
Active Grammatical Inference for Non-Markovian Planning

Noah Topper1, George Atia1,2, Ashutosh Trivedi3, Alvaro Velasquez4

1Department of Computer Science, University of Central Florida
2Department of Electrical and Computer Engineering, University of Central Florida

3Department of Computer Science, University of Colorado Boulder
4Information Directorate, Air Force Research Laboratory

noah.topper@knights.ucf.edu, george.atia@ucf.edu, ashutosh.trivedi@colorado.edu, alvaro.velasquez.1@us.af.mil

Abstract
Planning in finite stochastic environments is canonically
posed as a Markov decision process where the transition and
reward structures are explicitly known. Reinforcement learn-
ing (RL) lifts the explicitness assumption by working with
sampling models instead. Further, with the advent of reward
machines, we can relax the Markovian assumption on the re-
ward. Angluin’s active grammatical inference algorithm L∗

has found novel application in explicating reward machines
for non-Markovian RL. We propose maintaining the assump-
tion of explicit transition dynamics, but with an implicit non-
Markovian reward signal, which must be inferred from ex-
periments. We call this setting non-Markovian planning, as
opposed to non-Markovian RL. The proposed approach lever-
ages L∗ to explicate an automaton structure for the underly-
ing planning objective. We exploit the environment model to
learn an automaton faster and integrate it with value iteration
to accelerate the planning. We compare against recent non-
Markovian RL solutions which leverage grammatical infer-
ence, and establish complexity results that illustrate the dif-
ference in runtime between grammatical inference in plan-
ning and RL settings.

Introduction
While there has been tremendous success in the RL and
planning communities in recent years, much of it has been
underpinned by strict Markovian assumptions. This means
the current state of an agent must be sufficient to deter-
mine the dynamics and optimal behavior going forward.
This assumption holds true for the impressive AlphaGo (Sil-
ver et al. 2016), AlphaGo Zero (Silver et al. 2017), and Al-
phaZero (Silver et al. 2018) planning agents, but it is of-
ten the case that the underlying goal of an agent is non-
Markovian. In such settings, it is standard to assume a char-
acterization of the underlying objective using temporal logic
or an equivalent automaton representation thereof. Given
this, conventional planning solutions such as value iteration
can be adopted to solve the problem (Thiébaux et al. 2006).

An interesting problem arises when we assume that the
foregoing logical or automaton characterization is not given,
but must be learned via experimentation. In recent years,
this has been explored in the context of RL, where ac-
cess to the model is not available and the agent must learn

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through black-box exploration of the environment. In this
setting, quintessential algorithms from the field of grammat-
ical inference have been applied with some success (Gaon
and Brafman 2020; Xu et al. 2020, 2021). However, non-
Markovian planning with known transition dynamics re-
mains largely unexplored (with the exception of the pre-print
in (Rens and Raskin 2020)). In this paper, we provide an al-
gorithm that integrates active grammatical inference in the
form of the L∗ algorithm (Angluin 1987) to learn a deter-
ministic finite automaton (DFA) representation of the goal
in the underlying decision process. This DFA is then used to
compute an augmented decision process where conventional
value iteration can be adopted. As a second contribution, we
rigorously prove that the fundamental problem of answering
membership queries for grammatical inference can be com-
puted efficiently in the planning context, but is NP-complete
in popular RL regimes where the computed policy is Marko-
vian and deterministic.

Related Work
Non-Markovian planning has been studied extensively
(Thiébaux et al. 2006) (Brafman and De Giacomo 2019)
(Bacchus, Boutilier, and Grove 1997) (Thiébaux, Kabanza,
and Slaney 2002) (Gretton 2006) (Velasquez et al. 2021).
However, it is typically assumed that the goal is given in
some automaton representation. We are concerned with non-
Markovian planning when this goal is not known, but its au-
tomaton representation must be learned through interactions
with the given environment model. Once learned, it can be
leveraged using existing techniques.

