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Abstract

Sparse rewards and their representation in multi-agent do-
mains remains a challenge for the development of multi-
agent planning systems. While techniques from formal meth-
ods can be adopted to represent the underlying planning ob-
jectives, their use in facilitating and accelerating learning
has witnessed limited attention in multi-agent settings. Re-
ward shaping methods that leverage such formal representa-
tions in single-agent settings are typically static in the sense
that the artificial rewards remain the same throughout the
entire learning process. In contrast, we investigate the use
of such formal objective representations to define novel re-
ward shaping functions that capture the learned experience
of the agents. More specifically, we leverage the automaton
representation of the underlying team objectives in mixed
cooperative-competitive domains such that each automaton
transition is assigned an expected value proportional to the
frequency with which it was observed in successful trajec-
tories of past behavior. This form of dynamic reward shap-
ing is proposed within a multi-agent tree search architecture
wherein agents can simultaneously reason about the future
behavior of other agents as well as their own future behavior.

Introduction
In recent years, two areas of research that enable the spec-
ification of temporally extended objectives as well as the
computation of decision-making policies that can similarly
reason about such objectives have gained significant trac-
tion. First, the use of heuristic search planning algorithms
that enable the agent to look ahead via the known agent-
environment dynamics has revolutionized the area of au-
tonomous gameplay, particularly in board games (Silver
et al. 2016, 2017b,a; Schrittwieser et al. 2019). The most
popular such method is Monte Carlo Tree Search (MCTS)
aided by the adoption of deep Convolutional Neural Net-
works (CNNs) to determine the expected value of unknown
states encountered during the lookahead procedure. Second,
the development of formal logics over finite traces and their
equivalent representation as Deterministic Finite Automata
(DFA) enable the structured representation of temporally
extended non-Markovian objectives. Such logics include
LTLf and LDLf and have catalyzed various efforts on non-
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Markovian reinforcement learning and planning (De Gia-
como and Vardi 2015; Camacho et al. 2018). In this paper,
we propose a multi-agent approach that lies at the intersec-
tion of these two areas and presents a reward shaping mecha-
nism by which a set of potentially non-Markovian objectives
given as DFAs can be used to dynamically provide an artifi-
cial reward signal to each agent during the lookahead proce-
dure of a multi-agent MCTS algorithm, henceforth referred
to as Multi-Agent Tree Search (MATS). Crucially, our ap-
proach does not simply apply MCTS to the product state
space resulting from the underlying decision process and the
DFA objectives. Rather, we propose a novel dynamic reward
shaping function that aids the MATS procedure to converge
more quickly to higher expected values. Dynamic reward
shaping was first introduced in (Velasquez et al. 2021) for
single-agent MCTS. We demonstrate how cooperative and
competitive behavior can arise within and across teams by
sharing the same search tree in MATS as well as sharing
the same DFA objective within the respective teams. The
shared tree allows agents to reason about predictive optimal
decisions of other agents as part of the lookahead search,
whereas the shared team DFA facilitates delegation of work
and cooperation for agents within the same team as some
agents may be incentivized to solve different subgoals of the
DFA objective as the result of prior successful experience.
For example, one agent may learn to obtain a key for its
team while another agent in the team learns to use this key
to satisfy the team objective. We demonstrate the effective-
ness of our reward shaping technique in yielding greater re-
wards and shorter episode lengths within MATS on random-
ized gridworld problems when compared to a vanilla MATS
baseline which does not use this reward shaping.

In practice, our approach can be leveraged on decision
processes with a high-level objective that be represented as
an automaton. By leveraging the automaton representation
of the objective, it is possible to speed up the convergence to
good decision-making policies via the proposed automaton-
guided reward shaping. On the other hand, our approach can
also be applied to decision processes with a reward signal
in lieu of a direct objective. Indeed, there are approaches
to learning the automaton representation of non-Markovian
reward signals in decision processes (Gaon and Brafman
2020). Once that automaton is learned, our reward shaping
can be leveraged on it to learn what the automaton tran-
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sition values are in order to provide intermediate rewards.
There are also syntactic sugars which can translate a high-
level natural language objective into an logic formula and its
equivalent automaton representation (Brunello, Montanari,
and Reynolds 2019).

It is worth noting that the proposed reward shaping ap-
proach differs from traditional reward shaping (Ng, Harada,
and Russell 1999; Wiewiora, Cottrell, and Elkan 2003; De-
vlin and Kudenko 2012) in one key way. As opposed to
changing the reward signal of the underlying decision pro-
cess directly, we instead provide artificial rewards to the
agents during the lookahead tree search procedure of MATS.
This is done in order to exploit the lookahead properties of
MATS both within the tree as well as within the agent DFA
objectives. For the remainder of this paper, we do not bela-
bor this semantic distinction.

Preliminaries
We assume that the agent-environment dynamics are mod-
eled by a multi-agent Non-Markovian Reward Decision Pro-
cess (NMRDP) (Thiébaux et al. 2006) with a separate re-
ward signal for each agent. These function similarly to a
Markov Decision Process (MDP), with the exception of re-
ward signals that depend on the history of each agent.

