r, x) = AT(r, x) ∧ Pk(r, x) ∧ ¬Pk−1(r, x) .

In addition to find the distance to the closest capable rover to
sample the soil Rk, features are need to decide if such rover
is full Fk, if the soil has not been sampled S, and if the goal
has not been achieved α. Also needed are Boolean features
Lk to express the distance from the soil or rover with the
sample to some location where data can be sent to lander.
The optimal value function decomposes as:

V ∗ = [[α]] + [[S]] +
∑N

k=1(k[[Rk]] + [[Fk]] + k[[Lk]]) .

The formulas SPk(r, x) enter into the definition of the fea-
tures Rk. Since these formulas involve 3 variables, the fea-
tures used to decompose V ∗ do not belong to C2 or GC2.

Visitall. The task is to find a path that starts at an initial
vertex and visits all vertices in a given graph. The simpli-
fied version involves a single target vertex to be visited. For
graphs with up to N vertices, the optimal value function is

V ∗ =
∑N

k=1 k[[α ∧Dk]]

for features

α = ∃x(VISITEDG(x) ∧ ¬VISITED(x)) ,

Dk = ∃x(AT-ROBOT(x) ∧ SPk[VISITEDG, CONNECTED](x)).

Other Domains. Logistics, Miconic, Parking-behind and
Parking-curb, and Satellite are also considered in the ex-
periments. We do not have space to discuss them in detail;
however, the goals of all these problems are single atoms
and optimal plan lengths are bounded by (small) constants
(also in Gripper). On the other hand, for the two versions
of Blocksworld, Transport, Rovers and Visitall the length of
optimal plans is not bounded.

Learning The Value Functions
We turn to the problem of learning these value functions us-
ing GNNs directly from the domain predicates. For this, we
review GNNs, their logic, and the GNN architecture used.

Graph Neural Networks
GNNs represent trainable, parametric functions over graphs
(Scarselli et al. 2008; Hamilton 2020). We focus on
aggregate-combine GNNs (AC-GNNs) (Barceló et al. 2020;
Grohe 2020) with L layers that are specified with aggregate
functions aggi, combination functions combi, and a classi-
fication function CLS. On input graph G, a GNN maintains
a state (vector) xv ∈ Rk for each vertex v ∈ V (G), and
computation consists of updating these states throughout L
stages, with x

(i)
v denoting the states after stage i. The param-

eter k is the dimension of the node state or embedding. The
computation model for AC-GNNs corresponds to updates

x(i)
v := combi

(
x(i−1)
v ,aggi

(
{{x(i−1)

w |w ∈ NG(v)}}
))

where NG(v) is the set of neighbors for vertex v in G, and
{{. . .}} denotes a multiset (i.e., unordered set whose elements
are associated with multiplicities). That is, at stage i, each
vertex v receives the state of its neighbors which are then
aggregated, and the result combined with the current state
x
(i−1)
v to produce the next state x

(i)
v . The fact that aggi

maps multisets of states into real vectors means that it does
not depend on the source of the received messages. GNNs
are used for node or graph classification. In the first case,
after the final stage, the node v is classified into the class
CLS(x

(L)
v ) determined by a function CLS : Rk → {0, 1}.

In the second case, the CLS function maps the multiset
{{x(L)

v | v ∈ V (G)}} into a single, scalar output; an opera-
tion referred to as a readout.

In our case, GNNs map planning states s into real val-
ues V (s). However, the atoms in a planning state do not in-
duce a graph (or hypergraph), but the more subtle relational
structure. Therefore, we adapt below the GNN architecture
to deal with relational structures. In any case, the functions
involved in the mapping from inputs to outputs can be lin-
ear or non-linear, and they are all trainable; in the supervised
case, by minimizing a loss function defined over a training
set given by pairs 〈s, V ∗(s)〉, where all the states s (sets of
atoms) come from instances of different size but over a com-
mon planning domain and common set of goal predicates.
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The Logic of GNNs
The expressive power of AC-GNNs has been recently stud-
ied in relation to decidable fragments of first-order logic
(Barceló et al. 2020; Grohe 2020). For this, it is convenient
to consider the more general vertex-colored graphs G and
to assume that the AC-GNNs for such graphs initialize the
embeddings of the vertices x