Reward machines were introduced in (Icarte et al. 2018)
as a finite-state machine representation of a non-Markovian
reward signal. Since then, the RL community has seen the
application of grammatical inference techniques to repre-
sent such underlying objectives. Grammatical inference is a
branch of machine learning typically concerned with learn-
ing an automaton representation of some grammar. Active
inference allows for the system under learning to be queried,
whereas its passive counterpart leverages an existing static
repository of samples. The work in (Xu et al. 2020) uses pas-
sive grammatical inference by storing traces of behavior that
arise in the standard Q-learning methodology. This reposi-
tory can then be used to synthesize a reward machine using
techniques like satisfiability solving. A similar approach is

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

647

explored in deep RL by leveraging perceptual abstractions
over the visually complex state space in order to derive sim-
ple atomic propositions over which the learned automaton
is defined (Hasanbeig et al. 2021). In (Xu et al. 2021), ac-
tive grammatical inference is used in the form of L∗ to learn
an automaton by proposing an additional policy to answer
membership queries (a simpler version of this approach can
be seen in (Gaon and Brafman 2020)). These queries answer
whether a given trace is in the language of the automaton to
be learned and are integral to the functioning of L∗.

It is worth noting that some classes of infinite languages
can also be captured by finite automata. This is the case with
the omega-regular languages and their representation as de-
terministic rabin automata. In this context, non-Markovian
planning using value iteration has been explored by shaping
the reward signal of the decision process so that the agent is
incentivized to reach the accepting components of the aug-
mented decision process (Hasanbeig, Abate, and Kroening
2018).

To the best of our knowledge, the only other work on
learning automata for non-Markovian planning is the pre-
print in (Rens and Raskin 2020), where membership queries
for L∗ are answered in the planning context. Our paper dif-
fers in that we answer both membership and equivalence
queries by leveraging the known model, establish complex-
ity results, and compare against competing approaches.

Preliminaries
We assume a non-Markovian reward decision process (NM-
RDP) as the model of the agent-environment dynamics, and
our learning algorithm has full access to this model aside
from the reward function R.

Definition 1 (Non-Markovian Reward Decision Process).
An NMRDP is a tuple M = (X,x0, A, P,AP, L,R), where
X is a finite set of states, x0 ∈ X is a distinguished initial
state,A is a finite set of actions, P : X×A×X → [0, 1] is a
probabilistic transition function, AP is a finite set of atomic
propositions, L : X → 2AP∪{ε} is a labeling function, and
R : X∗ → {0, 1} is a non-Markovian reward function.

The labeling function L : X → 2AP ∪ {ε} maps states
of the NMRDP to the alphabet Σ = 2AP that defines the
language of the underlying objective. This alphabet denotes
semantically meaningful events observed in given states.
We add the empty string ε to label semantically mean-
ingless states, which can therefore be ignored as part of
the grammatical inference procedure. Given a sequence of
states x1, x2, . . . , xk, the corresponding trace is given by
L(x1)L(x2) . . . L(xk).

For simplicity, we assume a binary reward signal. Learn-
ing a reward machine is then equivalent to learning a DFA,
allowing us to applyL∗ directly. A trace is in the language iff
it yields a reward of 1. The proposed approach can be gener-
alized to any finitary reward signal, as any reward machine
has an equivalent DFA representation (Xu et al. 2021).

Definition 2 (Deterministic Finite Automaton). A DFA D
is a tuple D = (Q, q0,Σ, δ, F), where Q is a finite set of
states, q0 ∈ Q is a distinguished initial state, Σ is a finite

input alphabet, δ : Q×Σ→ Q is a transition function, and
F is a set of accepting states.

The quintessential algorithm to learn DFAs is L∗ (An-
gluin 1987). This algorithm assumes that a teacher is avail-
able to answer membership and equivalence queries. Given
a trace w ∈ Σ∗, membership queries ask whether w is in
the language of the DFA to be learned. L∗ incrementally
builds a table (S,E) with rows S and columns E, where ev-
ery entry in the table is answered using membership queries.
Once the table is consistent and closed, defined below, a hy-
pothesis DFA can be generated from the table. At this point,
the teacher must answer an equivalence query to determine
whether the hypothesis DFA captures the true language to be
learned. If not, a counterexample is provided and integrated
into (S,E). Membership queries are then answered to make
(S,E) consistent and closed once again. The L∗ algorithm
repeats these steps until the correct DFA is learned.