(Multi-Agent Non-Markovian Reward Decision Pro-
cess (NMRDP)) A multi-agent Non-Markovian Re-
ward Decision Process (NMRDP) is a non-deterministic
probabilistic process represented by the tuple M =
(S, s0, A, T,R, P ), where S is a set of states, s0 is the ini-
tial state, A is a set of actions, T (s′|s, a) ∈ [0, 1] denotes the
probability of transitioning from state s to state s′ when ac-
tion a is taken, and Rp : S∗ → R is a reward observed for a
given trajectory of behavior by agent p ∈ {1, . . . , P}, where
P is the number of players. We denote by S∗ the set of pos-
sible state sequences and A(s) ⊆ A the actions available in
s.

The initial state s0 corresponds to some agent p. Once this
agent chooses an action a ∈ A(s0), we observe a new state
s ∼ T (·|s0, a) and it is then the turn of the next agent to
choose an action. This iterative turn-taking continues cycli-
cally over the set of agents. For readability, we represent
the state and action spaces S,A as shared by all agents.
Note that the definition of NMRDP closely resembles that
of a Markov Decision Process (MDP). However, the non-
Markovian reward formulation Rp : S∗ → R (often denoted
by Rp : (S × A)∗ × S → R in the literature) depends on
the history of agent behavior, thereby disabling the use of
traditional MDP solution techniques. We encode the given
non-Markovian objective using a DFA, which is a universal
representation of regular languages.

(Deterministic Finite Automaton (DFA)) A DFA is a tu-
ple A = (Ω, ω0,Σ, δ, F ), where Ω is the set of nodes with
initial node ω0 ∈ Ω, Σ = 2AP is an alphabet defined over a
given set of atomic propositions AP , δ : Ω× Σ 7→ Ω is the
transition function, and F ⊆ Ω is the set of accepting nodes.

A relation must be made between the state space of
the given NMRDP and the agent objectives represented
as DFAs. This is accomplished by mapping the state

space of the given NMRDP M = (S, s0, A, T,R, P ) to
the alphabet of the corresponding DFA objective Ap =
(Ωp, ωp

0 ,Σ, δ
p, F p) for each player p ∈ {1, . . . , P}. More

precisely, we define the labeling function L : S → Σ. Intu-
itively, the label L(s) of a state s ∈ S denotes the presence
or absence of certain salient features of the state space. This,
in turn, may elicit a transition in Ap from ω to ω′ if the
agent is currently in some arbitrary node ω and the transi-
tion function is δ(ω,L(s)) = ω′. This naturally allows us to
define traces, or sequences of nodes in Ωp, that correspond
to trajectories, or sequences of states in S. More specifi-
cally, given a trajectory s⃗ = (s0, si1 , si2 , . . . , sin), we have
the corresponding trace ω⃗ = (ω0, ωj1 , ωj2 , ωj3 , . . . , ωjn+1

),
where ωj1 = δ(ω0, L(s0)), ωj2 = δ(ωj1 , L(si1)), ωj3 =
δ(ωj2 , L(si2)), . . . , ωjn+1

= δ(ωjn , L(sin)). This may in-
clude self-loops. Let tr : S∗ → Ω∗ denote the mapping
of a given trajectory to its corresponding trace. In the pre-
vious example, we have tr(s⃗) = ω⃗. Furthermore, let last :
Ω∗ 7→ Ω denote the last node in a trace. A trace ω⃗ is said
to be accepting for player p if and only if last(ω⃗) ∈ F p.
Such a trace is said to satisfy the objective encoded by the
DFA Ap and will lead to a reward for player p for the tra-
jectory of states that induced the trace. We now have the
machinery to define the reward signals for each agent. Let
Ap = (Ωp, ωp

0 ,Σ, δ
p, F p) denote the DFA objective of

agent p ∈ {1, . . . , P}. The reward signal Rp : S∗ → R
for an arbitrary agent p is defined in Equation (1) for an ob-
served trajectory s⃗ = (s0, si1 , si2 , . . . , sin).

Rp(s⃗) =

{
1 last(tr(s⃗)) ∈ F p

0 otherwise
(1)

While the preceding reward formulation intuitively captures
the notion of satisfying the underlying objective of an agent,
it is a sparse reward signal which can make learning a use-
ful policy difficult, particularly in temporally extended tasks.
Our proposed reward shaping technique mitigates this by
providing a dynamic reward signal for each transition in the
agent DFAs. This reward signal captures the empirical ex-
pected value of observing a transition based on the previous
experience of the agent. Empirical expected value, in this
sense, denotes the proportion of time a given transition has
led to a satisfying trace.

Finite-Trace Linear Temporal Logic (LTLf )
Though our proposed approach is amenable to DFA ob-
jectives, it is not always straightforward to convert a
high-level objective into such a representation. To that
end, finite-trace Linear Temporal Logic (LTLf ) and Lin-
ear Dynamic Logic (LDLf ) have been extensively stud-
ied in recent years (De Giacomo and Vardi 2015; Cama-
cho et al. 2018) and tools for converting formulas in these
logics to DFA representations are readily available (e.g.
https://pypi.org/project/flloat/). For convenience, we adopt
LTLf in specifying our objectives and generating their cor-
responding DFAs. Given a set of atomic propositions AP , an
arbitrary LTLf formula ϕ is defined inductively over the fol-
lowing syntactic operators, where l ∈ AP , ϕ1, ϕ2 are LTLf

formulas, ¬ and ∧ denote logical negation and conjunction
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and X and U denote the next and until operators.