(0)
v to a one-hot encoding of

the vertex colors. One of the first crisp results for node clas-
sification is that if the Weisfeiler-Lehman (WL) procedure,
a well-known coloring algorithm that provides a sound but
incomplete test for graph isomorphism (Lehman and Weis-
feiler 1968), assigns the same color to two nodes in a graph,
then every AC-GNN classifier will map the two nodes into
the same class (Xu et al. 2018; Morris et al. 2019).

This result has been extended in two ways: one, where the
WL procedure is replaced by the logic C2, making use of a
seminal result relating the two (Cai, Fürer, and Immerman
1992), and the second, where the characterization of the ex-
pressive power of AC-GNNs is made tight, describing not
just what they can compute, but also what they cannot (Bar-
celó et al. 2020). For this, the logical formulas considered
are those that involve equality and two types of predicates: a
binary edge E(x, y) predicate representing the edges in the
graph, and unary predicates ci(x) representing the color of
vertices. A (Boolean) node classifier can be expressed then
as a logical formula ϕ(x) over these predicates with a single
free variable x. The question is what is the relation between
the node classifiers that can be captured in an AC-GNNs and
those that can be described logically.

The logical classifiers that can be captured by AC-GNNs
are fully characterized in terms of graded modal logic GC2,
which is equivalent in expressive power to the standard de-
scription logicALCQ (Barceló et al. 2020). GC2 is the class
of all formulas in C2 in which each quantified variable is
guarded by the edge relation; e.g., ψ(x) = ∃y [E(x, y) ∧
blue(y)] that holds when x has a blue neighbor. The main
result is:

Theorem 1 (Barceló et al., 2020). A logical classifier is
captured by AC-GNNs if and only if it can be expressed in
graded modal logic (GC2), or equivalently, in the descrip-
tion logic ALCQ.

Moreover, each GC2 classifier can be captured by a simple
and homogeneous AC-GNN; i.e., with linear combinators,
and combinators and aggregators that are identical across all
layers. There is a similar result for C2 classifiers, but this
requires an slightly modified version of AC-GNNs, called
ACR-GNNs, where the combination function for each ver-
tex v is extended to take an extra argument given by an ag-
gregation of the states for all vertices in the graph:

Theorem 2 (Barceló et al., 2020). Logical node classifiers
in C2 are captured by simple and homogeneous ACR-GNNs.

GNNs for Relational Structures
In as much as truth valuations give meaning to proposi-
tional formulas, relational structures give meaning to first-
order formulas. In the case of planning states, the induced
relational structures only have relations, and do not involve

constants nor functions. Thus, a relational structure R =
(D, RD

1 , . . . , R
D
m) consists of a domain of interpretation D

and relations RD
i of arity ki that stand for sets of ki-tuples

from D. In the relational structure defined by a graph, D is
given by the vertices and there is a single relation RD given
by the edges. In the structure defined by a planning state s,
D is given by the set of objects in the instance, and RD

i is
the set of object tuples that satisfy the predicate Ri in s.

Our modification of GNNs to handle relational structures
is inspired by the one introduced by Toenshoff et al. (2021)
for solving Max-CSP problems where all relations are as-
sumed to be binary and thus any such Max-CSP instance
maps straightforwardly to a directed graph. A major differ-
ence though is that our architecture does not make use of
LSTMs (Hochreiter and Schmidhuber 1997).

For dealing with relations of any arity, the computation
maintains states s(i)o for each object o ∈ D and proceeds in
stages i = 1, . . . , L, where each atom p = R(o1, . . . , on)
computes messages mp,oi that are sent to each object oi.
Each object o then aggregates the incoming messages mp,o

from the atoms p that mention o, and combines this aggre-
gation with the current state s

(i−1)
o to produce the next state

s
(i)
o . The final state (object) vectors are passed through a

neural net, aggregated, and the result passed again to a final
network to produce a single output vector v of dimension q.
For relational structures that capture a state s, the output v is
aimed to approximate the scalar function V ∗(s), and hence
the output dimension is q = 1.