In order to define consistency and closure, it is useful to
define the notion of E-Equivalence.

Definition 3 (E-Equivalence). Given E ⊆ Σ∗, traces
w,w′ ∈ Σ∗ are E-equivalent with respect to language L,
denoted w ≡E w′, if we ∈ L ⇐⇒ w′e ∈ L for all e ∈ E.

Definition 4 (Consistency). (S,E) is consistent if for all
s, s′ ∈ S, if s ≡E s′, then s` ≡E s′` for all ` ∈ Σ.

Definition 5 (Closure). (S,E) is closed if for all s ∈ S and
` ∈ Σ, there exists some s′ ∈ S such that s` ≡E s′.

In the context of RL and planning, the concept of a teacher
and the problems of answering membership and equivalence
queries take on a different form when compared to classi-
cal grammatical inference. In our setting, the teacher is the
given NMRDP model M and the language to be learned is
the DFA representation of the non-Markovian reward signal
R. As such, answering membership and equivalence queries
requires exploring the state space of M to find sequences of
states that yield a reward. The traces corresponding to such
sequences are used to learn the underlying DFA.

As we show, the seemingly innocuous problem of answer-
ing membership queries is NP-complete in settings where
positional policies are required. A positional policy is one
that is Markovian (i.e. only depends on the current state) and
deterministic (Oura, Sakakibara, and Ushio 2020). Such are
the settings of reinforcement learning using Q-learning and
deep Q-networks. Due to this heretofore unknown complex-
ity, a simple heuristic is employed in (Gaon and Brafman
2020) to make answering membership queries tractable. In
particular, the query is answered negatively if some thresh-
old of attempts to answer it is exceeded. The work in (Xu
et al. 2021) handles this membership query problem in a
different manner by posing it as a reinforcement learning
problem. More specifically, their proposed approach defines
two Q-functions from which policies are derived to solve the
original reinforcement learning problem as well as the prob-
lem of generating a trajectory of states whose induced trace
answers the underlying membership query. The latter is ac-
complished by rewarding the agent as it observes elements
of the membership query in the correct order.

648

Complexity
The preceding discussion on L? illustrates the importance of
membership queries. We now formulate a decision problem
related to membership queries and analyze its complexity in
the context of positional policies.

Definition 6 (Positional Membership Query (PMQ) Prob-
lem). Given an NMRDP M = (X,x0, A, P,AP, L,R)
and a trace w ∈ (2AP)+, is there a sequence of states
x0, x1, . . . , xk in X achievable by a positional policy such
that L(x0)L(x1) . . . L(xk) = w?

We now recall the definitions of a problem related to
graph homeomorphism, that we use to establish the com-
plexity of the PMQ problem.

Definition 7 (Subgraph Homeomorphism (SH) Problem).
Given directed graphs G = (V,E) and P = (V ′, E′) and
a one-to-one mapping mv : V ′ → V , the pattern graph
P is said to be homeomorphic to some subgraph of G if
there exists a mapping me : E′ → V + such that me(v

′
i, v
′
j)

maps (v′i, v
′
j) ∈ E′ to a simple path inG with starting vertex

mv(v′i) and destination vertex mv(v′j) such that the simple
paths given by the mapping me are pairwise node-disjoint.
The restricted subgraph homeomorphism (RSH) problem
asks the same question, but restricts P to be a line graph
consisting of three vertices and two edges.

By reduction from the RSH problem, which is known to
be NP-complete (Fortune, Hopcroft, and Wyllie 1980), we
establish that even a restricted version of the MQ problem
is NP-complete. Intuitively, this RSH problem entails find-
ing two node-disjoint simple paths visiting the nodes in the
given pattern graph.

Theorem 1. The PMQ problem is NP-complete.