ϕ := true | l | ϕ1 ∧ ϕ2 | ¬ϕ | X ϕ | ϕ1 U ϕ2

The core operators give rise to other useful operations, such
as the eventually and always operators F ϕ = true U ϕ and
G ϕ = ¬F ¬ϕ, respectively. While these operators may ap-
pear limited in scope, they afford a rich description language
for modeling complex behavioral specifications of systems
and translating them into an equivalent DFA representation.

Related Work
In recent years, powerful MCTS variants using deep CNNs
have been proposed for the game of Go (Silver et al. 2016)
(Silver et al. 2017b), various other board games (Silver et al.
2017a) (Anthony, Tian, and Barber 2017), and Atari (Schrit-
twieser et al. 2019). The use of multi-agent MCTS has also
been explored in (Zerbel and Yliniemi 2019), wherein each
agent has its own search tree. MCTS has also been applied to
learn options expressed as LTL goals (e.g. follow, wait, stop)
such that, once an option is determined, deep reinforcement
learning is used to learn a policy for that option (Paxton et al.
2017). These differ from our multi-agent tree search in that
we reason about the mixed cooperative-competitive setting
and all agents in our approach share a search tree, thereby
leading to more robust adversarial and collaborative behav-
ior as the result of predictive evaluations of other agents
within the same search tree.

The use of automata to enable reward shaping in rein-
forcement learning and planning solutions has been explored
using temporal difference learning (Sadigh et al. 2014),
value iteration (Hasanbeig, Abate, and Kroening 2018),
neural fitted Q-learning (Hasanbeig, Abate, and Kroen-
ing 2019), and traditional Q-learning (Hahn et al. 2019).
The aforementioned efforts focus on trajectories of infi-
nite length with objectives encoded using Linear Temporal
Logic and are represented by Deterministic Rabin Automata
(DRA), which require a more sophisticated acceptance con-
dition than that of DFAs. More specifically, the reward shap-
ing performed using a DRA typically involves an on-the-fly
computation of the product transition system derived from
the underlying MDP and the DRA. These approaches pro-
vide a reward for the agent upon entering a satisfying region
of the product MDP, but, unlike our approach, they do not
provide dynamic rewards based on the learned experience
of the agent. We refer to such reward shaping as static.

Static reward shaping approaches which leverage DFAs
have been explored in (De Giacomo et al. 2019), (Camacho
et al. 2017) by using LTL or LTLf automata to provide inter-
mediate rewards based on the number of transitions from the
current node ω to an accepting node in F in said DFA. Dy-
namic programming approaches over DFAs, or their more
general reward machine formalism, have also been explored
by treating transitions to nodes in F as rewardful and deriv-
ing expected transition and node values in the standard way
using Q-learning or value iteration (Icarte et al. 2018; Ca-
macho et al. 2019). Due to their static nature, the preceding
reward shaping approaches present some limitations on how
informative the reward shaping function can be since agent
experience is not taken into account. Indeed, consider the

Figure 1: Simple automaton with AP = {a, b} and F = ω3.

simple automaton in Figure 1. Note that, from the starting
node ω0, both outgoing transitions to ω1 and ω2 are equally
favored by the preceding approaches due to the symmetry
of the automaton. However, it may be the case that in the
underlying NMRDP, it is unlikely to reach a state labeled
b a second time, but reaching two states labeled a is eas-
ily achievable. From the experience of the agent, such cases
could be handled by using a dynamic reward shaping ap-
proach like the one presented in this paper, where the transi-
tion values in the automaton are refined based on the natural
exploration of the agent as part of the planning process. As a
result, the reward shaping values of the a-transitions would
be much higher than those of the b-transitions. In this paper,
we extend the dynamic reward shaping approach presented
in (Velasquez et al. 2021) to handle multiple agents and ac-
count for both deterministic and stochastic transitions in the
underlying NMRDP. It is worth noting that multi-agent re-
ward machines have been considered recently in the context
of reinforcement learning (Neary et al. 2021). We leave for
future work the integration of such multi-agent reward ma-
chines with the dynamic reward shaping method proposed
herein.

Multi-Agent Tree Search with Dynamic DFA
Reward Shaping

Given an NMRDP M = (S, s0, A, T,R, P ) and a DFA
objective Ap = (Ωp, ωp

0 ,Σ, δ
p, F p) for each agent p ∈

{1, . . . , P}, our proposed reward shaping maintains statis-
tics about how often a given transition in the automaton of
each player p leads to a successful episode, thus attributing
rewards to important states and actions corresponding to the
trajectory s⃗ of a given trace tr(s⃗) in the DFAs. This reward
shaping is integrated into a multi-agent MCTS algorithm,
called MATS. We leverage the natural lookahead properties
of MCTS to find future trajectories that contain automaton
transitions that are more often a part of a successful episode,
and bias the action selection to take the agent along this tra-
jectory. In the sequel, we first provide a high-level explana-
tion of the underlying processes, then proceed to formalize
the individual components and present the MATS algorithm
with our reward shaping function. The full algorithm can be
found in the appendix.