The architecture shown in Algorithm 1 uses one feed-
forward neural net MLPR for each relational symbol R
(domain and goal predicate), one such net MLPU as a com-
bination function, and two nets MLP1 and MLP2 for con-
structing the final output v.1 All MLPs consists of a dense
layer with a ReLU activation function, followed by a dense
layer with a linear activation function. For the aggregation
function agg, we use either sum or smooth maximum (im-
plemented as LogSumExp). The trainable parameters are
thus the trainable parameters in the MLPs, while the hy-
perparameters are the embedding dimension k, the output
dimension q, and the number of stages L. The initial embed-
dings s

(0)
o are obtained by concatenating the zero vector 0

and a random vector N (0, 1), each of dimension k/2 (Ab-
boud et al. 2021; Sato, Yamada, and Kashima 2021).

The parameters of the network are learned by stochastic
gradient descent by minimizing the loss L(R, `) = ‖v−`‖1
from training data {(Ri, `i)}i. In our setting, the relational
structuresRi encode (the atoms that are true in) the states s,
and the target value `i for s is V ∗(s).

Experiments
We now evaluate if models (neural nets) can be trained and
used as policies in the domains and tasks considered above.

1Another major difference is that the messages mp,o sent to
objects, line 4 in Alg. 1, are computed with MLPs whereas in the
architecture of Toenshoff et al. (2021) the messages are computed
with linear transforms.
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Algorithm 1: General architecture (trainable, para-
metric function) that maps relational structures R =
(D, RD

1 , . . . , R
D
m) into vector v. In our setting,R en-

codes the states s, and v approximates V ∗(s). Atoms
p(o1, . . . , on) true in the input send messages to the
objects oi in p, and objects o aggregate all messages
received and update their state s

(i)
o .

Input: Relational struct.R = (D, R1, . . . , Rm) [states s)]
Output: v ∈ Rq of dimension q [value V (s)]

// Partial random initialization

1 s
(0)
o ∼ 0k/2N (0, 1)k/2 for each object o ∈ D;

2 for i ∈ {1, . . . , L} do
3 for atom p := R(o1, . . . , on) with ō ∈ R do

// Generate messages p→ oj

4 (mp,oj )j := MLPR(s
(i−1)
o1 , . . . , s

(i−1)
on );

5 for o ∈ O do
// Aggregate messages and update

6 s
(i)
o := MLPU

(
s
(i−1)
o ,agg({{mp,o | o ∈ p}})

)
;

// Final Readout

7 v := MLP2

(∑
o∈D MLP1(sL

o )
)

Domain Train Validation Test

Blocks-clear [2, 9] [10, 11] [12, 17]
Blocks-on [2, 9] [10, 11] [12, 17]
Gripper [10, 18] [20, 22] [24, 48]
Logistics [17, 24] [31, 31] [31, 39]
Miconic [5, 26] [29, 35] [38, 92]
Parking-behind [21, 27] [30, 30] [30, 36]
Parking-curb [21, 27] [30, 30] [30, 36]
Rovers [15, 52] [53, 62] [67, 116]
Satellite [14, 41] [47, 59] [50, 103]
Transport [14, 39] [38, 43] [41, 77]
Visitall [27, 102] [102, 146] [171, 326]

Table 1: Number of objects in the problems in the training,
validation and test datasets; e.g., each problem for Miconic
in the validation set has a number of objects in [29, 35].

We first describe how states are sampled and labeled, then
the experimental setup, and finally, the results.2

Data. For a set of instances, we sample and label states
for each as follows. First, we perform a single random walk
s1, . . . , sn from the initial state. Then, for each 1≤ i≤n, we
construct a planning problem with initial state si, and find an
optimal plan s′1, . . . , s

′
m with A∗ using the admissible hmax

heuristic (Bonet and Geffner 2001). For each 1≤ j≤m, we
add the pair 〈s′j ,m − j〉 to the dataset, up to 40, 000 such
pairs, balancing the number of states per label (distance).
The value of n is set to produce that many pairs if possible.