Proof. The PMQ problem is clearly in NP since we can ver-
ify whether L(x0)L(xi), . . . L(xk) = w holds, for a given
sequence of states in polynomial time. We show that the
PMQ problem is NP-hard by reducing the RSH problem to
the PMQ problem. Consider an arbitrary graph G = (V,E),
a pattern graph P = (V ′, E′) with V ′ = {v′1, v′2, v′3}
and E′ = {(v′1, v′2), (v′2, v

′
3)}, and a vertex mapping mv :

V ′ → V . We construct a corresponding MDP as follows.
For each v ∈ V , we have a state x ∈ X and for each
(vi, vj) ∈ E, we have a deterministic transition function
P (xj , xi, aij) = 1, aij ∈ A(xi). The set of atomic proposi-
tions is given by AP = {`1, `2, `3} and the labeling function
maps states in the MDP according to the given node map-
ping mv : V ′ → V . That is, if mv(v′i) = vj , then L(xj) =
{`i}. For all vertices vj /∈ mv(v′1) ∪ mv(v′2) ∪ m(v′3), we
have L(xj) = ε. The reward signal can be defined arbi-
trarily and the starting state is chosen to be x0 ∈ L−1(`1),
where L−1 : 2AP → 2X denotes the state(s) where a given
label holds. In this reduction, note that the inverse labeling
function L−1 returns a single state. We can now show that a
sequence x0, xi, . . . , xk achievable by some positional pol-
icy in M such that L(x0, xi, . . . , xk) = `1`2`3 exists if and
only if G contains a subgraph homeomorphic to P .

(=⇒) Abusing notation, let ~x denote the sequence of
states achievable by some positional policy with L(~x) =

`1`2`3. To show that the path ~x is a subgraph homeomor-
phic to P , we must show that it consists of simple paths
from x0 to L−1(`2) and from L−1(`2) to L−1(`3) such that
these simple paths are node-disjoint. This follows directly
from the deterministic transition dynamics ofM . Indeed, the
out-degree of every state in ~x must be 1. Two cases arise.
First, if the in-degree of every state in ~x is at most 1, then
~x is a simple path and is therefore node-disjoint. However,
if some state in ~x has in-degree strictly greater than 1, then
there must be a cycle. In this case, a simple path can be triv-
ially obtained by removing all states from ~x observed after
L−1(`3) ∈ ~x.

(⇐=) Assume G contains a subgraph homeomor-
phic to P and let me : E′ → V + denote the mapping
from edges of the pattern graph P to node-disjoint simple
paths in G. Without loss of generality, let v1 = mv(v′1),
v2 = mv(v′2), v3 = mv(v′3) denote the node mappings of
the pattern graph. The sequence of states ~x is easily ob-
tained from me(v

′
1, v
′
2) = (mv(v′1), vi1 , vi2 , . . . ,mv(v′2))

and me(v
′
2, v
′
3) = (mv(v′2), vj1 , vj2 , . . . ,mv(v′3)) as ~x =

(x1, xi1 , xi2 , . . . , x2, xj1 , xj2 , . . . , x3). This is a simple path
and is thus achievable by some positional policy.

Methodology
Since we are learning a DFA, we may implement the clas-
sic L∗ algorithm directly. Let Σ = 2AP denote the alphabet
of the DFA. We need only specify how to perform mem-
bership and equivalence queries in the given NMRDP M .
To answer such queries, we need one additional assumption.
For every trace w ∈ Σ∗, we must be able to query if the
trace receives a reward of 0 or 1 in M . Thus, each trace
w = `1 . . . `n must be observable in M via some sequence
of states x0, x1, . . . , xk so that L(x0)L(x1) . . . L(xk) = w.
Recall that states with label ε are ignored in the computation
of the trace, making this a reasonable assumption.

Unlike the positional setting where we have proven that
answering membership queries is NP-complete, answer-
ing these queries can be done straightforwardly in the non-
Markovian planning context by using an iterative Breadth-
First Search (BFS) as follows. For w ∈ Σ∗, we must search
for a trajectory inM with corresponding tracew and observe
the resulting reward. Suppose w = `1 . . . `n. Starting from
x0, we remove all states with labels not equal to `1 or ε. We
then BFS to all states x`1 ⊂ X in M labeled `1 and reintro-
duce all states that were removed prior. We remove all states
not labeled `2 or ε and perform BFS from the set of states
xl1 to the states xl2 ⊂ X labeled `2, and so on. We then ob-
serve the reward from an arbitrary sequence of states derived
from the preceding iterative BFS whose induced trace is w,
where a reward of 1 denotes that the corresponding trace is
in the language of the DFA we are trying to learn fromM . It
is worth noting that many different state sequences may cor-
respond to the same trace w. We thus assume that all such
state sequences yield the same reward.