MATS can be seen as an extension of MCTS wherein
each level in the tree corresponds to the turn of exactly one
agent p. Thus, MATS is equivalent to MCTS when there is
only a single agent. For any given state s, MATS generates
a tree of simulated experience by looking ahead using a pol-
icy πp

tree for each agent p and evaluating future states. Once
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enough simulated experience is gathered through the Selec-
tion, Expansion, and Update phases of the lookahead search,
the agent can make an informed decision in the ”real world”
during the Play phase by using a different policy πplay. A
new state is then observed in the real world and simulated
experience can be collected again via the expansion of a new
tree. We explain these phases in the sequel, noting that our
proposed reward shaping function is applied during the Se-
lection phase and its values are updated after every episode
to reflect experience acquired by the agent in the real world
following the policy πplay. In this sense, player p uses πp

tree
to plan ahead and πplay to take an action in the real world if
it is its turn.

Figure 2: Example expanded tree.

Selection Phase: Given a state s and the current positions
{ωp}p in the DFA objectives of each agent, suppose we have
already explored and evaluated various future trajectories as
shown in the tree in Figure 2. The purpose of the Selection
phase in MATS is to plan ahead by choosing actions, starting
from the root state s until some new state (i.e. one which is
not currently in the tree) is encountered. Since we have mul-
tiple agents, or players, each level in the tree corresponds to
the turn of a different agent. In this example, it is the turn of
player p1 at the root of the tree. This agent makes a selec-
tion according to its tree policy πp1

tree given by Equation (2).
It is then the turn of player p2, who similarly makes a selec-
tion using its tree policy πp2

tree. Assuming there are only two
players, it is then again the turn of player p1. The functions
Qp(s, a) and Up(s, a) denote the action value and Upper-
Confidence Bound (UCB) exploration functions which are
defined in the Update phase. These follow the same formu-
lation as that used in (Silver et al. 2017b). The proposed re-
ward shaping function RAp(s, a, ω) is defined in Algorithm
1 below.

Algorithm 1: RAp

Data: State s, action a, DFA node ω.
1 begin
33 val1 :=

∑
s′ T (s

′|s, a)QAp(ω, δ(ω,L(s′)))
55 val2 := 0
77 for s′ ∈ {s′|T (s′|s, a) > 0} and s’ in tree do
99 ω′ := δ(ω,L(s′))

1111 v := T (s′|s, a)
[
maxa′∈A(s′) RAp(s′, a′, ω′)

]
1313 if v > val2 then
1515 val2 := v
1717 return max{val1, val2}

Intuitively, this reward shaping considers the current state
s and position ω in the DFA objective of agent p and evalu-
ates the outcome of selecting action a. After taking action
a, a new state s′ is observed with probability T (s′|s, a),
thereby causing the corresponding transition from ω to ω′

in the DFA objective of the agent. With each such transi-
tion, there is a dynamic value QAp(ω, ω′) associated with
it which captures how often the transition has been part of
a satisfying trace for that agent. However, the proposed re-
ward shaping can reason about future transitions in the DFA
as well, not just the immediate transitions. This is due to
the natural lookahead properties captured by the currently
expanded tree. Indeed, from the potential next state s′, the
reward shaping function considers possible actions and their
corresponding transitions in the DFA. This process contin-
ues until the maximum DFA transition value QAp is found
and weighted according to the probability of reaching said
transition. An illustrative example of this process can be
seen in Figure 3, where it is clear that the proposed dynamic
reward shaping is applied during the Selection phase of the
tree search procedure. Hyperparameters cUCB, cRS are used
to fine-tune the influence of exploration and reward shaping.

πp
tree(s, ω) = argmax

a∈A(s)
Qp(s, a) + Up(s, a) +RAp(s, a, ω)

(2)

Up(s, a) = πp
CNN(a|s)

√∑
b∈A(s) N(s, b)

1 +N(s, a)
(3)

Expansion: Once a new state is encountered during the Se-
lection phase, its value must be determined from the per-
spective of each agent p. This is known as the Expansion
phase. While traditional MCTS approaches often leverage
Monte Carlo sampling techniques to compute an empirical
estimate of this value, more modern implementations use a
CNN to derive a predictive value based on previous expe-
rience. In the example in Figure 2, assume that player p1
selected action a1, leading to state s11. Then, player p2 se-
lected action a1, leading to state s21. Now, assume player p1
takes action a2 in this state and we observe an arbitrary new
state s31. This state is input to the CNN parameterized by θp

for each agent p as a tensor and its predicted value V p
CNN(s31)

and predicted optimal policy distribution πp
CNN(·|s31) are ob-

tained for each player. State s31 is then added to the tree. It is
worth noting that, during the turn of agent p, we assume ac-
cess to the CNNs of all other players as part of the training
phase of the algorithm. In doing so, the MATS procedure
learns effective strategies for each agent that can be vali-
dated during the deployment or testing phases, where access
to the learning models of other agents is, of course, prohib-
ited. This is a critical distinction between training and testing
as during training we must make some assumption on how
adversaries will behave in order to drive the learning pro-
cess. This is a common assumption in multi-agent solutions
that employ centralized training and decentralized execution
(CTDE) (Nguyen, Nguyen, and Nahavandi 2020).
Update: The values V p

CNN(s31) and πp
CNN(·|s31) obtained

during the Expansion phase are then used to update
the action value Qp(s, a) and exploration Up(s, a) func-
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Figure 3: (left) Suppose the Selection phase is currently
on state s of the NMRDP and node ωp1 of Ap1 . Let
QA1(ωp1 , ωp1