Setup. The hyperparameters k and L are set to 32 and 30,
respectively; k affects the number of features per object, but
also training speed and memory usage. The domain with the

2Code and data: https://doi.org/10.5281/zenodo.6353140

GNN-SUM GNN-MAX

Domain (#) L Opt. Sub. Opt. Sub.

Blocks-clear (11) 82 11 0 11 0
Blocks-on (11) 150 11 0 11 0
Gripper (39) 117 31 8 39 0
Logistics (8) 48 5 3 8 0
Miconic (95) 378 95 0 95 0
Parking-behind (32) 77 32 0 32 0
Parking-curb (32) 101 7 12 32 0
Rovers (26) 111 0 4 20 6
Satellite (20) 97 20 0 20 0
Transport (20) 208 18 1 20 0
Visitall (12) 93 12 0 12 0

Total (306) 1,462 242 28 300 6
(79%) (9%) (98%) (2%)

Table 2: Number of problems in test set solved optimally,
suboptimally, or not solved at all with policy πV for learned
V , when aggregation is done by SUM or MAX. Total number
of problems (#) shown in parenthesis. Tasks and domains
from Section 4. L is the sum of all optimal plan lengths.

most predicates is Rovers with 32 predicates, so the value
for k ensure that at least one feature (scalar) per predicate is
possible. Our architecture can find shortest paths of length
up to 2L. In the experiments, we evaluate nets with sum-
and (smooth) max-aggregation denoted by GNN-SUM and
GNN-MAX, respectively. The architecture is implemented in
PyTorch (Paszke and et. al. 2019) and each net is trained
with NVIDIA A100 GPUs for up to 12 hours. GNN-SUM is
trained with L1 regularization set to 0.0001, and no regu-
larization for GNN-MAX (resulted in the lowest loss on the
validation set). Training is done with Adam (Kingma and Ba
2015) with a learning rate of 0.0002.

Table 1 shows the number of objects for the problems in
the training, validation and test datasets. We trained 5 net-
works for each domain, and for each training session, the net
with the best validation loss at the end of each epoch is se-
lected. Among the 5 trained nets, the final net is the one with
the best validation loss. For the learned V function, we run
the policy πV , selecting from each non-goal state s, the suc-
cessor s′ with least V -value, breaking ties by selecting the
first such successor. This is repeated for at most 100 steps, or
until a goal state is reached. In the latter case, the problem is
solved, and if the number of steps is minimal (verified with
A* and hmax), the problem is counted as solved optimally.

Results. As it is shown in Table 2, the value functions
learned with GNN-MAX yield policies that solve all of the
306 test instances, 98% of them optimally. The 6 instances
not solved optimally are all in Rovers, that as shown above,
requires C3 features. This is a pretty impressive result that
shows that deep nets can produce very crisp results. In our
case, it means that the GNN-MAX nets deliver policies that
do not make a single mistake in the plans of 300 test prob-
lems, and this means, practically no errors in the 1,462 in-
termediate decisions made in the construction of these plans.
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Domain # Train L′ Test L′

Blocks-clear 2 0.12 0.16
Blocks-on 6 0.88 0.96
Blocks-on-Σ 5 0.17 0.23
Gripper 5 0.04 0.11
Transport 4 0.71 1.13
Transport-Σ 3 0.30 0.48
Visitall 1 0.06 1.91

Table 3: Total loss L′ of hand-crafted features over the train
and test set, and the number of such features. Features are
taken from the analysis of each domain (Section 4). Do-
mains with Σ replaces two numerical features by their sum.