Once enough membership queries have been solved so
that (S,E) is closed and consistent, a hypothesis DFA H
is derived per standard methods. Given H , we must issue an
equivalence query to determine if H captures the language
of the non-Markovian reward signal R. Methods like JIRP

649

Algorithm 1: Membership Query
1 Function MEMBERSHIPQUERY(M,w):
2 Suppose w = `1 · · · `n
3 x← x0
4 trajectory ← ()
5 for 1 ≤ i ≤ n do

// BFS returns trajectory from
x to state labeled `i

6 trajectory ← trajectory · BFS(M,x, `i)
7 x← last state in trajectory
8 return R(trajectory)

Algorithm 2: Equivalence Query
Data: Ω

1 Function EQUIVALENCEQUERY(M,H):
2 for w ∈ Σ∗ with |w| ≤ Ω do
3 reward← MEMBERSHIPQUERY(M,w)
4 y ← δ∗(y0, w)
5 if reward = 1 and y 6∈ F or reward = 0

and y ∈ F then
6 return w
7 return None

(Xu et al. 2020) and AFRAI (Xu et al. 2021) accomplish this
by implementing Q-learning over the productM×H until a
counterexample is observed or some time limit is exceeded.
However, in the planning context we can check equivalence
to a limited extent using our access to the model. We sample
all traces w ∈ Σ∗ up to some length Ω. In our experiments,
we set Ω = 5. We can then check that H agrees with the
model about the reward of each w. The trace w is a coun-
terexample if it reaches an accepting state of H but yields a
reward of 0 in M , or if it does not reach an accepting state
of H but does yield a reward of 1 in M . Once there are no
more counterexamples of this kind, we run value iteration on
M ×H and begin to execute the policy. We can also explore
during execution to continue searching for longer counterex-
amples. If we ever find one, we pass back to a learning phase
to rebuild the automaton and rerun value iteration.

Experiments
We evaluate our algorithm on three different gridworld tasks.
Tasks 1 and 2 are in the 9×12 office gridworld introduced in
(Icarte et al. 2018). Task 1 consists of delivering the coffee
to the office without stepping on any decorations (See Figure
1 in (Icarte et al. 2018)). Task 2 entails repeatedly patroling
the office (See Figure 2 in (Icarte et al. 2018)). Task 3 is
the Minecraft-like gridworld introduced in (Andreas, Klein,
and Levine 2017), where the objective is to build a spear by
gathering wood, string, and stone in any order, then reaching
a workbench (See Figure 3 in (Andreas, Klein, and Levine
2017)). We evaluate the time and sample efficiency of our
non-Markovian planning method compared to the JIRP and
AFRAI methods presented in (Xu et al. 2020) and (Xu et al.
2021), respectively. A sample in our method includes the
queries to the model during learning and the environment
samples observed during execution. We ran the proposed ap-

Figure 1: Results for Tasks 1 (top), 2 (middle), 3 (bottom).

proach for 20 runs and averaged the observed rewards. The
episode lengths and training steps used were 150, 200, 100
and 10,000, 20,000, and 10,000, respectively, for Tasks 1, 2,
and 3. See Figure 1 for results. Each method is run for the
same number of training steps. Since these differ in execu-
tion speed, some graph curves end sooner than others.

In each task, our method always learned the correct au-
tomaton exactly. JIRP also learned the correct automaton for
each run of Task 1, but never did for Tasks 2 and 3. AFRAI
always learned the correct automaton in Task 1, learned the
correct automaton in Task 2 for 85% of runs, and learned
the correct automaton in Task 3 only 5% of runs. AFRAI
appears competitive in sample efficiency in the last graph.
This is due to how we count samples. In our equivalence
query, we sample many short sequences from our model.
AFRAI uses the same L∗-based algorithm we do, and so
otherwise queries a similar number of traces, each of which
takes longer. Our extra equivalence queries account for our
ability to learn an exact automaton when AFRAI does not.