1 ) = QA1(ωp1 , ωp1

3 ) = QA1(ωp1

3 , ωp1

4 ) =
0.05 and QA1(ωp1

1 , ωp1

2 ) = 0.1. Let L(s11) = L(s21) =
{l1} and L(·) = {l2} for all other states. It follows that, if
the agent selects action a1 in state s, then its DFA (right) will
transition from ωp1 to ωp1

1 . Recall that the value of this tran-
sition is 0.05. Alternatively, if the agent chooses action a2,
then the automaton will transition from ωp1 to ωp1

3 , whose
corresponding value is also 0.05. From this short-sighted
perspective, the reward shaping function has no basis by
which to favor a particular action. However, thanks to the
lookahead search of MCTS, we can similarly look ahead in
the automaton to transitions corresponding to later actions
in the tree. For example, note that if the agent does take ac-
tion a1 in state s and action a1 is taken again in state s11,
we have a transition to state s21, whose label is {l1}. This
would cause transitions from ωp1 to ωp1

1 and then to ωp1

2 .
The value of this latter transition is 0.1. Thus, the reward
shaping RAp(s, ωp1 , a1) will return QA1(ωp1

1 , ωp1

2 ) = 0.1
and RAp(s, ωp1 , a2) will return 0.05.

tions, respectively, for each player p for the state-action
pairs (s, a) leading from the root state to the newly ex-
panded state s31 in the tree. In this case, these correspond
to (s, a1), (s11, a1), (s21, a2). Each action value function
Qp(s, a) is updated to reflect the ratio W p(s, a)/N(s, a),
where N(s, a) denotes the number of times (s, a) has been
observed during the Selection phase and W p(s, a) denotes
the accumulated expansion values V p

CNN(s
′) of all states s′

reached from taking action a in state s. Exploration function
Up(s, a) uses the expansion output πp

CNN to update explo-
ration per Equation (3). After this Update phase, the Selec-
tion phase begins again at the root state.
Play: After a user-defined number of iterations of Selec-
tion, Expansion, and Update phases, known as the expansion
limit, is reached, an action is taken in the ”real world” by
leveraging the simulated experience acquired during these
phases. Using Figure 4 as a reference, this action follows the
play policy πplay(a|s0) = N(s0, a)/

∑
b N(s0, b), as is done

in (Silver et al. 2017b). A new state s is observed and a tree
can be expanded anew with s at the root corresponding to the
turn of player p2. Again, the new tree is formed through the
Selection, Expansion, and Update phases until the expansion
limit is reached and an action in the ”real world” is selected

Figure 4: Example play steps using policy πplay in the real
world by leveraging simulated experience using πp

tree.

using the play policy πplay(a|s). A new state s′ is observed
and the process continues. The episode ends once an agent
p reaches its acceptance set F p in its DFA objective.

Once an episode concludes, we use the experience ob-
tained from the play policy in order to update the automaton
transition values QAp(ω, ω′) used by RAp as well as train
the CNN parameters θp of each agent p. The former are
updated to reflect the ratio WAp(ω, ω′)/NAp(ω, ω′) of the
number of times a transition from ω to ω′ was observed in
a satisfying trace to the total number of times that transition
was observed. Let s⃗ denote the trajectory of play steps in the
episode. The CNN parameters θp are trained on a dataset of
play steps of the form (s, a, s′, r), where r = 1 for all play
steps involved if last(tr(s⃗)) ∈ F p and r = 0 otherwise.
The formal procedure can be seen in Algorithm 3 in the ap-
pendix, which calls EXPAND-TREE (Algorithm 2) to carry
out the Selection, Expansion, and Update phases.

Note that, while the proposed reward shaping function
RAp allows for each agent to have a DFA objective, it also
allows for the possibility of team objectives shared across
all agents in a team. Indeed, this can be accomplished by
simply having each agent in a team traverse the same DFA
representation of the team objective. That is, for two agents
p1 and p2 belonging to the same team, we have Ap1 = Ap2 .
As we demonstrate in the next section, this use of a shared
DFA can lead to interesting intra-team cooperative and inter-
team competitive behavior. We demonstrate the utility of our
approach using such team objectives by defining two multi-
agent scenarios called infiltrators and guards and gladiators
and goliath, where collaboration can emerge as a powerful
strategy to satisfy the team DFA objective. In these environ-
ments, the agents have 6 possible actions corresponding to
moves in any of the cardinal directions, an action to interact
with the environment, and no-op. We consider both deter-
ministic and stochastic transition dynamics.

Experimental Results
In order to evaluate the efficacy of the proposed reward
shaping within MATS against that of MATS without reward
shaping, we first train two DFA teams against one another
and two non-DFA teams against one another for the infil-
trators and guards and gladiators and goliath domains de-
fined below. By (non-)DFA teams, we mean teams with(out)
our proposed DFA-based reward shaping function RAp . For
non-DFA teams, we set RAp = 0 for all possible inputs.
Infiltrators and guards: This environment is
defined over the atomic propositions AP =
{k1, k2, c1, c2, sc1, sc2, i1, i2} with labeling function

656



Figure 5: Instances of the infiltrators and guards (left) and
gladiators and goliath (right) domains.