Notice that this is different than simply measuring “cov-
erage” (number of problems solved) where policies are al-
lowed to make mistakes, if they are not fatal, and typically
“noise” is introduced to prevent being trapped in cycles.
In terms of the aggregation functions, the performance of
GNN-SUM is not as good as GNN-MAX. The theory does not
help us to understand this difference, but it has been noted
that max-aggregation is better suited for discrete decisions
and tasks that involve shortest paths (Veličković et al. 2020).

Understanding the Learned Features

We also tested if the learned features in the trained models
can be understood in terms of the hand-crafted features used
in our analysis of the domains. For this, let y be the vector
of n features based on our formal analysis, where distance
features SP are treated as numerical features. The readout
function consists of a sequence of layers: (1) ReLU; (2) lin-
ear; (3) summation; (4) ReLU; and (5) linear. Let x be the
concatenation of all intermediate feature vectors after aggre-
gation in the readout function, i.e., the results of layer (3), (4)
and (5). Finally, let y′ = xA + b be a linear function of x
optimized such that the linear coefficients A and b minimize
the loss L′(y′, y) =

∑n
i=1 |y′i − yi|. If this is loss is zero or

very small, it means that the learned features encode a linear
transformation of the hand-crafted features.

Table 3 shows the loss on the test set, after A and b are
optimized on the training set. In Visitall, this loss is largest
among the domains considered (those for which V ∗ was
given in compact form), 1.91, and yet the optimal coverage
is 100%, meaning that the distances are ordered well but not
linearly. The loss for Blocks-on and Transport over the train-
ing set is roughly 0.8 and this suggests that the networks do
not learn one or more of the hand-crafted features well, al-
though it turns out that they learn a suitable aggregation of
them. The features for Blocks-on-Σ in the Table 3, replace
the two numerical features induced by X and Y in Blocks-
on by their sum, and the same is done for Transport-Σ for
D and D′. The training and test losses then drop to roughly
20% of the previous loss in Blocks-on, and to 40% in Trans-
port, implying that these features are learned instead.

Understanding the Limitations
The neural network does not approximate well the optimal
value function in Rovers, which is the only domain where
the optimal policy does not generalize 100% with max ag-
gregation. The problem is that optimal policies for Rovers
require C3 features that cannot be computed with standard
GNNs. Interestingly, the analysis reveals that this limitation
is not due to the presence of multiple rovers, but to mul-
tiple rovers with their own maps. For illustrating this, we
designed a simplified Rovers domain called Vacuum: an as-
sortment of robot vacuums that have to clean a specific spot.
The predicates of this domain are AT/2, DIRTY/1, and ADJA-
CENT/3, and each robot r can clean a location x and move
to an adjacent location y if ADJACENT(r, x, y). We consider
three different versions: Vacuum-R with at most 5 robots,
Vacuum-M where all robots share the same traversal map,
and Vacuum with no restrictions. We generated 20 prob-
lems of each version of Vacuum and ensured that optimal
plan lengths vary from approximately 3-8 for the training
set, 6-9 for the validation set, and 6-12 for the test set. The
number of problems solved optimally by GNN-MAX is 1 for
Vaccum, 4 for Vaccum-R, and 20 for Vaccum-M. The only
version with 100% generalization (or close) is Vacuum-M,
which is precisely the version of the domain where there are
C2 features for deciding the length of shortest paths. The r
argument in ADJACENT(r, x, y) is indeed redundant, and if
ADJACENT′ denotes the resulting binary predicate, the opti-
mal value function for Vacuum-M decomposes as

V ∗ =
∑N

k=1(k + 1)[[Dk]]

for Dk = ∃x(DIRTYG(x) ∧ SPk[AT2,ADJACENT′−1](x)),
which is a C2 feature.

Related Work
Neuro Symbolic AI. Many proposals have been advanced
for integrating symbolic and DL approaches due to limita-
tions and opacity of pure data-based approaches (Lake et al.
2017; Manhaeve et al. 2021; Lamb et al. 2020). Our in-
tegration combines domain predicates, that can potentially
be learned (Asai 2019; Bonet and Geffner 2020; Rodriguez
et al. 2021), builds on the correspondences between finite
variable logics and GNNs (Barceló et al. 2020; Grohe 2020),
and modifies the architecture for Max-CSPs. Interestingly,
recent GNN methods can compute more general functions
that are not limited to those defined on the C2 features asso-
ciated with DLs logics only (Abboud et al. 2021).