Conclusion
For decades, the planning community has studied how to
dispense with the Markovian assumption by instead assum-
ing some automaton representation of the objective is given.
In this paper, we addressed the problem where this automa-
ton is not known and must be learned from interactions with
the environment. While this idea has been explored in the
context of RL, we showed how in the planning context, an
environment model can be exploited to speed up learning.
We also established complexity results for the adoption of
active grammatical inference under positional policies.

650

Acknowledgments
This research was supported in part by the Air Force Re-
search Laboratory through the Information Directorate’s In-
formation Institute® Contract Number FA8750-20-3-1003
and FA8750-20-3-1004, the Air Force Office of Scien-
tific Research through Award 20RICOR012, and the Na-
tional Science Foundation through CAREER Award CCF-
1552497 and Award CCF-2106339.

References
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular multi-
task reinforcement learning with policy sketches. In Interna-
tional Conference on Machine Learning, 166–175. PMLR.
Angluin, D. 1987. Learning regular sets from queries and
counterexamples. Information and computation, 75(2): 87–
106.
Bacchus, F.; Boutilier, C.; and Grove, A. 1997. Structured
solution methods for non-Markovian decision processes. In
AAAI/IAAI, 112–117. Citeseer.
Brafman, R. I.; and De Giacomo, G. 2019. Planning
for LTLf/LDLf Goals in Non-Markovian Fully Observable
Nondeterministic Domains. In IJCAI, 1602–1608.
Fortune, S.; Hopcroft, J.; and Wyllie, J. 1980. The directed
subgraph homeomorphism problem. Theoretical Computer
Science, 10(2): 111–121.
Gaon, M.; and Brafman, R. 2020. Reinforcement Learning
with Non-Markovian Rewards. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 3980–
3987.
Gretton, C. 2006. Properties of Planning with Non-
Markovian Rewards. In Journal of Artificial Intelligence
Research. Citeseer.
Hasanbeig, M.; Abate, A.; and Kroening, D. 2018.
Logically-constrained reinforcement learning. arXiv
preprint arXiv:1801.08099.
Hasanbeig, M.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2021. DeepSynth: Automata Synthesis for Au-
tomatic Task Segmentation in Deep Reinforcement Learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 7647–7656.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In Inter-
national Conference on Machine Learning, 2107–2116.
Oura, R.; Sakakibara, A.; and Ushio, T. 2020. Rein-
forcement Learning of Control Policy for Linear Tempo-
ral Logic Specifications Using Limit-Deterministic General-
ized Büchi Automata. IEEE Control Systems Letters, 4(3):
761–766.
Rens, G.; and Raskin, J.-F. 2020. Learning non-markovian
reward models in mdps. arXiv preprint arXiv:2001.09293.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of Go without human
knowledge. Nature, 550(7676): 354.
Thiébaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Kabanza,
F. 2006. Decision-theoretic planning with non-Markovian
rewards. Journal of Artificial Intelligence Research, 25: 17–
74.
Thiébaux, S.; Kabanza, F.; and Slaney, J. 2002. Anytime
state-based solution methods for decision processes with
non-Markovian rewards. In Proceedings of the Eighteenth
conference on Uncertainty in artificial intelligence, 501–
510.
Velasquez, A.; Bissey, B.; Barak, L.; Beckus, A.; Alkhouri,
I.; Melcer, D.; and Atia, G. 2021. Dynamic Automaton-
Guided Reward Shaping for Monte Carlo Tree Search. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 12015–12023.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint inference of reward ma-
chines and policies for reinforcement learning. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 30, 590–598.
Xu, Z.; Wu, B.; Ojha, A.; Neider, D.; and Topcu, U. 2021.
Active Finite Reward Automaton Inference and Reinforce-
ment Learning Using Queries and Counterexamples. 12844:
115–135.

651