L(s) defined as follows for an arbitrary state s ∈ S:
L(s) = kj holds iff infiltrator j holds a key in state s, cj
holds iff infiltrator j obtained a treasure chest, scj holds
iff treasure chest j is in the cone of visibility of one of
the guards, and ij holds iff infiltrator j is in the cone of
visibility of one the guards. This environment consists of
a team of two infiltrators and a team of two guards. Each
agent has a cone of visibility as seen in Figure 5. The goal
of the infiltrator team is to first obtain one of two keys in
the map by standing on a key tile. Afterwards, one of the
infiltrators must interact with one of the two treasures on
the map in order to unlock it with the key that has been
obtained. This objective is given by the LTLf formula
F(k1 ∨ k2)∧ (F(k1 ∨ k2) U F(c1 ∨ c2)). The interact action
also allows infiltrators to permanently immobilize a guard
when standing directly behind them or to place a box from
their inventory of two boxes each on their current position
in order to block the visibility of guards. Guards can make
use of the interact action to destroy all adjacent boxes, but
only when both guards are on the same tile. The objective
of the guard team is to foil the infiltrators by finding both
infiltrators and monitoring the treasure to ensure it has not
been stolen. This objective is given by the LTLf formula
(G(F(sc1)) ∧ G(F(sc2))) ∧ F(i1) ∧ F(i2). An example
of the Selection, Expansion, and Update phases for this
environment can be seen in Figure 9 at the end of this paper.
Gladiators and goliath: This environment is
defined over the atomic propositions AP =
{gw1, gw2, gG1, gG2, Gg1, Gg2} denoting the follow-
ing: gwj holds iff gladiator j is holding a weapon, gGj

holds iff the goliath is in the cone of visibility of gladiator
j, and Ggj holds iff gladiator j is in the cone of visibility
of the Goliath. This environment consists of a team of two
gladiators facing off against one goliath whose cone of
visibility is greater than that of the gladiators. The objective
of the gladiators is to each obtain a weapon by standing on a
weapon tile and both gladiators must have the goliath in their
sights simultaneously at some point. This objective is given
by the LTLf formula F(gw1) ∧ F(gw2) ∧ F(gG1 ∧ gG2)
with a corresponding DFA containing 8 nodes and 27 edges.
The interact action allows gladiators to erect a wall from
their inventory on the tile they are standing on in order to
block the visibility of the goliath. Gladiators begin with

no walls in their inventory, but can pick up wall tiles by
standing on them. The goal of the goliath is simply to have
each gladiator in its cone of visibility for three consecutive
turns. This is given by the LTLf formula F(X(Gg1 ∧
X(Gg1 ∧ X(Gg1)))) ∧ F(X(Gg2 ∧ X(Gg2 ∧ X(Gg2))))
whose corresponding DFA has 16 nodes and 49 edges.

We begin with homogeneous opponent games that run for
one million play steps each. We then swap opponents, so
that each DFA team is now playing against a non-DFA team,
and these runs train for another million play steps. The re-
ward curves and average episode lengths for each team can
be observed in Figure 6 for both deterministic and stochas-
tic environment dynamics. For the stochastic dynamics, if
an agent chooses to move right (left), it will do so with 90%
probability, but may instead move to the tile above or below
it with 5% probability each. Similarly, if an agent chooses to
move up (down), it will do so with 90% probability, but may
instead move to the tile right or left of it with 5% probabil-
ity. The deterministic dynamics are defined in the obvious
sense, with T (s′|s, a) ∈ {0, 1}.

Through the evaluation of total reward curves, we see
our DFA teams performing significantly better than their
non-DFA counterparts in both domains. We also observe a
degradation in performance for non-DFA teams after swap-
ping to face a DFA opponent, demonstrating that DFA
teams can learn more robust policies. After the 2M play
steps for each team (1M against a DFA opponent and 1M
against a non-DFA opponent) in the deterministic environ-
ment, we observe that DFA infiltrators (guards) achieved
69.49% (61.94%) higher rewards than their non-DFA coun-
terparts. In the gladiators and goliath deterministic environ-
ment, we observe similar gains, with the DFA gladiators (go-
liath) scoring 63.73% (13.34%) higher than their non-DFA
counterparts. The difference in performance is even more
pronounced in the stochastic setting, where we observe that
DFA infiltrators (guards) achieve 71.80% (154.07%) higher
rewards than their non-DFA counterparts. In the gladiators
and goliath stochastic environment, the DFA gladiators (go-
liath) score 41.11% (23.98%) higher than non-DFA counter-
parts. See appendix for neural network architecture details.

The proposed reward shaping also led to more data-
efficient policies. Indeed, consider the average episode
lengths in the homogeneous games (i.e. DFA against DFA
teams, non-DFA against non-DFA teams). After the execu-
tion of the first 1M play steps, we observe that, in the infiltra-
tors and guards environment, the deterministic (stochastic)
DFA games have an average episode length that is 80.33%
(42.64%) less than that of non-DFA counterparts. See Fig-
ure 6 for results. In the gladiators and goliath environment,
we similarly observe deterministic (stochastic) DFA games
have an average episode length that is 16.28% (34.53%) less
than that of their non-DFA counterparts.1

Behavioral Case Studies
We examine episodes of cooperative and adversarial behav-
iors carried out by agents in the infiltrators and guards envi-
ronment after training for 1M play steps using our approach.