General Policies. The problem of learning general poli-
cies has been addressed using combinatorial approaches
where the symbolic domains are given (Khardon 1999;
Martı́n and Geffner 2004; Bonet, Francès, and Geffner 2019;
Francès, Bonet, and Geffner 2021), DL approaches where
the domains are given too (Toyer et al. 2020; Garg, Bajpai,
and Mausam 2020), and DRL approaches that do not make
use of prior knowledge about the structure of either domains
or states (Groshev et al. 2018; Chevalier-Boisvert et al. 2019;
Campero et al. 2021). This work is a step to bring the first
two approaches together along with their potential benefits.
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General Value Policies. It is known since the 1950s that
a value function V defines a policy πV which is optimal if
V is optimal (Bellman 1957; Bertsekas 1995; Sutton and
Barto 1998). Linear value functions have been particularly
important in RL until the advent of deep RL methods that
dispense with the need for hand-crafted features (Mnih et al.
2015; François-Lavet et al. 2018). In classical planning, lin-
ear value functions have been used under the name of “po-
tential heuristics” (Pommerening et al. 2015), where the fea-
tures are conjunctions of atoms, and “generalized potential
heuristics” (Francès et al. 2019), where the (C2) features are
the Boolean and numerical features based on DLs (Bonet,
Francès, and Geffner 2019). A “descending and dead-end
avoiding potential function” V represents indeed a value
function V that defines a greedy policy πV that solves a
problem. The proposed learning method provides crisp ex-
perimental evidence that generalized value functions with
C2 features can be computed without having to explicate
the pool of features and without having to assume a lin-
ear combination. Our focus on optimal value functions is
methodological: it allows for supervised learning with V ∗
targets, and a crisp evaluation (no single mistake allowed in
the execution of plans). The same learning approach can be
used in stochastic MDPs where the targets V ∗ represent op-
timal expected costs to the goal. Also, due to the correspon-
dence between C2 features and GNNs, the same architecture
can be used for learning value functions without supervision
(Francès et al. 2019), possibly using RL methods.

Summary
Previous works have shown that general policies and value
functions for many classical planning domains can be ex-
pressed in terms of a pool of features that is obtained from
the domain predicates using a DL grammar, and learned
without supervision using combinatorial solvers. In this
work, we have exploited the relations between DLs and the
decidable fragment C2 of FOL, and between GNNs and
C2, to approach a similar problem (optimal policies and
value functions) but avoiding the grammar, the complex-
ity bounds, and the combinatorial solvers that have been re-
placed by more robust and scalable deep learning engines.

Other authors have addressed the problem of learning
general policies using GNNs and GNN-like architectures
given the domain descriptions. What distinguishes our ap-
proach is that our deep learning architecture is simple and
general; a modification of a GNN architecture introduced for
solving a completely different task: Max-CSPs over binary
constraints (Toenshoff et al. 2021). We also have a logical
characterization of what are we trying to learn and we have
used it to understand the scope of the computational model
(power and limits), and what is actually learned. Recent
extensions of GNN learning, however, suggest that (value)
functions of features that are more complex than those asso-
ciated with DLs could be learned effectively as well.
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Rocktäschel, T.; and Grefenstette, E. 2021. Learning with AMIGo:
Adversarially Motivated Intrinsic Goals. In ICLR.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems, L.; Sa-
haria, C.; Nguyen, T. H.; and Bengio, Y. 2019. BabyAI: A Platform
to Study the Sample Efficiency of Grounded Language Learning.
In ICLR.
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iter-
ation with a policy language bias: Solving relational Markov deci-
sion processes. JAIR, 25: 75–118.
Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning General
Planning Policies from Small Examples Without Supervision. In
Proc. AAAI, 11801–11808.

636
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