1Code and parameters at https://github.com/bb912/MATS-DRS

657



Figure 6: Performance of DFA and non-DFA teams for the
(top) infiltrators and guards and (bottom) gladiators and go-
liath environments with stochastic and deterministic envi-
ronment dynamics.

Figure 7: Example of collaborative behavior.

Figure 8: Example of adversarial behavior. Red (blue) ar-
rows denote the action trajectory of Infiltrator 1 (Guard 2).
The black square in (c) denotes a No-op action. Letters a−e
denote consecutive sub-trajectories.

Initially, both infiltrators move in the direction of the keys.
However, while Infiltrator 2 proceeds to collect one of the
keys, Infiltrator 1 moves back to the right and then moves
directly upward towards the closest treasure chest. We typi-
cally observe Infiltrator 1 following a similar pattern: delay-
ing their upward motion until Infiltrator 2 gets the key, and
sometimes initially moving towards the key as in this case.
Because Infiltrator 2 has already obtained the key, Infiltrator
1 wins the game by reaching the treasure chest. The episode
completes in 33 total play steps: 9 steps for Infiltrator 1, and
8 steps for each of the other three agents. Note that this case
can also be viewed as an act of delegation, since Infiltrator 1
takes on the task of reaching the treasure chest, while Infil-
trator 2 adopts the alternative task of obtaining the key.

An example of learned adversarial behavior on the part
of the infiltrators can be seen in Figure 8. Note that these
images are focused on the top-right corner of the environ-
ment. The Infiltrator team already has a key and must reach
the treasure chest to win the game. Infiltrator 2 and Guard
1 remain unseen through the duration of the trajectory. If
the Guard team sees both infiltrators, and then the chest, the
guards will win. Notice Infiltrator 1 stalling around the chest,
seemingly to avoid the guard’s cone of visibility which ex-
tends 2 spaces in front of Guard 2. Guard 2 moves right to-
ward the chest as Infiltrator 1 moves up and chooses a No-
op action (c). Infiltrator 1 makes a move to kill Guard 2 (d)
once the guard reaches the chest and is facing right, where
the cone of visibility is no longer a threat. Infiltrator 1 then
moves down and back up to the chest, winning the game (e).
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Guard -2-

𝑠8

𝑠9

Infiltrator Objective

¬k1∧¬k2

(k1∧¬c1∧¬c2)
∨ (¬k1∧k2∧¬c1∧¬c2)

(k1∧c1)
∨ (k1∧¬c1∧c2)
∨ (¬k1∧k2∧c1)
∨ (¬k1∧k2∧¬c1∧c2)

¬c1∧¬c2

(¬k1∧c1∧¬c2) ∨ (k1∧c1)
∨ (¬k1∧c2) ∨ (k1∧¬c1∧c2)

1

ω0
¬i1

i1∧¬i2

(i1∧i2∧sc1∧¬sc2)
∨ (i1∧i2∧sc2)

i1∧i2

¬i2

(i2∧¬sc1∧sc2)
∨ (i2∧sc1)

i2∧¬sc1
∧¬sc2

(¬i1∧sc1∧¬sc2) | (i1∧sc1)
| (¬i1∧sc2) | (i1∧¬sc1∧sc2)¬sc1∧¬sc2

¬sc1∧¬sc2

(¬i1∧sc1∧¬sc2) ∨ (i1∧sc1)
∨ (¬i1∧sc2) ∨ (i1∧¬sc1∧sc2)

Guard Objective (d) Play st

st+1

ω1

ω2

ω3

ω0

ω1

ω2

 

Figure 9: (top) MATS iteration of the Selection, Expansion, and Update phases for a 4 × 6 multi-agent game of infiltrators
and guards given by the NMRDP M = (S,A = {←, ↓,→, ↑, interact, no-op}, T, R, P = {I,G}). (bottom) DFAs AI =
(ΩI , ωI

0 ,Σ = 2AP, δI , F I) and AG = (ΩG, ωG
0 ,Σ = 2AP, δG, FG) used to model the infiltrator and guard team objectives,

where transitions are visualized as Boolean formulas over AP (e.g. ¬k1 denotes that Infiltrator 1 is not holding a key). Each
team shares a DFA as well as a CNN, where a binary matrix is used as input to each CNN in order to determine whose agent’s
turn it is within the team. (a) This iteration of MATS begins in the root state s1 with the turn of Infiltrator 1. Suppose the
infiltrators (yellow and green arrows in the tree and the Infiltrator DFA) and one guard (red arrow in the tree and the Guard
DFA) have already made their moves according to their tree policy given by Equation (2). It is currently the turn of Guard 2,
who must select which action to choose according to its tree policy. Once Guard 2 chooses its action to move up (blue arrow),
this causes a transition into state s9, where the guard successfully sees Infiltrator 2 and the treasure (i.e. L(s9) = {sc1, i2}),
thereby causing a transition from ω1 to ω2 in the guard team objective automaton. Since this corresponds to an accepting trace
for the guard team, the values V I

CNN(s9) and V G
CNN(s9) output by the infiltrator and guard team CNNs during the expansion

phase (b) are expected to be low and high, respectively. This expansion is carried out because the newly observed state s9
is a new leaf node in the tree and we must thus determine its expected value from the point of view of all teams (including
infiltrators). This is done by representing s9 as a series of binary matrices denoting the presence of the various items in AP
(e.g. the treasure chests, keys) and the cones of visibility of the agents and feeding these as inputs to a CNN for each team. This
CNN outputs the expected win rates V I

CNN(s9), V
G

CNN(s9) of the newly expanded state from the perspective of each team and it
also outputs the predicted optimal policy πI

CNN(·|s9), πG
CNN(·|s9) (used to update the exploration function per Equation (3)) for

whichever agent’s turn it is. (c) The edges (s, a) in the tree consisting of the trajectory from the root s1 to the expanded node
s9 are updated with new action values QI(s, a), QG(s, a) and exploration values U I(s, a), UG(s, a) for each team based on
the expanded values and we begin a new trajectory starting at the root of the tree until some new leaf is expanded. (d) After
some given threshold on the number of expansions is reached for the current MATS iteration rooted at s1, Infiltrator 1 at the
root of the tree utilizes the play policy πI

play(a|s1) = N(s1, a)/
∑

b N(s1, b) to take an action in the real world. A new state s′

is observed corresponding to the turn of Guard 1 and a new MATS iteration begins with root state s′.
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Conclusion
A novel dynamic reward shaping function which lever-
ages the Deterministic Finite Automaton (DFA) representa-
tions of multi-agent objectives was proposed and integrated
within a multi-agent Monte-Carlo Tree Search implementa-
tion, called Multi-Agent Tree Search (MATS). The proposed
reward shaping function leverages the lookahead properties
of MATS, which simultaneously allows the agent to rea-
son about and evaluate future states of the environment and
of the DFA objective, and is dynamic in the sense that it
captures the experience of the agents and is updated to re-
flect the empirical expected value of individual DFA transi-
tions. We demonstrated the effectiveness of our approach on
random cooperative-competitive gridworld environments by
comparing against a MATS baseline with no reward shaping.
The results show that our approach achieves higher rewards
and shorter episode lengths than the MATS baseline.

Appendix: Algorithm Pseudocode

Algorithm 2: EXPAND-TREE
Data: Root state sroot, current DFA positions {ωp}p,

current player p̂
1 begin
33 W p, Np, Qp, Up := 0
55 for k := 1 to expansion Limit do
77 s := sroot

99 S⃗ := ∅ // stores trajectory
1111 while s in currently expanded tree do
1313 a ∼ πtree(s, ω

p̂) // selection;
this is where the reward
shaping function is used

1515 S⃗ := S⃗
⋃
{(s, a)}

1717 N(s, a) := N(s, a) + 1
1919 s′ ∼ T (· | s, a)
2121 Change p̂ to reflect the next player
2323 for each player p do
2525 ωp := δ(ωp, L(s′))
2727 s := s′

2929 sexpand := s
3131 for each player p do
3333 (V p

CNN, π
p
CNN) := fθp(sexpand)

// expansion to determine
the value from the
perspective of each player

3535 for each (s, a) in S⃗ do
3737 W p(s,a) := W p(s, a) + V p

CNN
3939 Qp(s,a) := W p(s, a)/N(s, a)

// update tree

4141 Up(s,a) ∝ πp
CNN/N(s, a) (See

Equation (3))
4343 Return πplay(a|s) = N(s, a)/

∑
b N(s, b)

Algorithm 3: Multi-Agent Tree Search (MATS)
Data: NMRDPM, DFAs Ap, parameters θp.

starting player p̂.
1 begin
33 Initialize WAp , NAp , QAp := 0 for each player p
55 Initialize memory Mp

play := ∅, terminalp := 0

for each player p
77 s := s0 // set initial state
99 for each player p do

1111 ωp := δp(ωp
0 , L(s0)) // DFA

transitions
1313 for each episode do
1515 πplay(·|s) := EXPAND-TREE(s, {ωp}p, p̂)
1717 a ∼ πplay(·|s)
1919 s′ ∼ T (·|s, a)
2121 Mp

play := Mp
play

⋃
{(s, a, r = 0, s′)}

2323 Change p̂ to reflect the next player
2525 for each player p do
2727 MAp := MAp

⋃
{(ωp, δp(ωp, L(s′)))}

2929 ωp := δp(ωp, L(s′))
3131 if ωp ∈ F p then
3333 for each (s, a, r, s′) ∈Mp

play do
3535 (s, a, r, s′) := (s, a, 1, s′)
3737 terminalp := 1

// satisfying trace
for agent p

3939 if terminalp = 1 for any p then
4141 for each player p do
4343 Let (πCNN, VCNN) := fθp(·)
4545 Train θp using loss

E
[
(r − V p

CNN)
2 − aT log πp

CNN

]
// samples (s, a, r, s′) are

drawn from Mp
play to

compute the empirical
expectation

4747 for each (ω, ω′) ∈MAp do
4949 WAp(ω, ω′) :=

WAp(ω, ω′) + terminalp
5151 NAp(ω, ω′) := NAp(ω, ω′) + 1
5353 QAp(ω, ω′) :=

WAp(ω, ω′)/NAp(ω, ω′)
// update automaton
stats

5555 Begin next episode with s := s0 and
ωp := δp(ωp

0 , L(s0)) for each player p
5757 else
58 go to Line 17
6060 return θp and QAp for each player p
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